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Abstract: Process optimization using a physical process or its comprehensive model often requires
a significant amount of time. To remedy this problem, metamodels, or surrogate models, can be
used. In this investigation, a methodology for optimizing the biobutanol production process via
the integrated acetone–butanol–ethanol (ABE) fermentation–membrane pervaporation process is
proposed. In this investigation, artificial neural networks (ANNs) were used as metamodels in
an attempt to reduce the time needed to circumscribe the Pareto domain and identify the best
optimal operating conditions. Two different metamodels were derived from a small set of operating
conditions obtained from a uniform experimental design. The first series of metamodels were
derived to entirely replace the phenomenological model of the butanol fermentation process by
representing the relationship that exists between five operating conditions and four performance
criteria. The second series of metamodels were derived to estimate the initial concentrations under
steady-state conditions for the eight chemical species within the fermenter in order to expedite
convergence of the process simulator. The first series of metamodels led to an accurate Pareto domain
and reduced the computation time to circumscribe the Pareto domain by a factor of 2500. The second
series of metamodels led to only a small reduction of computation time (a factor of approximately 2)
because of the inherently slow convergence of the overall fermentation process.
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1. Introduction

Because of globalization and environmental regulations, chemical process industries are constantly
examining all aspects of their processes in an effort to improve their operations to ensure that
they remain competitive. In particular, process optimization has been at the forefront of this
undertaking. Optimizing process operations in chemical plants involves developing a sufficiently
accurate phenomenological, or empirical, model to assist in finding the optimal operating points.
In recent years, multiobjective optimization, instead of the minimization of an aggregate objective
function used in traditional optimization, has increased in popularity. Indeed, traditional optimization
techniques have resolved multiple objectives by combining them into a single objective comprising
the weighted sum of the individual objectives, or by considering one objective while treating the
others as constraints. Even though single objective optimization is sufficient in many situations,
multiobjective optimization provides additional information on the underlying relationships between
various objectives.

In multiobjective optimization, all objectives are initially considered equally important and the
concept of domination serves to circumscribe the Pareto domain using a representative process model.
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Most often, some of the objective functions conflict such that one objective cannot be improved
without deteriorating another. The Pareto domain, comprising nondominated solutions, is obtained
without any bias with respect to all objectives and is commonly approximated with a large number of
solutions. When the Pareto domain has been obtained, all nondominated solutions are ranked using
some preferences expressed by an expert or decision-maker, and the optimal solution is identified.
The optimal solution, which is obtained using process models, is then validated on the actual process.

Often the solution of the process or plant models used to circumscribe the Pareto domain is
computationally expensive, such that determining a sufficiently large number of Pareto-optimal
solutions may require an impractically long time. For example, optimization of an ethanol batch
fermentation process integrated with a continuous vacuum separation unit performed by combining a
Visual Basic for Applications (VBA) code with a Honeywell UniSim® Design R430 process flowsheet
took a few days to obtain one Pareto domain [1]. One alternative is to use a metamodel, or a surrogate
model, where complete or partial operation of the chemical process is modelled with a representative
model, often empirical, for which the computational cost would be significantly reduced. One such
model is an artificial neural network (ANN), which is a computational network that attempts to mimic
the functionality of neurons within the biological central nervous system. In an ANN, adaptable nodes
store experiential knowledge acquired via learning algorithms, allowing the network to recognize and
predict patterns with no knowledge of the underlying governing equations. This allows ANNs to be
used as black-box tools where no prior knowledge about the system is required, thereby achieving high
accuracy in multifactorial and nonlinear analysis of complex processes such as fermentation. However,
training a neural network requires a good number of representative solutions, which may counteract
efforts to reduce the computation time. Strategies to develop effective neural network models for
smaller sets of data using a combination of experimental design and stacked neural networks have
been previously proposed [2,3]. In an effort to maximize process information given a small set of data,
it is possible to use experimental design. Numerous optimization problems could benefit from such
a strategy.

In this paper, metamodels are used in the multiobjective optimization of a continuous biobutanol
production process where the fermentation system is integrated with a membrane pervaporation unit
to selectively remove solvents from the fermentation broth to enhance the productivity and overall
effluent concentration of butanol. This paper is divided as follows. The process to be optimized is first
described. Next, the strategy used to develop the ANN metamodels to assist in the computationally
effective determination of the Pareto domain is discussed. Finally, results are presented and discussed,
prior to presenting the concluding remarks.

2. Description of the Integrated ABE Fermentation–Membrane Pervaporation Process

The process considered in this investigation is the biochemical production of butanol via
acetone–butanol–ethanol (ABE) fermentation. ABE fermentation is a biphasic biological production
involving acidogenesis and solventogenesis. Acidic metabolites accumulate during the former phase
and are subsequently assimilated into industrial relevant solvents such as butanol. Butanol is an
important chemical precursor and is currently being produced commercially via the hydroformylation of
propylene. ABE fermentation can potentially be used for commercial production of butanol instead of the
aforementioned petrochemical-based process. This interest in the development of bio-based processing
alternatives is motivated by the enviable characteristic of biobutanol as a renewable liquid fuel.

The ABE fermentation process suffers from low butanol yield and productivity because of the
co-production of acetone, ethanol, and organic acids. Moreover, the concentration of butanol in the
final fermentation broth is limited to very low concentrations (typically <13 g/L) due to butanol toxicity
to the producing bacteria [4]. Consequently, the recovery of ABE solvents is energy-intensive and
costly. At such low concentrations, the energy requirement for product recovery is greater than
the energy content of the product itself [5]. Significant experimental efforts have been made to
optimize ABE fermentation for improved butanol yields. One such method is extractive fermentation,
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a continuous process in which fermentation and solvent separation are integrated, thereby partly
alleviating product inhibition, reducing downtime associated with batch processing, and increasing
overall butanol concentration.

Researchers have proposed various mathematical models describing cell growth and variations in
the concentration of metabolites over time, by accounting for their rates of production and consumption
in the biochemical reaction pathway to adequately represent the experimental observations [6,7].
These mathematical models of ABE fermentation provide cost- and time-effective simulations for
fermentation design and optimization studies. Therefore, extractive fermentation can be adequately
modelled, allowing researchers to further generate new testable hypotheses and proposals, which can
significantly improve the overall process and identify optimal operating conditions.

For the continuous integrated fermentation process, pervaporation is an attractive separation
method that can be used to continuously recover butanol from the ABE fermentation broth [8].
Pervaporation is a membrane-based separation process of binary or multicomponent liquid mixtures,
and, as its name implies, it involves permeation through a dense hydrophobic membrane and
evaporation on the permeate side. The permeating vapor is then recovered by condensation.
Polydimethylsiloxane (PDMS) membrane is regarded as a promising candidate for butanol separation,
as it exhibits high and stable performance in butanol recovery from ABE solvents via pervaporation [9].
The continuous integrated fermentation-membrane pervaporation process that was optimized in this
work is presented schematically in Figure 1. This process mainly consists of a continuous fermenter,
a microfiltration unit, and a membrane pervaporation system. For a set of input operating conditions
of the overall process, the dynamic mass balance of each individual component of the process is solved
with time until a steady state is achieved. The main input variables of the process, i.e., the decision
variables in the optimization problem, are the fermenter dilution rate, the inlet sugar concentration,
the cell retention factor, and the membrane area of the pervaporation unit as dictated by the number
of membrane modules and the number of membrane stacks per module. Mass balances for the
main species of the fermentation broth, namely acetone, acetic acid, butanol, butyric acid, ethanol,
microorganism, glucose, and water, were considered in this work. The detailed set of mass balances
and process equations can be found in [10].
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Figure 1. Schematic diagram of the butanol fermentation system integrated with a membrane 
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set of kinetic reactions as described by Mulchandani and Volesky [11], accounting for the production 
of solvents (acetone, butanol, and ethanol), intermediate products (acetic acid and butyric acid), and 
microbial cells as well as the consumption of glucose in the fermentation broth was used. This model 
is still the most commonly used in the literature, because it accounts for the carbon substrate 
limitation in addition to the inhibition of butanol and butyric acid. Other models were recently 
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pervaporation separation unit. Numbers correspond to process streams.

In this process, a solution of glucose is continuously fed to a 400 m3 fermenter with a constant
flow rate and sugar concentration. Initial species concentrations in the fermenter are assumed. The set
of kinetic reactions as described by Mulchandani and Volesky [11], accounting for the production of
solvents (acetone, butanol, and ethanol), intermediate products (acetic acid and butyric acid), and
microbial cells as well as the consumption of glucose in the fermentation broth was used. This model
is still the most commonly used in the literature, because it accounts for the carbon substrate limitation
in addition to the inhibition of butanol and butyric acid. Other models were recently proposed in
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the literature and were tested in this investigation. Shinto et al. [12] presented a kinetic model that
considers numerous intermediates in the metabolic pathway as well as product and glucose inhibition.
However, this model could not be used, as it leads to unrealistically high butanol concentration,
far beyond the inhibitory concentration levels. The dynamic model of Buehler and Mesbah [13]
initially seemed interesting, as it accounts for the pH of the fermentation broth, but some dynamic
model constants are extremely high, therefore the system of ordinary differential equations cannot be
solved with a practical step size in terms of time.

To achieve steady state for a set of input conditions, the overall mass balance is satisfied by
removing the same quantity of material through Streams 5, 8, 10 and 12 as the one entering into the
process in Stream 1. In a continuous operation, Stream 2 is sent to the microfiltration membrane unit
to give the permeate cell-free Stream 3 and the retentate Stream 7 containing all the microbial cells of
Stream 2. A large proportion of Stream 7 is returned to the fermenter through Stream 9. Stream 8 is
purged and sent to the separation train. Purge Stream 8 is adjusted to maintain an optimal steady-state
concentration of microbial cells in the fermenter and provides an exit for other metabolites [14].
Stream 3 flows through the membrane pervaporation unit, where a fraction permeates through the
membrane and is subsequently cooled in the condenser to form Stream 4. The permeate side of the
membrane is maintained under high vacuum. The rate of permeation depends on the membrane area
and permeability as well as stream temperature and composition [10]. Stream 4 is separated to give
Streams 5 and 10, assumed to be 99% and 1% of Stream 4, respectively. Stream 5, which has a much
higher concentration of ABE solvents than Stream 3, is sent to the separation train. Retentate Stream 6
is split into Streams 11 and 12. Purge Stream 12, used to maintain steady-state operation along with
other exiting streams, is sent to the separation train, whereas Stream 11, depleted of ABE solvents,
is recycled back to the fermenter.

3. Methodology

3.1. Multiobjective Process Optimization

The model of the integrated biobutanol production process in Figure 1 was developed and coded
in Fortran programming language. Optimizing this process boils down to determining the set of input
variables that will lead to the optimal set of objective criteria. In this investigation, the input or decision
variables consist of: (1) the dilution rate, defined as the volumetric input flow rate divided by the
volume of the fermenter; (2) the feed glucose concentration; (3) the cell retention factor, defined as the
ratio of the flow rate of Stream 8 to the flow rate of Stream 12 (Figure 1), which serves to maintain a
steady microbial cell concentration in the fermentation broth; (4) the number of pervaporation modules
in series, each module being preceded by a heat exchanger to increase the feed module stream to favor
higher permeation flux; and (5) the number of stacked membranes in each membrane module where
the stream entering the module is split equally to flow through each individual membrane unit within
a stack. For the butanol production process, four objective functions were optimized simultaneously:
(1) butanol productivity; (2) overall butanol concentration exiting the process, which represents the
combined concentration of Streams 5, 8 and 12; (3) glucose conversion; and (4) number of membrane
modules in series, i.e., the fourth decision variable. A summary of the decision variables and the
objectives to be optimized is presented in Figure 2. The first three objective functions need to be
maximized, whereas the fourth objective needs to be minimized. Many of these objectives conflict, and
a judicious trade-off among them needs to be found.

To solve the optimization problem, i.e., circumscribing the Pareto domain associated with the
five decision variables and the four objective functions for the butanol production process, the dual
population evolutionary algorithm (DPEA) was used [15]. For the first generation, a set of random
values of the five decision variables was obtained within their feasible ranges. A total of 5000 sets of
decision variables formed the initial population. For each decision variable set, the steady-state solution
of the butanol production process was determined, which allowed for calculation of the four objectives.
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Upon creation of the first generation, containing 5000 vectors of the objective functions associated with
each set of decision variables, a pairwise comparison of the objectives of all solutions in the population
was performed to determine the number of times a solution was dominated. A solution is dominated
if another solution within the population is better for all four objectives. All nondominated solutions
and a fraction of the least-dominated solutions were retained as parents for the next generation.
For all subsequent generations, two parents from the previous generation were used to give rise to a
new individual using the Blend crossover operator and the Gaussian mutation operator. These two
operators are essential to obtain a well-circumscribed Pareto domain and allow the diversity of the
population to be maintained. This procedure, performed at each generation to keep the population
size constant, was repeated until the desired number of nondominated solutions in the population was
achieved. In this investigation, the Pareto domain was assumed to have converged when the number
of nondominated solutions reached 4900. A good approximation of the Pareto domain, containing
only nondominated solutions, is thereby obtained.
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biobutanol production process.

The Pareto domain is determined without any biases or preferences by the decision-maker. To rank
all solutions in the Pareto domain, the NetFlow method was used, where preferences of an expert,
encapsulated in terms of four parameters for each objective, are used [16]. The four parameters for
each objective necessary to rank the whole Pareto domain are the relative weight and three threshold
parameters: the indifference threshold, the preference threshold, and the veto threshold.

The Pareto domain is usually approximated with a large number of solutions, which tends to
be difficult to achieve because of the prohibitive computational cost of process simulation or model
evaluation. Sometimes the solution might be an experiment that could take days to perform. This was
the case of the optimization performed by Lin et al. [17], where a series of fermentation experiments
were performed to determine the operating conditions to maximize both the concentration and the
molecular weight of the biopolymer produced. Each experiment required 10 days on average. It is
therefore advantageous to develop a methodology to significantly reduce the number of solutions
that need to be obtained, and still derive a representative model that can be used with confidence in
the optimization process. The application of ANNs as a metamodel (model of a model, or surrogate
model) for nonlinear complex simulations has proved to be successful at reducing computation time,
applicable to higher-dimensional problems, and simple to construct. An ANN can be regarded as a
regression of input–output pairings that captures their interrelationship [18]. Well-distributed sampled
input–output data in sufficient quantity is required in order to construct an accurate metamodel.
This requirement is satisfied by defining an appropriate design of experiment.

3.2. Uniform Design of Experiment

Design of experiment (DOE) is the sampling plan within the design variable domain whereby
experimental design levels are set for each of the contributing factors, and the objective is to obtain
a limited number of simulations (due to computational expense) covering the entire design region.
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Factorial experimental design is commonly used to select experimental points within the design
variables domain, thereby allowing for the determination of the relationship between the inputs of a
process and its responses, which is encapsulated in regression models. When the relationship between
the inputs and the responses of the process is nonlinear or the experimental domain is large, a two-level
fractional design does not provide sufficient information to develop a representative model, because
most of the information is obtained at the periphery of the experimental domain. To circumvent this
limitation, uniform design (UD) can be used, where the design runs are uniformly and optimally
scattered within the experimental domain using a small set of design points [19]. UD attempts to
choose design points that cover the design region uniformly with limited experimental runs. A website
published by Hong Kong Baptist University tabulates the design points for a uniform design, Un(qs),
given the number of runs (n), factors (s), and levels (q) [20]. Each table provides the desired number
of design points; each design point contains the number of factors (or decision variables) and their
respective level, which can be used to determine the actual values of the decision variables using their
allowable ranges. These design points (decision variables) are then used to generate the respective
objective functions. In this investigation, uniform design U30(55) and U10(55) were used to generate
the learning and validation datasets for the artificial neural network (ANN), respectively.

3.3. Artificial Neural Network Metamodels

In this investigation, the phenomenological dynamic model of the fermentation system depicted
in Figure 1 was developed to compute the concentrations of the eight chemical species, acetone, acetic
acid, butanol, butyric acid, ethanol, glucose, biomass, and water, as a function of time for each set of
the five decision variables. When the concentrations in the fermenter do not change within a given
tolerance, the system is assumed to have achieved steady state. Then the four objectives (butanol
productivity, overall butanol concentration, sugar conversion, and number of membrane modules) are
evaluated. To obtain a complete Pareto domain, this procedure needs to be repeated a large number of
times. A methodology to achieve a well-defined Pareto domain was therefore developed.

In order to develop the ANNs for the integrated fermentation–membrane pervaporation system,
the available datasets from the UD experimental runs were divided into training and validation
sets. The dataset consisted of 40 input–output pairs in which a U30(55) and U10(55) were assigned
for training and validation of the neural networks, respectively. The architecture of the ANN with
inputs and different responses is schematically depicted in Figure 3. The inputs to the ANNs are
the five decision variables: dilution rate (D), inlet glucose concentration (So), cell retention factor
(α8/12), number of pervaporation modules in series (Nmod), and number of stacked membranes in their
respective membrane module (NStack). Two strategies were used in the derivation of ANNs. The first
one was aimed at replacing the entire continuous integrated ABE fermentation process, whereby each
of the four objective functions (butanol productivity, overall butanol concentration, sugar conversion,
and number of membrane modules in series) is modelled. For this first strategy, four ANNs were
derived and could be used independent of the actual integrated fermentation model. For a given
set of decision variables, the four neural networks can be used in the multiobjective optimization
algorithm to calculate the four objective functions. The Pareto domain can therefore be circumscribed
using the ANN surrogate models. In the second strategy, it is desired to use the actual integrated
ABE fermentation model to converge to steady-state operation but use ANNs to predict the initial
concentrations of the main species within the fermentation broth (acetone, acetic acid, butanol, butyric
acid, ethanol, glucose, bacteria, and water). The motivation of the latter strategy, with the derivation of
eight ANNs, is to converge more rapidly to a steady state, resulting in reduced computation time.

For all 12 ANNs (four for the objectives and eight for the initial species concentrations) derived in
this investigation, the architecture corresponded to an input layer of six neurons: the bias, one hidden
layer of three neurons including the bias, and an output layer of one neuron, as shown in Figure 3.
The activation function for the neurons of the hidden and output layers is a sigmoid function, and the
input and output variables were scaled between 0 and 1. Given the reduced number of data points
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generated by the experimental uniform design and available for training the neural network, it was
decided to limit the number of neurons in the hidden layer to three. Moreover, the sum of squares
of the prediction errors based on the validation data set was evaluated at each iteration, and the
set of weights corresponding to the minimum sum of squares of the errors was the one used for
the predictions.
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Figure 3. Architecture of the artificial neural network (ANN) used for the modelling of the
four objectives and eight initial species concentrations of the integrated fermentation–membrane
pervaporation system.

The Pareto domain can now be obtained using three different routes. First, the genetic algorithm
can be used along with the four ANNs of the four objective functions. Second, the genetic algorithm
can use the original integrated ABE fermentation model with the eight ANNs predicting the initial
species concentrations within the fermentation broth, and finally, with the original integrated ABE
fermentation model with arbitrary initial species concentrations. Figure 4 depicts these three strategies,
referred to as A, B and C, respectively. Steps 1–4 in Figure 4 describe the method for the derivation
of the ANNs, discussed previously. In steps 5–7, the genetic algorithm branches to strategy A, B, or
C to circumscribe the Pareto domain of the integrated ABE fermentation process, consisting in this
investigation of 5000 solutions. The performance of the two ANN metamodels is assessed (Step 8)
based on the obtained Pareto domains. To be as inclusive as possible, the initial ranges of the five
decision variables may have been chosen using a larger range than the ones corresponding to the
obtained Pareto domain. To get a more accurate Pareto domain, it is then possible to perform an
additional iteration of the optimization process using metamodels obtained with reduced ranges of the
decision variables. When a converged Pareto domain is obtained, the optimal solution is determined
using the NetFlow method and then validated using the actual model of the process (step 9).
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pervaporation system flowchart: (A) ANN metamodels of the four objective functions; (B) process
simulator with ANN metamodels providing the eight initial species concentrations; and (C) process
simulator with arbitrary initial concentrations.

4. Results and Discussion

Results of the ANN predictions of the species concentrations are presented first. The parity plot
giving the predicted versus actual values for the concentrations of butanol is presented in Figure 5.
Very similar results were obtained for the concentrations of the other seven species, so their graphs are
not shown. In this graph, points represented by red, blue, and gray symbols correspond to the training
(30 solutions), validation (10 solutions), and testing (1000 solutions) data, respectively. The testing data
was generated by randomly choosing the five decision variables subjected to the same minimum and
maximum bounds of the training and validation datasets. The graph on the left of Figure 5 presents
the predictions obtained by the ANNs when the decision variables for training and validation were
selected using a wider range (Table 1). Results show that the predicted concentrations have a high
degree of scatter, especially at the lower concentrations. The residuals are heteroskedastic for the initial
range, as the variance of the error is not constant, and two sections with distinct variability prevail in
Figure 5a. There are many solutions with zero concentrations in the actual fermenter, corresponding
to operating conditions where the microorganisms were washed out, i.e., the culture was not able to
sustain itself through the fermenter due to high dilution rates and high cell retention factor α8/12.
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Table 1. Initial and reduced ranges of the decision variables.

Range D (h−1) So (kg/m3) α8/12 Nmod NStack

Initial 0.5–1.5 50–150 0.1–0.3 2–10 1000–2500
Reduced 0.5–1.4 50–125 0.1 4–10 2000–2500

Figures 6 and 7 present the parity plots of the first two objectives obtained with the same set
of decision variables. The predictions based on the ANNs for the wider range of decision variables
are also relatively scattered, especially at very low values. A similar plot was obtained for the third
objective (sugar conversion), whereas predictions of the number of membrane modules showed a
perfect regression (data not shown). On the other hand, at higher values of butanol productivity, overall
butanol concentration, and sugar conversion, the predictions seem to be acceptable. Nevertheless,
they could certainly be improved, provided the ranges of the operating conditions are refined to
eliminate solutions that were generated in the lower range of the first three objectives, which in reality
would never be part of the final Pareto domain. Indeed, these solutions are clearly dominated when
compared to the solutions with higher objective values. To refine the ranges of the decision variables,
the genetic algorithm was used to generate the Pareto domain from the four ANN metamodels of the
objectives. The obtained Pareto domain allowed for reducing the ranges of the decision variables to
those of the second row of Table 1. It was then possible to generate new sets of training and validation
data, which were used to generate the 12 new ANNs. The parity plots of the butanol concentration
for the first two objectives are presented on the right graphs of Figures 5–7. It is obvious that the
new ANNs show much better predictions than those obtained with the wider ranges of decision
variables. It is believed that these predictions should provide sufficient accuracy to use the ANNs with
confidence for directly obtaining the Pareto domain or providing good initial species concentrations.
The overall coefficients of determination (R2) are included on each graph and clearly indicate a
significant improvement of the metamodels when the reduced ranges are used. Moreover, for all
variables, the numerous low values and zeros present with the wider ranges of decision variables
disappeared for the ANN predictions obtained with the reduced decision variable ranges. The main
change in the ranges was the cell retention factor, which now assumes a unique value of 0.1, allowing
elimination of the fermenter washout and retention of a higher microorganism concentration within
the fermenter.
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A Pareto domain was obtained for each of the three strategies described in Figure 4 using the
same generic algorithm. In strategy A, the Pareto domain was obtained from the ANN metamodels of
the entire process where the four objectives are predicted from the five decision variables. In strategy
B, the phenomenological simulator of continuous fermentation integrated with a pervaporation unit
was used with the initial estimates of the concentrations of the eight species in the fermenter being
predicted with the eight ANN metamodels. Each concentration estimate was predicted from the five
decision variables. Finally, in strategy C, the Pareto domain was circumscribed akin to strategy B,
except the initial estimates of the concentrations were set arbitrarily. It is obvious that strategies B and
C led to similar Pareto domains, since the phenomenological simulator of the continuous integrated
fermentation was used in both cases until convergence was achieved.

With the initial ranges of the decision variables, strategy A was used to determine the Pareto
domain (not shown), which made reducing the ranges of the decision variables possible. With the 12
ANN metamodels developed with the decision variables of the reduced ranges, Pareto domains with a
population of 5000 solutions were obtained with strategies A, B and C. All Pareto-optimal solutions
were then ranked with the NetFlow method. The method’s relative weights and the three threshold
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values for each of the four objective functions are summarized in Table 2. The plots of the four objective
functions and two of the decision variables are presented in Figures 8–11. The Pareto domain is plotted
with four distinct regions: (1) best-ranked solution (green point), (2) solutions ranked in the first 5%
(red points), (3) solutions ranked in the next 45% (blue points), and (4) solutions of the remaining 50%
(black points).

Table 2. Initial and reduced ranges of the decision variables.

Objective Relative Weight
Thresholds

Indifference Preference Veto

Butanol productivity 0.35 0.75 1.50 3.00
Butanol concentration 0.35 0.75 1.50 3.00

Sugar conversion 0.25 0.04 0.08 0.16
Number of membrane modules 0.05 1.00 2.00 4.00

Figure 8a depicts the overall concentration of butanol as a function of butanol productivity,
as determined by the genetic algorithm using the four ANN metamodels. The best-ranked solution is
located at a butanol productivity of 10.95 kg/m3·h and an overall butanol concentration of 21.74 kg/m3

(Table 3, column A). When the decision variables associated with the optimal solution obtained with
the ANN were used in the phenomenological simulator to validate this optimal point, values of
12.14 kg/m3·h and 24.04 kg/m3 were obtained, respectively. This is comparable to the best-ranked
solution obtained by the genetic algorithm using the phenomenological simulator, as depicted in
Figure 8b, where butanol productivity of 11.83 kg/m3· was obtained (Table 3, column C). Figure 8
shows the positive correlation between butanol productivity and overall butanol concentration at a
constant dilution rate. The dilution rate increases diagonally (left to right) from a lower bound of
0.5 h−1 to an upper bound of 1.4 h−1. The empty portion depicted in the Pareto domain of Figure 8b
corresponds to an inoperable range due to the constraints that exist between elevated dilution rate,
butanol concentration, and flow rates to achieve steady state. The metamodel failed to recognize these
limitations and instead filled the empty region accordingly by interpolating the data. This observation
is expected, as a metamodel is based on input–output observations without accounting for the intrinsic
constraints of the system. Nevertheless, the best-ranked solution and the solutions ranked in the first
5% were well identified with the metamodels.
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Table 3. Decision variables and objectives of best solutions of Pareto domains with a population of
5000 individuals obtained with strategies A, B and C (see Figure 4).

Decision Variable/Objective Strategy

A B C

Dilution rate D (h−1) 0.51 0.51 0.50
Feed sugar concentration S0 (kg/m3) 125 122 125

Cell retention factor α8/12 0.1 0.1 0.1
Number of membrane modules NMod 7 7 7
Number of membrane stacks NStack 2500 2480 2389

Butanol productivity (kg/m3·h) 10.95 1 12.14 2 12.10 11.83
Butanol concentration (kg/m3) 21.74 1 24.04 2 23.68 23.65

Sugar conversion 0.96 1 0.96 2 0.95 0.93
Computation time (s) 5.6 8353 14052

Number of actual model evaluations 81 21573 21347
1 Values determined by the genetic algorithm using the ANN metamodels. 2 Values determined by the
phenomenological simulator for validation using decision variables of Column A.

Sugar conversion as a function of the butanol productivity of the Pareto domain is depicted in
Figure 9. Figure 9a was obtained by the genetic algorithm using the ANN metamodels, while Figure 9b
presents the Pareto domain obtained using the phenomenological simulator. Both Pareto domains are
nearly identical, which clearly indicates that the ANN metamodels were able to adequately model
and well predict the relationship between conversion and butanol productivity. The sugar conversion
corresponding to the best-ranked solution is 0.96 and 0.93 for the metamodel and phenomenological
simulator, respectively. The same sugar conversion was obtained when the decision variables of
the best-ranked solution identified with the ANN metamodels was used in the phenomenological
simulator (Table 3). The first three objective functions need to be maximized, whereas the fourth
objective, the number of membrane modules in series, needs to be minimized. A trade-off between
all four objectives needs to prevail in order to determine the optimal operating conditions for the
decision variables via the NetFlow ranking algorithm. Figure 10a depicts the number of membrane
modules, also a decision variable, as a function of butanol productivity as determined by the ANN
metamodels. The best-ranked solution suggests seven membrane modules, which is the same value
as the best-ranked solution obtained with the phenomenological simulator depicted in Figure 10b.
An increase in the number of membrane modules is accompanied by an increase in the overall
membrane area, which in turn leads to higher solvent recovery, higher sugar conversion, and alleviation
of product inhibition.

The first two decision variables, the dilution rate and the feed sugar concentration, are plotted in
Figure 11. Both strategies led to very similar graphs. The best-ranked solution shows that the optimal
trade-off was obtained for a feed sugar concentration of 125 kg/m3 and a dilution rate of 0.5 h−1 for
both strategies. The third decision variable, the cell retention factor, was kept constant at 0.1. A small
value of the cell retention factor implies that a higher microorganism concentration prevails inside
the fermenter. The optimal operating conditions as determined with the Pareto domains obtained
with the three strategies described in Figure 4 are summarized in Table 3. The two sub-columns of
Table 3 for strategy A correspond to the first three objectives predicted with the five decision variables
by the ANN metamodel and the phenomenological simulator, respectively. The latter is recorded for
validation purposes.
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Table 3 also provides the computation time needed to circumscribe the Pareto domain for each
strategy. It only took 5.6 s to determine the complete Pareto domain with the ANN metamodels,
whereas it took about 1500 and 2500 times more computation time with strategies B and C, respectively.
It is clear that there is a net advantage to using the ANN metamodels for circumscribing the Pareto
domain. This computational time advantage would be even more impressive if the time to perform
a single simulation was longer. Previous research has also clearly illustrated the advantage of using
neural networks as surrogate models for the optimization of processes [21,22]. In this investigation,
the number of evaluations using the phenomenological model for circumscribing the Pareto domain is
given in Table 3. It took 81 simulations for the two iterations (initial and reduced ranges of decision
variables) to derive the ANN metamodels, including the simulation for validating the optimum
solution identified by strategy A. On the other hand, it took more than 250 times the number of
evaluations for strategies B and C.

The use of ANN metamodels in strategy B for estimating the initial species concentrations is to
accelerate the convergence to steady state. However, only mitigated results were obtained, the main
reason being the stringent concentration tolerance for convergence, combined with the accuracy of
ANNs. Figure 12 presents variation of butanol and microorganism concentration as a function of
time. These results show that for many operating conditions, the time to convergence is significantly
improved. For some operating conditions, the concentrations within the fermenter oscillate in a
quasi-steady state. This phenomenon, referred to as a chemical feedback loop, sometimes occurs for
some chemical systems, such as the oxidation of malonic acid by bromate ions catalyzed by cerium [23].
In the current fermentation system integrated with a pervaporation unit, the dynamics of production
and consumption of intermediate metabolites, butyric and acetic acids, and the ABE solvents along
with their partial recovery induces this oscillatory behavior under some particular decision variables.
This oscillatory behavior prevents satisfaction of the convergence criterion, which was met when all
concentrations within the fermenter did not change with time within a given tolerance. Under these
conditions, the computation time was obviously longer; therefore, the average steady-state value of
each concentration is determined by taking an average of the last segment of each respective curve in
order to evaluate the objective functions. As shown in Figure 12, it would be possible to use a shorter
simulation time in the case where initial species concentrations are estimated with an ANN.
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5. Conclusions

In this investigation, in order to reduce the computation time for the optimization of continuous
microbial butanol production, ANNs were used as metamodels of a phenomenological ABE
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fermentation process integrated with a membrane pervaporation unit. The proposed methodology
for using ANNs as metamodels for optimization consists of (1) selecting a small set of experimental
runs using uniform design; (2) using these experimental points in the phenomenological model to
calculate the steady-state concentrations and performance criteria; (3) deriving eight individual ANNs
to estimate the steady-state species concentrations and four ANNs to predict performance criteria from
the set of decision variables; (4) using these ANNs as metamodels to circumscribe the Pareto domain
in a multiobjective optimization genetic algorithm; (5) ranking all Pareto-optimal solutions to identify
the optimal operating conditions; and (6) validating the optimal solution using the phenomenological
process simulator or real process. In this investigation, this procedure was repeated with a reduced
range of decision variables based on a Pareto domain that was obtained with a larger range, whereby a
significant improvement in the prediction of the metamodels was observed.

Results show that the ANN metamodels representing the relationships between the decision
variables and the objectives allowed for obtaining a relatively accurate Pareto domain and an
optimal solution that was very close to the optimal solution as identified by the phenomenological
process simulator. The time required to obtain the Pareto domain and the number of actual process
simulations were orders of magnitude smaller. The proposed methodology is therefore deemed to
be successful. On the other hand, using ANN metamodels to estimate initial species concentrations
in the phenomenological process simulator did not lead to the expected reduction in computation
time to achieve steady state because of the slow convergence, and sometimes oscillating behavior,
of species concentrations.
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