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Abstract: To better understand the fire risk of nitrocellulose (NC) used for the civil industry, the
combustion properties of NC-alcohol humectant (isopropanol and ethanol) and -plasticizer (dibutyl
phthalate) mixtures were investigated experimentally in this work. Flames with considerable sparks
were observed for nitrocellulose-humectant samples, while the nitrocellulose-plasticizer mixture
exhibited extremely bright flames without obvious sparks. The flame heights for all the samples were
determined from the video record. According to the fundamentals of fire phenomena, a simplified
model to predict the heat release rates of current NC samples was developed based on the flame
height data. By combining the experiment results by ISO 5660 and stoichiometric equations, the
critical parameter Hc/r is recalculated as 3251, 3228, and 3201 kJ/kg for NC-I, NC-E, and NC-D
samples, respectively. Ultimately, the heat release rates predicted by the modified model coincided
well with that measured by ISO 5660.
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1. Introduction

Nitrocellulose (NC), also called cellulose nitrate, is widely served as an important ingredient
in military and civilian industries for the production of explosives, propellants, lacquers, films, and
etc. [1–3] NC materials prepared from cotton are fluffy white solids, which tend to be spontaneously
ignited and deflagrable. They are sensitive to initiation by percussion or electrostatic discharge and
can be desensitized by the addition of water or alcohol [4].

Previous studies on NC primarily concentrate upon the effects of nitrogen content [5], moisture [6,7],
particle size [3,8–10], inorganic salt [11], etc. on its thermal behaviors. The characteristics of
morphological behavior [12,13] and spontaneous ignition [14,15] are involved in some references, while
the thermal decomposition is one of the most comprehensively concerned topics [1–3,5–7,9–11,13].
This is because thermal analysis by means of DSC, DTA, and TG acts as a crucial point in the kinetic
studies of NC, which will help to determine the mechanism of pyrolysis reactions and to calculate the
parameters of the Arrhenius equation [5,10,16]. These data are required for energetic materials and
their related compounds to be quantified for performance and safety in their manufacture, handling,
storage, and application [17,18].

Among the above literature pertaining to NC, there exist some consensuses that the experiments
are usually conducted with a very small dose of sample and by virtue of thermal analysis instruments.
This might be helpful in determining the thermal instability of NC, but probably not applicable to
elaborate the fire property or combustion behavior of NC. On 12 August 2015 (8/12 accident), a
catastrophic accident occurred in Tianjin Port in China, causing 165 deaths, 798 injuries, and direct
economy loss of about $1 billion [19–21]. The direct cause of the accident was identified as the
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dissipated wetting agents of NC, which results in the thermal runaway and subsequent fires and
explosions [19,21], as seen in Figure 1. The perniciousness of industrial NC fires is of great severity,
while scarce work is conducted to examine the combustion behavior of NC.
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Jessup and Prosen [22] presented the heats of combustion of samples of pure NC from cotton 
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high-speed photography to measure the burn rates of prepared NC samples with different particle 
sizes. The effects of pressure and initial fuel temperature on the burning rate of NC-based propellants 
were also experimentally examined by previous researchers [23,24]. Recently, He and Wei et al. [25,26] 
attempted to employ ISO 5660 to investigate the combustion properties of NC-alcohol humectant and 
-dibutyl phthalate (DBP) plasticizer mixtures. The amount of sample used in their tests are quite small, 
i.e., 1 g and 2 g, filled in a crucible with rectangular area of 10 cm2, which is relatively marginal for 
evaluating the heat release rate (HRR) of NC. For more practical situations, examinations on the HRR 
of NC samples with larger scale are of great necessity. 

The HRR is so important that it has been described as the single most important variable in fire 
hazard [27,28]. To quantitatively evaluate the fire load of a NC sample, one available method is to 
measure the HRR by means of corresponding apparatus, while in most cases, for example the 
industrial-scale NC fires, the HRR should be predicted via pre-existing calculation model to tell the 
severity of fire. Considering the intrinsic connection between flame appearance (reflected in flame 
height ) and HRR , summarized as the correlation of ~ / , an attempt is made in this work 
to establish a simplified model to predict the HRR based on the flame height data of NC. Then, the 
predicted HRR will compare with the measured HRR by ISO 5600 to seek for further modification. 
Other fire behaviors of NC samples are also measured and discussed. Three NC samples identical to 
that in [25,26] are adopted to perform the current experiments. 

2. Experimental Setup 

Due to the high potential spontaneous ignition of pure NC, some additives, served as humectant 
or plasticizer, are mixed with it to improve its stability in the process of production, storage, and 
transportation. Moreover, previous attempts on the measurements of HRR and mass loss rate (MLR) 
of pure NC met with difficulty due to its deflagration with a combustion duration less than 1 s [25]. 
Thus, all the NC samples in current study are finished products with annexing agents. Three NC 
samples will be tested. Two of them are NC with alcohol humectant, i.e., 30 wt% isopropanol (C3H8O, 
labeled as NC-I) and 30 wt% ethanol (C2H6O, labeled as NC-E), exhibiting as the similar white and 
soft fibers. The other one is NC with 19.5 wt% dibutyl phthalate (DBP, labeled as NC-D), which is a 
mixture of NC fiber and plasticizer, compressed together to form into a strip structure. All the 
samples are commercial products for coating. Before the tests, all the samples are stored in a tightly 
sealed environment to prevent the evaporation of alcohol humectant or other sample contamination. 

The nitrogen content is a key parameter for evaluating the performance of NC, and the thermal 
stability of NC decreases with increasing nitrogen content [4]. To eliminate this factor, the nitrogen 
contents of current NC substrates are selected as consistent as possible, i.e., 12%, 11.86%, and 11.96% 
for NC-I, NC-E, and NC-D, respectively, all of which fall into the range of 11.5–12.2% classified as H-
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Jessup and Prosen [22] presented the heats of combustion of samples of pure NC from cotton
linters and wood pulp via the bomb calorimetric measurements. Zhang et al. [3] employed a digital
high-speed photography to measure the burn rates of prepared NC samples with different particle
sizes. The effects of pressure and initial fuel temperature on the burning rate of NC-based propellants
were also experimentally examined by previous researchers [23,24]. Recently, He and Wei et al. [25,26]
attempted to employ ISO 5660 to investigate the combustion properties of NC-alcohol humectant and
-dibutyl phthalate (DBP) plasticizer mixtures. The amount of sample used in their tests are quite small,
i.e., 1 g and 2 g, filled in a crucible with rectangular area of 10 cm2, which is relatively marginal for
evaluating the heat release rate (HRR) of NC. For more practical situations, examinations on the HRR
of NC samples with larger scale are of great necessity.

The HRR is so important that it has been described as the single most important variable in
fire hazard [27,28]. To quantitatively evaluate the fire load of a NC sample, one available method
is to measure the HRR by means of corresponding apparatus, while in most cases, for example the
industrial-scale NC fires, the HRR should be predicted via pre-existing calculation model to tell the
severity of fire. Considering the intrinsic connection between flame appearance (reflected in flame
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, an attempt is made in this work
to establish a simplified model to predict the HRR based on the flame height data of NC. Then, the
predicted HRR will compare with the measured HRR by ISO 5600 to seek for further modification.
Other fire behaviors of NC samples are also measured and discussed. Three NC samples identical to
that in [25,26] are adopted to perform the current experiments.

2. Experimental Setup

Due to the high potential spontaneous ignition of pure NC, some additives, served as humectant
or plasticizer, are mixed with it to improve its stability in the process of production, storage, and
transportation. Moreover, previous attempts on the measurements of HRR and mass loss rate (MLR)
of pure NC met with difficulty due to its deflagration with a combustion duration less than 1 s [25].
Thus, all the NC samples in current study are finished products with annexing agents. Three NC
samples will be tested. Two of them are NC with alcohol humectant, i.e., 30 wt % isopropanol (C3H8O,
labeled as NC-I) and 30 wt % ethanol (C2H6O, labeled as NC-E), exhibiting as the similar white and
soft fibers. The other one is NC with 19.5 wt % dibutyl phthalate (DBP, labeled as NC-D), which is a
mixture of NC fiber and plasticizer, compressed together to form into a strip structure. All the samples
are commercial products for coating. Before the tests, all the samples are stored in a tightly sealed
environment to prevent the evaporation of alcohol humectant or other sample contamination.

The nitrogen content is a key parameter for evaluating the performance of NC, and the thermal
stability of NC decreases with increasing nitrogen content [4]. To eliminate this factor, the nitrogen
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contents of current NC substrates are selected as consistent as possible, i.e., 12%, 11.86%, and 11.96% for
NC-I, NC-E, and NC-D, respectively, all of which fall into the range of 11.5–12.2% classified as H-type
according to the Chinese standard “Specification for Nitrocellulose of Lacquers” (WJ9028-2005) [29].
Comparative tests on NC-I and NC-E also indicate that the 0.14% difference in nitrogen content could
hardly affect the microstructure and thermal behavior of NC [25]. Thus, the effect of nitrogen content
on the combustion behavior of NC sample is not the research focus and can be reasonably neglected.
It is also worthwhile to note that the chemical stability of NC depends on the removal of all traces
of acid in the manufacturing process [4]. The acidity of current NC samples is not larger than 0.04%,
and its influence on the combustion process is also unnecessary to be concerned. Additionally, other
physical parameters of the additives are presented in Table 1 for further discussion.

Table 1. Physical parameters of the additives [30].

Additives Chemical
Formula

Molecular
Weight (g/mol)

Density
(kg/m3)

Heat of
Combustion (kJ/g)

Humectant
Isopropanol C3H8O 60.06 786 33.08

Ethanol C2H6O 46.07 789 29.68

Plasticizer Dibutyl phthalate C16H22O 278.34 1047 30.99

The three NC samples are burned in two square steel burners with side lengths (L) of 8 cm and
10 cm, respectively, which are 2 cm in depth and 0.32 cm ± 0.01 cm in wall thickness. For NC-I and
NC-E with fiber structures, the samples are filled in the burners to a height of 1 cm from the bottom.
The initial weight for the burner with L = 8 cm is 10 g, and correspondingly, to guarantee the consistent
bulk density, that for burner with L = 10 cm is 15.63 g, with±0.2 g variation. For comparison, the NC-D
samples with strip structure are also prepared with identical initial weights for the two dimensions.
All the information pertaining to experimental configurations is listed in Table 2. The arrangements
of the three samples for L = 8 cm are illustrated in Figure 2. Although efforts have been made to
arrange the NC samples into the burner to achieve the similar bulk density, there is randomness in
the preparation of NC sample due to their irregular fiber and strip structures. Uneven sample surface
shown in Figure 2 would lead to some uncertainty of the tests. Thus, all the experimental data used
for analysis in current study are the average values over several repeated tests.
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Figure 2. Photos of arrangements of the three samples for the burner dimension with L = 8 cm.

Table 2. Detailed information of experimental configurations.

Samples L (cm) Bulk Density
(kg/m3)

Atmospheric
Pressure (kPa)

Ambient
Temperature (◦C)

Relative
Humidity (%) Measurements

NC-I 8, 10 156.3
100.3 ± 0.3 28 ± 2 40 ± 3

• Mass loss
NC-E 8, 10 156.3 • Video
NC-D 8, 10 — • HRR
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In order to achieve the research goal, the experiments in Table 2 are firstly performed in an open
space. An electronic scale (Mettler Toledo XP10002S, Mettler-Toledo, Zurich, Switzerland) with a
readability of 0.01 g is used to measure the history of mass loss, which will be further processed to
give the MLR. A square insulation board with 20 cm side is placed beneath the burner to shield the
electronic scale from elevated temperature. A 25-fps high-resolution camera (Sony, HDR-XR160E)
is employed to record the whole burning process for acquiring the flame height data. Then, the
experiments above will be retested by means of the ISO 5660 to acquire the HRR data with the absence
of incident radiation, as illustrated in Figure 3. The ventilation conditions are determined by the airflow
speed of the pump. A volumetric flow rate of 0.035 m3/s is set to remove gases by the pump which
meets the ventilation efficiency stipulated in ISO 5660 standard [31,32]. The gases are continuously
sampled via a Servomex 4100 gas analyzer (Servomex Group Limited, Surrey, UK) to monitor the
concentrations of O2, CO2, and CO, which will be transferred to the PC to calculate the HRR based on
the oxygen consumption principle. For all the tests, the samples are ignited in the middle of the burner
with a butane lighter.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  4 of 14 

give the MLR. A square insulation board with 20 cm side is placed beneath the burner to shield the 
electronic scale from elevated temperature. A 25-fps high-resolution camera (Sony, HDR-XR160E) is 
employed to record the whole burning process for acquiring the flame height data. Then, the 
experiments above will be retested by means of the ISO 5660 to acquire the HRR data with the absence 
of incident radiation, as illustrated in Figure 3. The ventilation conditions are determined by the 
airflow speed of the pump. A volumetric flow rate of 0.035 m3/s is set to remove gases by the pump 
which meets the ventilation efficiency stipulated in ISO 5660 standard [31,32]. The gases are 
continuously sampled via a Servomex 4100 gas analyzer (Servomex Group Limited, Surrey, UK) to 
monitor the concentrations of O2, CO2, and CO, which will be transferred to the PC to calculate the 
HRR based on the oxygen consumption principle. For all the tests, the samples are ignited in the 
middle of the burner with a butane lighter. 

 

Figure 3. Schematic of the experimental setup of ISO 5660 tests. 

3. Results and Discussion 

3.1. General Observations 

Figure 4 presents three groups of instantaneous flame images for NC-I, NC-E, and NC-D (L = 8 cm), 
respectively, at typical moments (50th, 150th, 250th, 450th, and 650th frame) after ignition. The 
flocculent NC-I and NC-E samples exhibit similar combustion behaviors, which are significantly 
different from NC-D with strip structure. Preliminary comparative research on NC-I and NC-E has 
revealed that the alcohol humectants barely affect the physical microstructure and thermal 
decomposition of NC substrate [25]. The alcohol additives improve the stability of pure NC, resulting 
in an attenuated combustion process instead of a violent deflagration. As observed in Figure 4a,b, the 
flames rapidly cover the whole exposed surface of NC samples in less than 2 s, and then evolve into a 
relatively stable combustion, followed by a decay process with the decreasing burning area. Additionally, 
the flames appear to be faintly yellow, accompanied by considerable luminous rising sparks. In contrast, 
the flame of NC-D sample spreads over the burner surface more slowly within 6–10 s. The combustion 
proceeds with glaring white flames, and sparks can scarcely be observed, as shown in Figure 4c. 

During the combustion, the surface of the NC melts or decomposes at the front edge of the flame, 
producing combustible vapors. In the case of the alcohol additives, the disruptive combustion might 
occur, leading to release of the sparks. This results from the formation of bubbles of alcohol vaporizing 
in the molten NC which bursts, causing little droplets of NC to form and burn to form sparks. 
However, it does not happen with the higher boiling point plasticizer which evaporates to form the 

Figure 3. Schematic of the experimental setup of ISO 5660 tests.

3. Results and Discussion

3.1. General Observations

Figure 4 presents three groups of instantaneous flame images for NC-I, NC-E, and NC-D (L = 8 cm),
respectively, at typical moments (50th, 150th, 250th, 450th, and 650th frame) after ignition. The flocculent
NC-I and NC-E samples exhibit similar combustion behaviors, which are significantly different from
NC-D with strip structure. Preliminary comparative research on NC-I and NC-E has revealed that
the alcohol humectants barely affect the physical microstructure and thermal decomposition of NC
substrate [25]. The alcohol additives improve the stability of pure NC, resulting in an attenuated
combustion process instead of a violent deflagration. As observed in Figure 4a,b, the flames rapidly
cover the whole exposed surface of NC samples in less than 2 s, and then evolve into a relatively stable
combustion, followed by a decay process with the decreasing burning area. Additionally, the flames
appear to be faintly yellow, accompanied by considerable luminous rising sparks. In contrast, the flame
of NC-D sample spreads over the burner surface more slowly within 6–10 s. The combustion proceeds
with glaring white flames, and sparks can scarcely be observed, as shown in Figure 4c.

During the combustion, the surface of the NC melts or decomposes at the front edge of the flame,
producing combustible vapors. In the case of the alcohol additives, the disruptive combustion might
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occur, leading to release of the sparks. This results from the formation of bubbles of alcohol vaporizing
in the molten NC which bursts, causing little droplets of NC to form and burn to form sparks. However,
it does not happen with the higher boiling point plasticizer which evaporates to form the yellow sooty
flame. The effect of disruptive burning is well known in heavy fuel oil combustion containing water
or alcohol [33,34], which might be helpful in understanding the flame appearances of NC samples in
Figure 4.
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3.2. Flame Height

To quantitatively evaluate the flame appearances of the three NC samples, the MATLAB-based
binarization method developed by Hu et al. [35] is employed to acquire the flame height data in current
study. Be more specified, the video records are firstly converted into gray images frame by frame, and
then binarized to obtain flame envelopes. The flame heights of the three samples with L = 8 cm during
the whole combustion process are plotted in Figure 5 together with their corresponding histories of
MLR. Previous research demonstrates that the flame height can be correlated with the 2/5 power of
HRR or MLR [36,37]. Thus, the variation range of flame height is not as much as that of MLR, as shown
in Figure 5.

In a very short time after ignition, MLR curves of NC-I and NC-E rapidly reach to a plateau,
reflecting as the relatively stable combustion illustrated in Figure 4, which is defined as quasi-steady
burning stage for further discussion. Meanwhile, it should be noticed that the flame heights in
Figure 5 are remarkably decentralized, i.e., the flame heights exhibit regular and reproducible intense
oscillations. The flame oscillation frequency, f, can be roughly estimated as 1.5D−1/2, where D is the
hydraulic diameter of the burner [38]. Hence, the oscillation frequencies for L = 8 cm and 10 cm pool
dimensions in the current study are 4.99 and 4.46 Hz, respectively. The luminous time-sequenced
images are analyzed via a fast Fourier transform method to obtain the oscillation frequency, and the
ultimate results in the quasi-steady burning stage are listed in Table 3, all of which are close to the
predicted values, indicating that the current image recording speed is acceptable.
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To further assess the oscillation amplitudes of flame heights, the flame oscillation intensity, I f ,
defined as the ratio of the half of difference between the highest (z f−max) and lowest (z f−min) heights to

the mean flame length (z f−m), is introduced here, i.e., I f =
(

z f−max − z f−min

)
/
(

2z f−m

)
[39]. For the

convenience of comparison, only the results in the quasi-steady burning stage are calculated for NC-I
and NC-E, and the flame heights in the vicinity of maximum MLR (±2 s) are also used to give the
values of f, z f−m, and I f for NC-D. As presented in Table 3, I f values for NC-I and NC-E are in close
proximity to each other, regardless of the pool dimensions, while they are distinctly larger than that for
NC-D, indicating that the flocculent NC samples with alcohol humectants exhibit more drastic flame
oscillation amplitude than NC-D with strip structure. In spite of that, I f values for current NC samples
are still larger than that for n-heptane pool fire with similar dimension (I f = 0.22) [37] and for gaseous
methane flame (I f = 0.14) under atmospheric pressure [39]. To quantify the flame heights, the average
flame height in each second, i.e., 25 frames, is calculated for further discussion, as shown in Figure 6.

Table 3. Summary of key information from MLR and flame height.

Sample L (cm) Ave./Max. MLR (g/s) f (Hz) zf-m (m) If

NC-I
8 0.52 5.13 0.35 0.77

10 1.03 4.55 0.50 0.64

NC-E
8 0.51 5.02 0.33 0.72

10 0.95 4.52 0.42 0.71

NC-D
8 1.14 4.42 0.53 0.44

10 1.79 4.93 0.70 0.36
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3.3. Prediction of HRR

In general, flame height is closely relevant to the air entrainment, i.e., the flame should extend
to a certain height where the total amount of air engulfed along this height is sufficient to fulfill
the combustion process [30]. Therefore, as expounded in Section 3.1, the flame height should be
intrinsically related to the pyrolysis rate of the combustible. Conventionally, their relationship is
summarized as:

z f = 0.235
.

Q
2/5
− 1.02D (1)

where D is the hydraulic diameter of the burner equivalent to 2√
π

L [34]. Here, As the flame height is

concretely plotted in Figure 6, Equation (1) can be used to solve for
.

Q, i.e.,:

.
Q =

( z f + 1.02D
0.235

)5/2

(2)

The calculated HRRs together with corresponding HRRs measured by the cone calorimeter are
plotted in Figure 7. It clearly shows that the prediction model derived from Equation (1) can well
predict the general variation trend of HRR for the three NC samples, while the HRR values tend to be
underestimated, especially when the HRRs are relatively larger. The average values in quasi-steady
burning stages predicted by Equation (2) for NC-I are 18.8% and 18.6% lower than the measured
HRR values for sides of 8 cm and 10 cm, respectively, while that for NC-E are 16.1% and 13.0%.
Figure 7c further demonstrates the feasibility of Equation (2) in predicting the unsteady combustion
process. However, the accuracy of the prediction model needs to be improved in consideration of the
discrepancy shown in Figure 7.
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In effect, the coefficient 0.235 in Equation (1) is a typical empirical value applicable for a larger
number of gaseous and liquid fuels under normal atmospheric conditions. Its feasibility for NC
samples needs to be further clarified. Equation (1) is originally expressed as the following form [40]:

z f

D
= −1.02 + 15.6N

1
5 (3)

with the dimensionless parameter N defined as:

N =

[
cpT∞

gρ2
∞(Hc/r)3

] .
Q

2

D5 (4)

Apart from the environmental parameters, i.e., the specific heat of air cp, ambient temperature
T∞, gravitational acceleration g and air density ρ∞, the actual heat of combustion Hc and mass
stoichiometric ratio of air to volatiles r substantially depend on the physical properties of combustibles.
Based on Equations (3) and (4), the HRR can be recalculated as:

.
Q = A

(
z f + 1.02D

)5/2
(Hc/r)3/2 (5)

where A =
(

gρ2
∞

15.65cpT∞

)1/2
is constant for the fixed ambient environment. When Hc/r remains within

the range of 2900–3200 kJ/kg, the coefficient 0.235 might be adequate for the rough estimation of
HRR [36,37]. However, to precisely predict the HRRs, Hc/r has to be reconsidered for current NC
samples due to its 3/2 power law relationship with HRR.
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3.3.1. Determination of Hc

Provided the combustion efficiency is constant during the whole combustion process for a given
fuel, the HRR should be linearly related to the MLR [27,41]. The HRRs versus MLRs for the three
NC samples are presented in Figure 8, where their proportional relation can be observed, and the
fitted slopes represent the corresponding actual heats of combustion of the three fuels, i.e., 16.57,
15.20, 13.50 kJ/g for NC-I, NC-E and NC-D, respectively. As claimed in [22], for pure NC from cotton
linter with nitrogen content of 11.49–12.14%, the heat of combustion falls in between 10.67 kJ/g and
10.27 kJ/g; for pure NC from wood pulp with nitrogen content of 11.74–12.12%, the value is between
10.50–10.27 kJ/g. In any case, the heats of combustion of pure NC with nitrogen content of 11.86–12%
in current tests should be lower than the fitted values in Figure 8. One reasonable explanation for this
might be the addition of humectant or plasticizer. The heats of combustion for isopropanol, ethanol
and DBP are 33.08 kJ/g, 29.68 kJ/g, and 30.99 kJ/g [30], respectively, which will inevitably upgrade
the heat of combustion of NC samples.
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3.3.2. Determination of r

The chemical formula of NC can be written as C6H7O2(OH)x(ONO2)y, where x + y = 3.
The customary way to define the composition of NC is to express the nitrogen content as a percentage
by weight, i.e., the nitrogen content mentioned before, which is termed as n [4]. The average number
of nitrate groups present in NC can be calculated as:

y =
162n

1400− 45n
(6)

Thus, for NC-I, NC-E, and NC-D samples, their NC substrates can be further specified as
C6H7O2(OH)0.74(ONO2)2.26, C6H7O2(OH)0.78(ONO2)2.22, C6H7O2(OH)0.75(ONO2)2.25, respectively.
In general, their difference in nitrate group is quite small because of their slight difference in nitrogen
content. Assuming all the combustion yields are in the most stable forms, i.e., complete combustion,
the chemical reactions for NC and their corresponding humectants and plasticizer can be written
as follows:
for NC-I: {

C6H7O2(OH)0.74(ONO2)2.26 + 5.435O2 → 6CO2 + 3.87H2O + 2.26NO2

C3H8O + 4.5O2 → 3CO2 + 4H2O
(7)

for NC-E: {
C6H7O2(OH)0.78(ONO2)2.22 + 5.445O2 → 6CO2 + 3.89H2O + 2.22NO2

C2H6O + 3O2 → 2CO2 + 3H2O
(8)

for NC-D: {
C6H7O2(OH)0.75(ONO2)2.25 + 5.4375O2 → 6CO2 + 3.875H2O + 2.25NO2

C16H22O4 + 19.5O2 → 16CO2 + 11H2O
(9)

According to the definition of r, it can be determined as:

r f uel = 4.76s
Mair

M f uel
(10)

where s is the stoichiometric mole ratio of oxygen to fuel, and Mair and M f uel are the molecular weights
of air and fuel, respectively. As the weight percentage of addition agent (denoted as p) is given in
current study, the average r value for NC-humectant or NC-plasticizer mixtures can be reasonably
expressed as: 

rNC−I = prIsopropanol + (1− p)rNC−I
rNC−E = prEthanol + (1− p)rNC−E
rNC−D = prDBP + (1− p)rNC−D

(11)

Based on the equation above, the average r values for NC-I, NC-E, and NC-D are estimated as
5.097, 4.709, and 4.217, respectively. Combined with the actual heat of combustion derived by Figure 8,
Hc/r can be correspondingly modified as 3251, 3228, and 3201 kJ/kg. Substituting these values in
Equation (5), the model based on the flame height will be further modified to give the predicted
HRR, as plotted in Figure 9. It indicates that for all three samples, the modified and measured HRRs
intertwine with each other for the two tested pool dimensions, implying the modified model would
help to predict the HRR more accurately.

However, because of the violent oscillation of flames of NC samples shown in Figure 5, the
evident fluctuation of HRR derived from flame height can be observed, exhibiting serration patterns.
The predicted HRRs in quasi-steady burning stage are in the vicinity of the measured ones for NC-I
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and NC-E samples. Specifically, for NC-I, the average values for the predicted values are slightly
higher than that for the tested results by about 1.8% and 1.7% for L = 8 cm and 10 cm configurations,
respectively, while that for NC-E are 1.3% and 1.1%. It is interesting to note that the predicted HRR
by Equation (5) denotes the total HRR, which is reasonably higher than the measured HRR by ISO
5660. Meanwhile, the relative amount of CO and CO2 indicates the combustion efficiency of samples.
A typical result of mass production rates of CO and CO2 for 8 cm NC-D sample is depicted in Figure 10,
where the concentration of CO2 are almost two orders of magnitude than that of CO. Both NC-I and
NC-E samples also present the similar results. Thus, the current tests are reasonably assumed as
complete combustions, or the measured HRRs are slightly lower than the total HRRs, as shown in
Figure 9.
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Moreover, the application range for Equations (1) and (3) is limited in 7 <
.

Q
2/5

/D <

700 kW2/5m−1 [36]. Given the flame spread at the beginning and the reduction in the effective
burning area during the decay stage, the diameter D should be smaller than 2√

π
L. The relatively

smaller HRR at the beginning and the end together with the reduction of D leads to the uncertainty of
the feasibility of Equations (1) and (3). It is also difficult to identify the change of effective burning
area in the two stages. In the prediction model, the diameter D is roughly approximated as a constant

2√
π

L. Thus, there are some errors in the calculation of HRR for the situations with smaller burning
area and HRR.Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 14 
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4. Concluding Remarks

The combustion properties of NC-isopropanol, -ethanol, and -dibutyl phthalate mixtures are
experimentally examined in this paper. From the video records, the flame heights of the three NC
samples with two burner dimensions were determined and further applied to establish a simplified
model to predict the heat release rates of the samples. From the MLR and HRR data by ISO5660, the
actual heats of combustion for NC-I, NC-E, and NC-D were identified as 16.57, 15.20, 13.50 kJ/kg,
respectively. These data together with r values determined from the stoichiometric equations of
mixtures were further employed to recalculate the critical parameter Hc/r as 3251, 3228, and 3201 kJ/kg
for NC-I, NC-E, and NC-D, respectively. Through the modified model, the HRR can be predicted more
accurately based on the flame height data. Specifically, for NC-I, the average values for the predicted
values are slightly higher than that for the tested results by about 1.8% and 1.7% for L = 8 cm and
10 cm configurations, respectively, while that for NC-E are 1.3% and 1.1%. This might be attributed to
the incomplete combustion of NC samples.

The bench-scale experiments in current study have provided some insights on the fire hazards
of NC-humectant and -plasticizer mixtures and indicate the possibility of the prediction on their
heat release rate with a more accurate and simplified model. This prediction method is applicable
to NC sample with burning area equivalent to the current dimensions, while it may not be directly
extrapolated to the larger or even industrial scale unless further validation is conducted. Additionally,
other commonly-used NC-humectant or -plasticizer mixtures should be tested to determine the heat of
combustion and further verify the generalization of the current model. It is also worthwhile to note that
a fixed bulk density is designated for NC-I and NC-E. In fact, however, the bulk density will influence
the combustion properties of the samples, which deserves further examination in future studies.
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