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Abstract: As one of the most important components in rotating machinery, it’s necessary and essential
to monitor the rolling bearing operating condition to prevent equipment failure or accidents. However,
in vibration signal processing, the bearing initial fault detection under background noise is quite
difficult. Therefore, in this paper a new feature extraction method combining sparse reconstruction
and Multiscale Dispersion Entropy (MDErms) is proposed. Firstly, the Sliding Matrix Sequences
(SMS) truncation and sparse reconstruction by Hankel-matrix are applied to the vibration signal.
Then MDErms is utilized as a characteristic index of vibration signal, which is suitable for a short time
series. Additionally, the MDErms is employed in the sparse reconstructed matrix sequences to achieve
the Multiscale Fusion Entropy Value Sequence (MFEVS). The MFEVS keeps the fault potential feature
information in different scales and is superior in distinguishing fault periodic impulses from heavy
background noise. Finally, the designed FIR bandpass filter based on the MFEVS, shows prominent
features in denoising and detecting weak bearing faults, which is separately verified by simulation
studies and artificial fault experiments in different cases. By comparison with traditional methods
like EEMD, Wavelet Packet (WP), and fast kurtogram, it can be concluded that the proposed method
has a remarkable ability in removing noise and detecting rolling bearing faint fault.

Keywords: fault diagnosis; feature extraction; rolling bearing; signal processing

1. Introduction

A rolling bearing is largely applied to rotating machinery and is essential to any manufacturing
or processing enterprises in modern industry. A rolling bearing is sensitive to the operating condition
of the mechanical equipment and a lot of different problems will lead to failure [1,2]. The bearing
invalidation takes a great proportion of the mechanical equipment failure and accidents, and costs
much maintenance capital expenditure. Therefore, it is greatly important and necessary to monitor the
bearing operating condition to avoid equipment shutdown and even industrial accidents [3].

With the development of signal processing and analysis in recent decades, a large number of
different techniques and methods are widely used for fault diagnosis and condition monitoring of the
rolling bearing [4]. Essential Empirical Mode Decomposition (EEMD) is a self-adaptive time-frequency
analysis method and has a good ability to process non-linear and non-stationary time series [5].
EEMD is developed from the empirical mode decomposition (EMD) algorithm by added a Gaussian
white noise. However, the problem of mode mixing and boundary effect analysis severely limits the
application of EEMD [6]. Wavelet Packet (WP) analysis is the further improvement of the wavelet
analysis and shows excellent performance in fault diagnosis and feature extraction [7]. However,
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the WP method also has the problem of energy leakage, border distortion, a large calculation amount,
and so on [8]. On the other hand, the WP is not suitable for the non-stationary signal analysis.

Shannon firstly introduced the concept of entropy into the information theory in 1948, which
formally realized the measure of the useful information in an event. Entropy can effectively reflect
the irregularity and uncertainty of signal. Approximate Entropy (ApEn) is proposed by Pincus to
measure the probability of generating a new pattern in the time series [9]. The larger the probability
of generating a new pattern, the larger the ApEn. Based on ApEn, the Sample Entropy (SamEn) is
introduced to assess the complexity of time series [10]. SamEn is designed to reduce the error of ApEn
and shows great precision. The computation complexity of SamEn is O(N2). Because SamEn merely
measures the degree of signal complexity in one dimension, Costa presented the Multiscale Entropy
(MSE) to evaluate the irregularity of the signal at different time scales [11]. MSE is commonly used in
many applications, such as biomedical signa [12]. Bandt proposed the Permutation Entropy (PerEn)
method from the perspective of permutation patterns [13]. As PerEn only measures the order relation
of the amplitude value in the time series, the computation complexity of PerEn is just O(N) [14].
However, PerEn does not make use of additional information about amplitude except the order, which
quite limits its application. Combined with the merit of SamEn and PerEn, Azami put forward the
Dispersion Entropy (DisEn) which is suitable for short signals and shows excellent performance in
measuring the signal complexity [15]. As mentioned above, to further accurately assess the degree
of richness of signal information, the paper develops the MDErms as a characteristic index of signal,
which could improve the cumulative distribution function of the time series and measures the signal
irregularity and uncertainty at different time scales.

In this paper, a new feature extraction method combining sparse reconstruction and MDErms
is proposed for the fault diagnosis of a rolling bearing. Firstly, the vibration signal is intercepted
into an array of sliding short signal segments. The obtained truncation segments are called Sliding
matrix sequences (SMS), and the local fault signature is separately hidden in the SMS. To improve the
stability and accuracy of entropy, each short sliding segment of the SMS is reconstructed into sparse
sequence by Hankel-matrix. Then, the proposed MDErms is employed for each sparse reconstructed
matrix sequence and achieves the corresponding characteristic index. The achieved calculation is
called the Multiscale Entropy Value Matrix (MEVM). If a short sliding signal segment contains a fault
impulse or part, the corresponding entropy value will be relatively small. After that, in order to
remove insensitive information and reduce the dimension, the MEVM is fused into the final MFEVS
by introducing the theory of manifold learning. Then the fault impulse and feature information can be
effectively recognized from the waveform of MFEVS. On the other hand, the FIR bandpass filter can
also be designed based on the resonance frequency extracted from MFEVS. And the filtered signal
shows excellent performance in denoising and extracting the week bearing fault feature.

The paper is organized as follows: Section 2 presents the characteristic index of MDErms and LPP.
The framework and description of the proposed feature extraction method is given in Section 3. Then
the effectiveness of the proposed new method is verified by the simulation in Section 5. Additionally,
two different experiment cases of bearing fault analysis are separately performed in Section 6. Finally,
the conclusion is taken in the last section.

2. Methodology

2.1. Multiscale Dispersion Entropy Based on RMS (MDErms)

MDErms is an interval method to measure the complexity and regularity of time series. Based on
the original definition of dispersion entropy, the paper further develops the MDErms algorithm, which
consists of five steps as below:

(1) Coarse-graining
A coarse-graining procedure is applied to the time series U = {u1, u2, · · · uL} with the length of

L, in order to reduce high frequency parameters [15]. By introducing the scale factor τ ranged from 1
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to τmax in the coarse-graining processing, we obtain the representation of time series at different time
scales and generate the corresponding coarse-grained sequence X =

{
x1

(τ), x2
(τ), · · · xN

(τ)
}

where N
is the length. For each time scale τ, the element of the coarse-grained time sequence is calculated as
follows:

xj
(τ) =

1
τ

jτ

∑
b=(j−1)τ+1

ub (1 ≤ j ≤
⌊

L
τ

⌋
= N) (1)

(2) Mapping
xj

(τ) is mapped to c classes and the corresponding labels range from 1 to c. To realize the purpose,
the paper applies the normal cumulative distribution function (NCDF) to the coarse-grained series
and maps xj

(τ) into yj from 0 to 1 as follows:

yj =
1

σ
√

2π

xj∫
e
−(x−rms)2

2σ2 dt (2)

For all the scale factors, choose the rms and σ of the original series as the coefficient of the NCDF,
where the rms is the root mean square (RMS) and σ is the standard deviation (SD). Compared with
the average of NCDF, the NCDF based rms is better suitable for the distribution character of vibration
signal and can overcome the extremes of mapping the xj

(τ) to only a few classes. Then a linear
algorithm is employed to portion yj to an integer which ranges from 1 to c:

zj
c = round(c · yj + 0.5) (3)

For each element of the mapped signal, yj is linearly assigned to the zj
c class, where rounding

involves either increasing or decreasing a number to the next integer [16].
(3) Introduce the embedding dimension m and time delay d, and construct the time series zm,c

i as
follows [17,18]:

zm,c
i =

{
zi

c, zi+d
c . . . zi+(m−1)d

c
}

(4)

(4) Assign each embedding vector zm,c
i to a dispersion pattern πvov1 ...vm−1 where zc

i = v0, zc
i+d =

v1 · · · zc
i+(m−1)d = vm−1 [19]. As the signal with m member is divided into c classes, the number of

dispersion patterns corresponds to cm. To improve the calculation reliability of MDErms, the number
of dispersion patterns is suggested as less than the original signal length (cm < L). Furthermore,
the introduction of the coarse-graining procedure will reduce the signal length, hence cm should be
less than

⌊
L

τmax

⌋
(cm <

⌊
L

τmax

⌋
). Then, the relative probability of the potential patterns πvov1 ...vm−1 is

calculated by the following form:

p(πv0 ...vm−1) =
Number

{
i
∣∣∣i ≤ N − (m− 1)d, zm,c

i has type πv0 ...vm−1

}
N − (m− 1)d

(5)

(5) Finally, the entropy value for τ scale factor is achieved based on the theory of Shannon entropy
as follows:

e(x, m, c, d) = −
cm

∑
π=1

p(πv0 ...vm−1) · ln(p(πv0 ...vm−1)) (6)

Then the final MDErms of τ scales is expressed as

MDERMS = E(x, τ, m, c, d) = [e1, e2 . . . , eτ ]
T (7)

Reasonable selection of the key parameters in the method including embedding dimension m,
time delay d, and mapping classes c can improve the performance of MDErms effectively. On the one
hand, the larger m or c is, the more reliable MDErms will perform, and the more the corresponding
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computational cost will be. Besides, since the signal is mapped to c classes, c should be bigger than
one. When c is too small, the MDErms may have a poor resolution to classify the dataset in signal.
When c is too big, the MDErms with high resolution may be sensitive to noise and reduce the reliability.
Based on the practical application and test, the appropriate parameter range of c is from 4 to 8. On
the other hand, according to the analysis of parameter selection in [20], d is suggested to 1 in order to
avoiding the frequency alias, and the recommended parameter of m is from 2 to 5.

2.2. Locality Preserving Projections (LPP)

As a local linear information extraction method of manifold learning, LPP is applied to reduce
dimension and retain local signal feature [21,22]. Assuming that an n-dimensional data space is given
as X = {x1, x2, . . . xn}, in order to acquire a low-dimensional data space set Y = {y1, y2, . . . yn}(WTX =

Y), a linear transformation matrix W should be computed through an optimization problem.
Then the objective function can be written as

arg min∑
ij
(yi − yj)

2Sij (8)

where Sij is the weighted matrix. Based on the nearest-neighbor method, the weighted matrix S is
defined as follows:

Sij =

{
exp(xi−xj)

λ xj
0

(9)

where xj is among the j nearest neighbors of xi, and λ is a constant.
The constraint function is given as

YT DY = 1→WTXDXTW = 1 (10)

By application of an algebraic transformation, the optimization problem can be written as

arg min
WT XDXTW=1

WTXLXTW (11)

Then the transformation matrix is calculated by minimum eigenvalue solution:

∂

∂W
(WTXLXTW −WTXDXTW) = 0 (12)

WTXLXTW = λWTXDXTW = λ (13)

3. Fault Feature Extraction Technique

Periodic impacts between the bearing defect and the rolling element will excite the structure
system resonance. The faulty bearing vibration signals present quasi-periodic or periodic damped
oscillation waveform, which is filled with rich feature information [23,24]. However, the fault-related
impulse is usually covered in a wide frequency range and is disrupted by background noise and
low-frequency effects. Then the typical rolling bearing fault signals can be seen as the composition
of the damped oscillation component which is excited by the fault-related impulse and the noise
component. As mentioned in Section 1, entropy can effectively measure and assess the signal’s
complexity. If the short sliding signals contain the damped oscillation segment, the corresponding
entropy value will be relatively small.

Therefore, a new method based on sparse reconstruction and MDErms is put forward to extract
fault signature and damped oscillation component from noisy signal. The framework of the proposed
method is displayed in Figure 1 and the detail description of the main steps are shown in the
following sections.



Appl. Sci. 2018, 8, 888 5 of 23

Appl. Sci. 2018, 8, x 5 of 23 

1
arg  min

T T

T T

W XDX W
W XLX W

  
(11) 

Then the transformation matrix is calculated by minimum eigenvalue solution: 

( ) 0T T T TW XLX W W XDX W
W


 

  
(12) 

T T T TW XLX W W XDX W    (13) 

3. Fault Feature Extraction Technique 

Periodic impacts between the bearing defect and the rolling element will excite the structure 

system resonance. The faulty bearing vibration signals present quasi-periodic or periodic damped 

oscillation waveform, which is filled with rich feature information [23,24]. However, the fault-related 

impulse is usually covered in a wide frequency range and is disrupted by background noise and low-

frequency effects. Then the typical rolling bearing fault signals can be seen as the composition of the 

damped oscillation component which is excited by the fault-related impulse and the noise 

component. As mentioned in section 1, entropy can effectively measure and assess the signal’s 

complexity. If the short sliding signals contain the damped oscillation segment, the corresponding 

entropy value will be relatively small. 

Therefore, a new method based on sparse reconstruction and MDErms is put forward to extract 

fault signature and damped oscillation component from noisy signal. The framework of the proposed 

method is displayed in Figure 1 and the detail description of the main steps are shown in the 

following sections.  

Vibration series
short sliding 

signal segments 

Sliding matrix 

sequences(SMS)

multiscale entropy value 

matrix (MEVM)

multiscale fusion entropy 

value sequences (MFEVS) 

Feature 

extraction

Window function

truncate

LPP 

Sparse reconstruction by 

Hankel-matrix

rmsMDE

 

Figure 1. The diagram of the proposed feature extraction method. 

3.1. Sliding Matrix Sequences (SMS) Truncation and Sparse Reconstruction 

A vibration signal sampled by the sensor from rotating machinery is always a discrete time series 

with strong background noise. To research more detail of vibration signal, the original time series is 

separately divided into an array of short sliding signal segments by overlapping rectangle window. 

As seen in Figure 2, the sliding coefficient ( s ) is employed to an analyzed vibration signal 
( )y t

 

(where 
1,2,t N

) with the length of N . Firstly, the original signal is truncated into each signal 

segment and the i th short sliding signal segment iY
 is expressed as follows: 

[ (( 1) 1), (( 1) 2,... (( 1) ]T

iY y i s y i s y i s Nw        (14) 

Figure 1. The diagram of the proposed feature extraction method.

3.1. Sliding Matrix Sequences (SMS) Truncation and Sparse Reconstruction

A vibration signal sampled by the sensor from rotating machinery is always a discrete time series
with strong background noise. To research more detail of vibration signal, the original time series is
separately divided into an array of short sliding signal segments by overlapping rectangle window.

As seen in Figure 2, the sliding coefficient (s) is employed to an analyzed vibration signal y(t)
(where t = 1, 2, · · ·N) with the length of N. Firstly, the original signal is truncated into each signal
segment and the ith short sliding signal segment Yi is expressed as follows:

Yi = [y((i− 1)s + 1), y((i− 1)s + 2, . . . y((i− 1)s + Nw]T (14)

Then the SMS with z dimension is provided by the following form:{
Y = [Y1, Y2 . . . , Yz]

z = (N − Nw)/s
(15)

where z is the number of short sliding segment and Nw is the corresponding length.The scope of the
sliding coefficient is defined as 1 < s < Nw;

Appl. Sci. 2018, 8, x 6 of 23 

Then the SMS with z  dimension is provided by the following form: 

1 2[ , ..., ]

( ) /

zY Y Y Y

z N Nw s




   
(15) 

where z  is the number of short sliding segment and Nw  is the corresponding length.The scope of 

the sliding coefficient is defined as 1 s Nw  ; 

1Y

2Y

3Y
zY

s

Nw

N  

Figure 2. The diagram of sliding sequence truncation. 

To further extract the local feature information hidden in the SMS, sparse reconstruction by 

Hankel-matrix is utilized. Firstly, each column of the SMS is separately transformed into a block 

Hankel-matrix. Because a multi-dimensional matrix can help to deeply explore and analyze the short 

sliding signal segment from different perspectives. iA
 represents the i th block Hankel-matrix of 

the short time sliding signal iY
 and is expressed as 

1

1 2 1

( )

1 1

...

...
( )

i i i n

i i i n

i i m n

i m i m i m n

y y y

y y y
A M Y

y y y

 

   



     

 
 
  
 
 
    

(16) 

where  

1m n Nw    (17) 

Secondly, consider the Hankel-matrix as a graph and calculate the corresponding histogram of 

matrix data. According to the theory of image processing, the histogram can effectively exhibit the 

distribution of the pixel intensities in a predefined number of bins which range from the minimum 

to maximum intensity. On the other side, due to each row of the Hankel matrix being closely 

correlated, the intensity of data is sparsely distributed in the histogram. In other word, a sparse 

reconstructed sequence can be effectively achieved from Hankel-matrix by histogram. Then the 

sparse sequences of the i th Hankel-matrix iA
 is presented as 

1, 2, 256,[ , ..., ]T

i i i iH h h h
 

(18) 

And the sparse reconstructed matrix sequence of the SMS can be written as 

1 2( ) [ , ..., ]zH Y H H H
 

(19) 

As mentioned above, employ MDErms to each sparse reconstructed matrix sequence and 

achieve the corresponding characteristic index. The obtained calculation is called Multiscale Entropy 

Value Matrix (MEVM): 

Figure 2. The diagram of sliding sequence truncation.

To further extract the local feature information hidden in the SMS, sparse reconstruction by
Hankel-matrix is utilized. Firstly, each column of the SMS is separately transformed into a block
Hankel-matrix. Because a multi-dimensional matrix can help to deeply explore and analyze the short
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sliding signal segment from different perspectives. Ai represents the ith block Hankel-matrix of the
short time sliding signal Yi and is expressed as

Ai = M(Yi)(m×n) =


yi yi+1 . . . yi+n

yi+1 yi+2 . . . yi+n+1
...

...
...

...
yi+m yi+m+1 · · · yi+m+n+1

 (16)

where
m + n + 1 = Nw (17)

Secondly, consider the Hankel-matrix as a graph and calculate the corresponding histogram of
matrix data. According to the theory of image processing, the histogram can effectively exhibit the
distribution of the pixel intensities in a predefined number of bins which range from the minimum to
maximum intensity. On the other side, due to each row of the Hankel matrix being closely correlated,
the intensity of data is sparsely distributed in the histogram. In other word, a sparse reconstructed
sequence can be effectively achieved from Hankel-matrix by histogram. Then the sparse sequences of
the ith Hankel-matrix Ai is presented as

Hi = [h1,i, h2,i . . . , h2 5 6,i]
T (18)

And the sparse reconstructed matrix sequence of the SMS can be written as

H(Y) = [H1, H2 . . . , Hz] (19)

As mentioned above, employ MDErms to each sparse reconstructed matrix sequence and achieve
the corresponding characteristic index. The obtained calculation is called Multiscale Entropy Value
Matrix (MEVM):

MEVM = [E1, E2 . . . Ez] =


e1,1 e1,2 . . . e1,z
e2,1 e2,2 . . . e2,z

...
...

...
...

es,1 es,2 · · · es,z

 (20)

where
Ei = MDERMS(Hi) = [e1,i, e2,i . . . , ez,i]

T (21)

In the matrix, the column of MEVM is called Multiscale Entropy Value Sequences (MEVS) and
represents the feature information of the same segment in different scales. And the row of MEVM
separately represents the characteristic and complexity of different segments.

According to Section 2.1, the MEVM is fused into a final MFEVS by LPP. The obtained MFEVS
can be written as

MFEVS = [ f e1 f e2 . . . f ez ] (22)

3.2. Feature Extraction with MFEVS

Local faults in rotating bearings usually generate an array of periodic impulses in vibration
signal. Theoretically, the impulses will excite the system resonance in the form of quasi-periodic or
periodic damping oscillation waveform. Besides, MDErms shows a remarkable ability in measuring
and quantifying the complexity of a time series. Regular and periodic signals are often characterized
by a lower entropy value, whereas interference random signals usually correspond to a higher entropy
value. Then, it can be concluded that the short sliding signal segment hidden local fault features is
relatively less complex and corresponds to a lower entropy value. Hence, the proposed method will
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divide the original vibration signal into an array of short sliding segments and separately explore the
fault signature by calculating the MDErms of each part.

Having in mind the introduction mentioned above, the fusion feature MFEVS can effectively
characterize the complexity and irregularity of the corresponding short sliding segments. If the short
sliding segment contains the fault impulse or part, the corresponding entropy value will be relatively
small. Then, minimum MDErms is achieved as the following equation:

En(j) = min( f e(i)) (i = 1, 2, . . . n) (23)

where j is the number of the short sliding signal with minimum MDErms.
As mentioned above, the corresponding optimal short sliding signal is reconstructed as follows:

Yj = [y((j− 1)s + 1), y((j− 1)s + 2), · · · , y((j− 1)s + Nw)] (24)

According to the mechanism of damped oscillation, the short sliding reconstructed signal
theoretically characterizes an obviously quasi-periodic oscillation waveform. Besides, in the frequency
spectrum of the short sliding reconstructed signal, the dominant frequency part can be regarded as the
main resonance frequency band of original vibration signal and used as the optimal coefficient of the
FIR bandpass filter.

3.3. FIR Bandpass Filter Design

Filter is widely used in signal processing in order to filter out the components which include the
transient impulse feature for fault diagnosis [25]. For vibration signals, it is necessary and essential
to design a desired filter to extract the transient impulse from strong background noise and other
interference signals. Thus, a finite impulse response (FIR) bandpass filter is introduced to the proposed
method in the paper. Compared with infinite impulse response (IIR) filter, FIR filters are inherently
stable because they don’t need to feedback and recursive [26,27]. The impulse response of the FIR filter
is of finite duration. The output sample of that is a weighted sum of the last N input samples, where N
represents the order of the filter.

The FIR filter has many greater abilities compared with IIR filter: (1) FIR filters are non-iterative
and don’t require feedback, which make the implementation simpler. (2) FIR filters can utilize the FFT
algorithm due to the finite impulse response, which will make the calculation process faster. (3) FIR
filters do well in linear phase which is necessary on essential to phase-sensitive applications. (4) FIR
filters are intrinsically stable without the application of the largest value in the input.

As stated above, FIR filters have a good character of filtering out the fault feature and information
from the original signal occupied by a large amount of background noise. It is stated that the transient
impulse involves a quasi-periodic oscillation damping process which is filled with abundant fault
features. The oscillation frequency is quite near to the resonance frequency of the rotating bearing.
Therefore, the paper develops the proposed method with a FIR bandpass filter in order to separate the
transient impulse from low frequency disturbed signal.

In order to further extract the fault signature, the frequency-domain calculation of the
reconstructed short segment yj is applied as follows:

H(i) =
Nw−1

∑
n=0

yj(n)e−j 2π
Nw ni (0 ≤ i ≤ Nw− 1) (25)

where H(i) is the frequency domain series of yz.
The main difficult in the designing of FIR filter is how to choose the optimal filter parameters: the

central frequency f c and the bandwidth ∆ f . Based on the short sliding segment with the minimum
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MDErms in Equation (24), the optimal parameters of FIR bandpass filter are identified by the following
equation: 

f0 = fs/Nw
En(j) = min|MDERMS(i)| (i = 1, 2, . . . m)

H(k) = max
∣∣Hj(l)

∣∣ (l = 1, 2, . . . Nw)

fc = k · f0

∆ f = 1.5 f0

(26)

where fs is the sampling frequency, Nw is the length of the sliding signal segment, and fc is the
calculated frequency resolution. j represents the tracking index of the desired short sliding segment to
be analyzed and H(j) is the corresponding frequency spectrum where the max value can be viewed
as the optimal central frequency of the designed filter. Besides, the bandwidth parameter depends
on the frequency resolution fc. Unlike other traditional filters, the proposed method for the design
of bandpass filter is based on the analyzed signal itself and without prior information, which can
effectively reduce the error and enhance the flexibility.

4. Simulation Study

According to the mechanical dynamic of free vibration model with damping, a simulated signal
for feature extraction is conducted to verify the efficacy of the proposed method. The expression of the
simulated faulty signal is shown as follows:

x(t) =
M
∑

i=1
Ai · s(t− iT − τi) + n(t)

Ai = A0 cos(2π fmt + ϕA) + CA
s(t) = e−Bt · cos(2π fnt + ϕw)

(27)

where f n = 2560 Hz is the resonance frequency, fp = 73 Hz is the characteristic frequency of the
inner-race fault and f r = 12 Hz corresponds to the rotating frequency, and τi denotes the weak
fluctuation of the ith impulse. The sampling frequency fs is 25,600 Hz and the number of data points
is 8100. The time domain waveform of the simulated fault signal is illustrated in Figure 3a. Then a
gauss white noise is added to the fault signal resulting in the SNR of −8 dB. As seen in Figure 3b, it
is difficult to identify the periodic transient impulse from the simulated signal filled with additive
noise. The envelope spectrum of the analyzed signal is separately illustrated in Figure 4, where the
interference noise makes it hard to recognize the characteristic frequency.

To extract the fault feature efficiently, the proposed method is applied to the simulated noisy
signal. The sliding parameter is set to s = 8 and the analyzed length Nw = 128. As plotted in Figure 5,
the entropy value sequences in different scales correspond to the MEVM in Equation (20) separately.
To further verify the performance and advantage of the proposed method, a comparison is made
as shown in Figure 6. The traditional vector entropy value sequence in Figure 6a fluctuates fairly
dramatically, and its amplitude range is too small to distinguish each other. As displayed in Figure 6b,
the periodic impulses embedded in the background noise can be effectively identified by the proposed
MEVS of 1-scale. Besides, it can be seen in Figure 6c that the final MFEVS combines the characteristic
information in different scales and displays rather better stability and performance in comparison with
Figure 6a,b.

The time-domain waveform of the short sliding segment with minimum MDErms and its
frequency spectrum are displayed in Figure 7. Then the corresponding oscillation frequency
fc = 2600 Hz is obtained, which is same as the predetermined natural frequency value of the simulation
signal. Later, the systematic waveform of the filtered faulty signal in time domain is plotted in Figure 8a,
where we can find an array of obvious periodic impulses. From the envelope spectrum of the filtered
signal in Figure 8b, the main impulses are concentrated at the frequency of 73 Hz and its harmonics,
which is exactly equal to the faulty characteristic frequency. Moreover, the envelope waveform in
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time domain by the FIR filter is shown in Figure 9, where Tr and Tip represent the rotating period and
the inner-race failure period separately. It can be seen that the waveform of the proposed MFEVS
in Figure 5c and the filtered signal in Figure 9 are quite similar to the original signal in Figure 3a.
Therefore, the above simulation demonstrates the effectiveness of the proposed method in bearing
fault detection evidently.
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5. Experiment Validation

5.1. Test Rig Instruction

To validate the improvement and effectiveness of the proposed method, an artificial fault
experiment of rolling element bearing is performed. As shown in Figure 10, the test rig is composed of
three main parts: the electronic control system, data acquisition system, and the drivetrain components
including the servo motor and gearbox. The data acquisition system contains a NI 9234 data acquisition
card and a Dell laptop with the data acquisition program written by LabVIEW. The vibration signal
of the artificial fault bearing was measured by an acceleration sensor with the sampling frequency of
12,800 Hz and the analyzed length of 40,960 points. The bearing types are separately 30,304 and 32,207
tapered roller bearing. As provided in Figure 11, the artificial defects of flaws and single pitting points
by electrical discharge matching were separately set on a rolling element and outer raceway.

The theoretical equations are introduced to calculate the defect characteristic frequency of bearings
in the experimental process as follows:

fbp =
D
2d

[1− (
d cos θ

D
)2] fr (28)
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fop =
Z
2
(1− d

D
cos θ) fr (29)

where fr represents the rotating frequency of shaft, θ denotes the contract angle, D and d respectively
denote the pitch diameter and rolling element diameter of the bearing. Then according to the bearing
geometrical parameters displayed in Table 1, the fault characteristic frequency of the rolling element
( fbp) and outer-raceway ( fop) can be separately achieved.
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On the other hand, two assessment indicators are introduced for quantifying the performance of
the proposed method. The first is the SNR considering the harmonic information about fp, expressed
as follows [28]:

SNR( fp) = 10 log10

3
∑

i=1
p(i · fp)

fs/2
∑

f=0
p( f )−

3
∑

i=1
p(i · fp)

(30)

where p( f ) is the amplitude value of envelope spectrum at frequency f . The second is kurtosis, which
is commonly used to measure signal impulsiveness in the field of rotating machinery fault diagnosis.
Kurtosis is defined as

kurtosis(x) =
E{x− u}4

σ4 − 3 (31)

where u represents the average, σ represents the standard deviation.

Table 1. Structure parameters of rolling element bearings.

Type Pitch Diameter/D (mm) Ball Diameter/d (mm) Number of Roller (Z) Contact Angle/θ

32,207 53.31 9.52 17 14.04
30,304 36.35 8.26 13 11.3
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5.2. Case 1: Bearing Outer Race Fault

The time-domain waveform and its envelope spectrum of the outer raceway faulty signal with
the bearing type of 30,304 are illustrated in Figure 12. As seen in the time-domain waveform, the
heavy background noise makes it difficult to identify the fault-related periodic impulses. The envelope
spectrum in Figure 12b is unable to extract the defect-related characteristic frequency from the vibration
signal under the interference of strong noise. We cannot accurately identify the fault frequency
component which is covered with other interference frequency parts including the rotating frequency
f r and low-frequency heavy noise etc. The rotating speed of shaft is 900 Hz and corresponds to a
rotating frequency 15 Hz. Then the fault characteristic frequency of outer raceway flaw is calculated to
75.8 Hz.
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Figure 12. The signal with outer-race defect: (a) the waveform in time domain; (b) the
envelope spectrum.

To improve the accuracy of defect identification and fault diagnosis, the proposed method
is applied to the analyzed signal. Table 2 displays the parameters in the method. Firstly, the
corresponding entropy value sequences in different scales of the MEVM are illustrated in Figure 13
and all the waveforms show quite similar periodic impulses with time. However, it is still difficult
to recognize the fault signature from heavy noise. The waveform of the traditional vector entropy
sequence is presented in Figure 14a. As a comparison, the waveform of the proposed MEVS of 1-scale
and the final MFEVS are displayed in Figure 14b,c and both have a better remarkable stability than
Figure 14a. Moreover, it can be seen that the final MFEVS in Figure 14c presents relatively obvious
periodic impulses.

Table 2. The parameter in the proposed method.

Type ø m c d Nw

value 6 2 6 1 128

Secondly, the waveform of the optimal short sliding segment with minimum MDErms is illustrated
in Figure 15. According to its envelope spectrum in Figure 15b, the resonance frequency 7000 Hz can
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be identified and then applied to the designed FIR filter. As a result, the time-domain waveform of the
filtered signal is plotted in Figure 16a, where the defect-induced impacts appear periodically. From the
envelope spectrum of that in Figure 16b, the fault characteristic frequency and its harmonics can be
clearly recognized, which is near to the theoretical calculation fop. Besides, the corresponding envelope
waveform of the filtered signal is shown in Figure 17, where Tr and Top are the rotating period of shaft
and the interval period of the outer race fault. Thus, it can be confirmed that the defect should locate
in the outer-race of the 30,304 bearing by the proposed method.
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Figure 16. The comparison results of the outer-race fault signal by different methods: (a,b) the proposed
method; (c,d) the Essential Empirical Mode Decomposition (EEMD) method; (e,f) the Wavelength
Packet (WP) method; (g,h) the filter method by fast kurtogram.



Appl. Sci. 2018, 8, 888 16 of 23
Appl. Sci. 2018, 8, x 17 of 23 

0.06rT s

0.013opT s

 

Figure 17. The envelope waveform of the filtered signal in time domain. 

 

Figure 18. The fast kurtogram of outer-race fault signal. 

5.3. Case 2: Bearing Rolling Element Fault 

In order to further research the advantage and effectiveness of the proposed method in bearing 

fault diagnosis, another artificial fault test is operated. As seen in Figure 11a, a groove shape is made 

on the rolling element of bearing by electrical discharge machining. The defect is in the form of 

0.2 mm  width and 0.1 mm  depth. When the input shaft is rotating at the speed of 900 rpm , the 

defective roller passing frequency over the bearing race is calculated to be 62.7 Hz based on Equation 

(28). 

The waveform of the raw roller fault signal in time domain and its envelope spectrum are 

separately plotted in Figure 19. There is no visible impact in the waveform and the fault signature is 

submerged in background noise. It can merely figure out the mesh frequency 255 Hz from the 

envelope spectrum. In the following, the proposed method is also employed to the roller defective 

vibration signal. Then the entropy value sequences of the MEVM in different scales are illustrated in 

Figure 20 and the waveforms present visibly similar impulses. Figure 21 is the comparison result of 

the fault bearing signal by different entropy methods. As seen in Figure 21a, the feature information 

of the traditional vector entropy sequence without sparse reconstruction is buried by heavy noise. 

The waveform of the proposed MEVS of 1-scale is displayed in Figure 21b, where some clear periodic 

impulses can be observed. Besides, the MFEVS in Figure 21c shows a better ability to extract impulse 

features than Figure 21a,b through visual inspection. Then the optimal short sliding time series with 

the minimum MDErms is plotted in Figure 22a. According to the envelope spectrum in  

Figure 17. The envelope waveform of the filtered signal in time domain.

To further verify the advantage and superiority of the proposed method in terms of removing
irrelevant noise and enhancing fault diagnosis, three traditional feature extraction methods are
introduced to make a comparison. The four methods are separately employed to get rid of the
heavy noise and extract the defective impulses. As shown in Figure 16, the comparison result visually
exposes the disadvantages and limitations of the other three traditional methods. As seen in Figure 16c,
the background noise is partly eliminated and some periodic impulses can be observed by the EEMD
method. However it is quite hard to find the location of the fault characteristic frequency from
the envelope spectrum in Figure 16d. The waveform and envelope spectrum of the WP method is
separately plotted in Figure 16e,f, where the defective frequency can’t be recognized. Figure 18 shows
the fast kurtogram of outer-race fault signal, and the selected center frequency and bandwidth are
10,666 Hz and 4066 Hz. Then the filtered signal by kurtogram method and the envelope spectrum are
separately presented in Figure 16g,h. It can be seen that the kurtogram method doesn’t work well in
removing noise and identifying the defective impulses.
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Moreover, to visually quantify and assess the performance of different four methods, the two
indicators are separately applied to the analyzed result by Equations (30) and (31). As shown in
Table 3, the SNR( fop) and kurtosis value of the proposed method are larger than other three traditional
methods, indicating that the proposed method is suitable for bearing fault detection. In summary, the
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comparison result evidently exposes the merit of the proposed method in eliminating background
noise and extracting features for the outer race fault vibration signal.

Table 3. The comparison results of the outer-race fault signal by different methods.

Raw Signal Proposed Method EEMD WP Fast Kurtogram

SNR ( fop)/dB −24.1 −15.9 −21.3 −22.5 −17.4
Kurtosis 3.54 14.1 4.7 4.1 4.8

5.3. Case 2: Bearing Rolling Element Fault

In order to further research the advantage and effectiveness of the proposed method in bearing
fault diagnosis, another artificial fault test is operated. As seen in Figure 11a, a groove shape is made
on the rolling element of bearing by electrical discharge machining. The defect is in the form of 0.2 mm
width and 0.1 mm depth. When the input shaft is rotating at the speed of 900 rpm, the defective roller
passing frequency over the bearing race is calculated to be 62.7 Hz based on Equation (28).

The waveform of the raw roller fault signal in time domain and its envelope spectrum are
separately plotted in Figure 19. There is no visible impact in the waveform and the fault signature
is submerged in background noise. It can merely figure out the mesh frequency 255 Hz from the
envelope spectrum. In the following, the proposed method is also employed to the roller defective
vibration signal. Then the entropy value sequences of the MEVM in different scales are illustrated in
Figure 20 and the waveforms present visibly similar impulses. Figure 21 is the comparison result of
the fault bearing signal by different entropy methods. As seen in Figure 21a, the feature information
of the traditional vector entropy sequence without sparse reconstruction is buried by heavy noise.
The waveform of the proposed MEVS of 1-scale is displayed in Figure 21b, where some clear periodic
impulses can be observed. Besides, the MFEVS in Figure 21c shows a better ability to extract impulse
features than Figure 21a,b through visual inspection. Then the optimal short sliding time series with
the minimum MDErms is plotted in Figure 22a. According to the envelope spectrum in Figure 22b,
the corresponding resonance frequency can be found (3400 Hz) and employed to the designing of FIR
bandpass filter. As plotted in Figure 23a, the defective impulses of the filtered signal by the proposed
method appear obvious periodically. The fault characteristic frequency and its several harmonics can
be observed clearly from the envelope spectrum in Figure 23b, which indicates that the bearing rolling
element is broken. Moreover, the corresponding envelope waveform of the filtered signal is displayed
in Figure 24, where Tbp is the interval period of the roller fault. The waveforms of the MFEVS in
Figure 21c and the filtered signal in Figure 24 show visibly similar periodicity, indicating that the
proposed MFEVS has good abilities in fault identification and feature extraction.

To further extract and analyze the fault information, three different methods are applied to
the roller fault signal respectively and the comparison result is shown in Figure 23. As shown
in Figure 23c–h, the other three methods all appear to have poor performance and have their own
limitations. The waveform of the EEMD method in Figure 23c is full of noise. And several harmonics of
the fault characteristic frequency can be roughly identified from the corresponding envelope spectrum.
As seen in Figure 23e,f, the WP method just removes some noise segment, and the fault feature is still
hard to recognize. The fast kurtogram of roller fault signal in Figure 25 shows that the selected center
frequency and bandwidth are 2400 Hz and 64 Hz. Then the signal filtered by the kurtogram and its
envelope spectrum are plotted in Figure 23g,h, respectively. It can be concluded that the fast kurtogram
method shows a normal performance in eliminating background noise and fault identification.



Appl. Sci. 2018, 8, 888 18 of 23

Appl. Sci. 2018, 8, x 18 of 23 

Figure 22b, the corresponding resonance frequency can be found (3400 Hz) and employed to the 

designing of FIR bandpass filter. As plotted in Figure 23a, the defective impulses of the filtered signal 

by the proposed method appear obvious periodically. The fault characteristic frequency and its 

several harmonics can be observed clearly from the envelope spectrum in Figure 23b, which indicates 

that the bearing rolling element is broken. Moreover, the corresponding envelope waveform of the 

filtered signal is displayed in Figure 24, where bpT
 is the interval period of the roller fault. The 

waveforms of the MFEVS in Figure 21c and the filtered signal in Figure 24 show visibly similar 

periodicity, indicating that the proposed MFEVS has good abilities in fault identification and feature 

extraction. 

(a)

(b)

 

Figure 19. The bearing signal with roller defect: (a) the waveform in the time domain; (b) the envelope 

spectrum. 

 

Figure 20. Plot of the MEVS for the bearing signal with rolling element defect. 

Figure 19. The bearing signal with roller defect: (a) the waveform in the time domain; (b) the
envelope spectrum.

Appl. Sci. 2018, 8, x 18 of 23 

Figure 22b, the corresponding resonance frequency can be found (3400 Hz) and employed to the 

designing of FIR bandpass filter. As plotted in Figure 23a, the defective impulses of the filtered signal 

by the proposed method appear obvious periodically. The fault characteristic frequency and its 

several harmonics can be observed clearly from the envelope spectrum in Figure 23b, which indicates 

that the bearing rolling element is broken. Moreover, the corresponding envelope waveform of the 

filtered signal is displayed in Figure 24, where bpT
 is the interval period of the roller fault. The 

waveforms of the MFEVS in Figure 21c and the filtered signal in Figure 24 show visibly similar 

periodicity, indicating that the proposed MFEVS has good abilities in fault identification and feature 

extraction. 

(a)

(b)

 

Figure 19. The bearing signal with roller defect: (a) the waveform in the time domain; (b) the envelope 

spectrum. 

 

Figure 20. Plot of the MEVS for the bearing signal with rolling element defect. Figure 20. Plot of the MEVS for the bearing signal with rolling element defect.



Appl. Sci. 2018, 8, 888 19 of 23
Appl. Sci. 2018, 8, x 19 of 23 

(c)

 

Figure 21. The comparison results of the roller fault signal by different methods: (a) the traditional 

vector entropy value sequence; (b) the proposed MEVS of 1-scale; (c) The proposed MFEVS. 

 

Figure 22. (a) The waveform of the reconstructed optimal short time sliding signal; (b) the 

corresponding frequency spectrum. 

 

 

(a)

(b)

Figure 21. The comparison results of the roller fault signal by different methods: (a) the traditional
vector entropy value sequence; (b) the proposed MEVS of 1-scale; (c) The proposed MFEVS.

Appl. Sci. 2018, 8, x 19 of 23 

(c)

 

Figure 21. The comparison results of the roller fault signal by different methods: (a) the traditional 

vector entropy value sequence; (b) the proposed MEVS of 1-scale; (c) The proposed MFEVS. 

 

Figure 22. (a) The waveform of the reconstructed optimal short time sliding signal; (b) the 

corresponding frequency spectrum. 

 

 

(a)

(b)

Figure 22. (a) The waveform of the reconstructed optimal short time sliding signal; (b) the
corresponding frequency spectrum.



Appl. Sci. 2018, 8, 888 20 of 23
Appl. Sci. 2018, 8, x 20 of 23 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

bpf 2 bpf 3 bpf 4 bpf

bpf 3 bpf 4 bpf

 

Figure 23. The comparison results of the roller fault signal by different methods: (a,b) the proposed 

method; (c,d) the EEMD method; (e,f) the WP method; (g,h) the filter method by fast kurtogram. 

0.013bpT s

 

Figure 24. The envelope waveform of the filtered signal in time domain. 

To further extract and analyze the fault information, three different methods are applied to the 

roller fault signal respectively and the comparison result is shown in Figure 23. As shown in Figure 

23c–h, the other three methods all appear to have poor performance and have their own limitations. 

The waveform of the EEMD method in Figure 23c is full of noise. And several harmonics of the fault 

characteristic frequency can be roughly identified from the corresponding envelope spectrum. As 

seen in Figure 23e,f, the WP method just removes some noise segment, and the fault feature is still 

hard to recognize. The fast kurtogram of roller fault signal in Figure 25 shows that the selected center 

frequency and bandwidth are 2400 Hz and 64 Hz. Then the signal filtered by the kurtogram and its 

envelope spectrum are plotted in Figure 23g,h, respectively. It can be concluded that the fast 

kurtogram method shows a normal performance in eliminating background noise and fault 

identification. 

Figure 23. The comparison results of the roller fault signal by different methods: (a,b) the proposed
method; (c,d) the EEMD method; (e,f) the WP method; (g,h) the filter method by fast kurtogram.

Appl. Sci. 2018, 8, x 20 of 23 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

bpf 2 bpf 3 bpf 4 bpf

bpf 3 bpf 4 bpf

 

Figure 23. The comparison results of the roller fault signal by different methods: (a,b) the proposed 

method; (c,d) the EEMD method; (e,f) the WP method; (g,h) the filter method by fast kurtogram. 

0.013bpT s

 

Figure 24. The envelope waveform of the filtered signal in time domain. 

To further extract and analyze the fault information, three different methods are applied to the 

roller fault signal respectively and the comparison result is shown in Figure 23. As shown in Figure 

23c–h, the other three methods all appear to have poor performance and have their own limitations. 

The waveform of the EEMD method in Figure 23c is full of noise. And several harmonics of the fault 

characteristic frequency can be roughly identified from the corresponding envelope spectrum. As 

seen in Figure 23e,f, the WP method just removes some noise segment, and the fault feature is still 

hard to recognize. The fast kurtogram of roller fault signal in Figure 25 shows that the selected center 

frequency and bandwidth are 2400 Hz and 64 Hz. Then the signal filtered by the kurtogram and its 

envelope spectrum are plotted in Figure 23g,h, respectively. It can be concluded that the fast 

kurtogram method shows a normal performance in eliminating background noise and fault 

identification. 

Figure 24. The envelope waveform of the filtered signal in time domain.

In the end, the indicators of SNR( fbp) and kurtosis are employed to quantify the comparison
result. As illustrated in Table 4, the proposed method has the biggest SNR( fbp) and kurtosis than
other three methods. In summary, through the comparison of the four methods, the proposed method
shows great advantage and excellent ability in extracting fault feature information from the roller
defective signal.

Table 4. The comparison results of the rolling element fault signal by different methods.

Raw Signal Proposed Method EEMD WP Fast Kurtogram

SNR( fbp)/dB −25.7 −15.4 −22.6 −19.6 −17.7
Kurtosis 3.1 4.5 3.3 4.1 3.4
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6. Conclusions

This paper proposes a new feature extraction method for the incipient fault detection of a rolling
bearing. Firstly, the SMS truncation and sparse sequences reconstruction by Hankel-matrix are
investigated. To effectively address the local feature hidden in sparse sequences, this paper develops
the MDErms as a characteristic index, which is suitable for a short time series. Then the MDErms is
applied to the sparse sequences to obtain the MEVM. Compared with traditional entropy and MEVM
of a single scale, the MFEVS extracted from MEVM has a greater advantage in denoising and extracting
local fault feature information. Moreover, a FIR bandpass filter is designed based on the resonance
frequency extracted from MFEVS. Simulation studies show that the designed filter is particularly
efficient in identifying periodic impulse fault from strong background noise. To further verify the
effectiveness and advantage of the proposed method, two different cases of artificial defective bearing
experiment are separately performed. In comparison with other traditional methods, the proposed
method performs quite excellent in improving the ability of removing noise and identifying weak
bearing faults.
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