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Abstract: Typically, a special type of concrete block with cleaning holes is used in the bottom
layer of traditional reinforced masonry shear walls (RMSWs) for mortar cleaning and vertical rebar
connection, which results in reduced integrity and weakened structural behavior. In this paper,
a precast construction technology was introduced to overcome these shortcomings. The cleaning-hole
blocks were eliminated in the newly-developed precast RMSWs. Quasi-static tests on two traditional
and two precast fully grouted RMSWs were conducted. The results showed that the flexural capacity
of precast walls exhibited about a 10% increase when compared to traditional RMSWs under the
same axial compression. Precast RMSWs that failed in flexural mode showed favorable deformation
capacity and the displacement ductility value corresponding to 15% strength degradation reached 4.9.
The wall stiffness degraded rapidly to 50% of the initial stiffness, K0, at 0.2% drift and, at 0.5% drift,
the corresponding stiffness decreased to about 21% K0 at a more gradual rate. Furthermore, precast
RMSWs exhibited significant energy dissipation capacity. The experiment suggests that precast
RMSWs have a satisfactory seismic performance.

Keywords: cleaning-hole concrete block; precast reinforced masonry shear wall; seismic performance;
quasi-static test; flexural failure

1. Introduction

As one of the most popular materials, the concrete block is widely used in the world for its low cost
and high bearing capacity. With blocks serving as formwork for grout concrete during construction,
masonry structures have the advantages of reducing construction cost and improving construction
efficiency. Additionally, reinforced masonry shear walls (RMSWs) exhibit better seismic performance
compared to traditional unreinforced masonry structures due to the existence of horizontal and vertical
reinforcement, which results in RMSWs being widely applied in mid-rise and high-rise buildings [1].

Despite these advantages, it should be noted that traditional RMSWs still have some shortcomings.
With respect to traditional construction technology, blocks in the bottom layer of RMSWs must have
cleaning holes (see Figure 1a) for the cleaning of redundant mortar occurring during construction
and the following vertical reinforcement connection, which not only causes additional construction
procedures and inconvenience of fabrication but also results in reduced integrity and weakened
structural performance of masonry structures. In addition, lap splices are commonly applied for the
connection of vertical rebars in traditional RMSWs of limited construction space at the cleaning holes.
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The concentration of lap splices at the bottom layer is not encouraged in structural specifications [2,3].
An innovative application of the precast technique in reinforced masonry shear walls can help to
solve these problems. The construction of the newly-developed precast RMSW starts first with the
fabrication of hollow masonry shear walls in the factory. Second, the hollow walls are fastened and
transported to the construction site. Lastly, the fastened hollow wall is lifted up and laid down on
the floor. Meanwhile the aligned vertical steel bars fixed on the floor pass through the block cores,
as shown in Figure 1b. After that, the hollow masonry walls are fully grouted with special concrete.
In the above construction procedure, original cleaning-hole blocks can be eliminated since the precast
technology enables workers to clean redundant mortar and connect vertical steel bars more easily,
which leads to the improvement of construction efficiency and structural integrity.
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Figure 1. Reinforcement masonry shear wall: (a) Traditional reinforced masonry shear wall (RMSW)
with cleaning-hole blocks; (b) Precast RMSW.

In the literature, lots of theoretical, experimental, and numerical investigations have been
conducted to evaluate the seismic performance of the traditional RMSW and the parameters that
influence the inelastic behavior of the RMSW, which include the axial compressive stress, the horizontal
and vertical reinforcement, and the aspect ratio [4–9]. The flexural and shear failure are the two typical
failure modes of RMSW under earthquake conditions [10]. The shear failure is characterized by
diagonal cracking. It is generally agreed that this type of failure should be avoided for its relatively
brittle behavior [11–13]. By contrast, flexural failure, which is characterized by compression crushing
of the corner and the tensile yielding of vertical steel bars, is the favored failure mode. Research has
shown that the RMSW failed in the flexure exhibited good inelastic deformation and energy dissipation
capacity [14–16]. However, few studies have been conducted on precast reinforced masonry shear
walls. It could be expected that the seismic performance of precast RMSWs is comparable to traditional
RMSWs. The precast RMSWs have the potential of being applied in buildings in seismic areas.

Therefore, in this study, a research program was conducted to investigate the seismic performance
of newly-developed precast reinforced masonry shear walls. Two traditional and two precast RMSWs
were designed and failure-tested under lateral cyclic loading. The failure mode, hysteretic curves,
stiffness degradation, displacement ductility, and energy dissipation capability of the test walls
were evaluated. This paper aims to promote theoretical research on the seismic performance of the
precast RMSW.
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2. Experimental Program

In the experiment, two traditional and two precast full-scale fully grouted rectangular RMSWs
with different axial compression ratios were tested under the combined action of constant axial load
and in-plane lateral reversed cyclic load. The following sections provide details of specimen design,
the mechanical properties of building materials, test setup, instrumentation, and loading procedure.

2.1. Specimen Design and Construction

The specimen design considered the laboratory conditions and the possibility to achieve flexure
dominated behavior. Based on the Chinese Code GB 50003-2011 [3], the test walls were designed and
the ratio between the theoretical shear strength and theoretical flexural strength was approximately
1.8. Therefore, for all the specimens, ductile flexure controlled the strength of the wall and the brittle
shear failure mode was prevented. Consequently, all four walls had a high aspect ratio and the same
configuration, which was 1390 mm × 3200 mm × 190 mm (length × height × thickness). It should be
noted that the two courses at the top of each specimen were used for load transfer only. Therefore,
the effective wall height was 2800 mm and the corresponding aspect ratio was 2 for all specimens.
The test walls were denoted as CMW-1, CMW-2, PMW-1, and PMW-2, respectively. CMW denoted
the masonry walls constructed in traditional technology and PMW denoted the precast masonry
walls. The number behind CMW and PMW indicated the axial compression ratio of each specimen.
Details of the specimens are shown in Table 1 and Figure 2. The reinforcement of all the traditional
and precast walls was identical except that the vertical rebar of the precast walls extended to the full
height of the wall while lap joints were used for the vertical steel connections at the bottom region
of the traditional RMSWs through cleaning holes. The vertical reinforcement was with five steel
bars of diameter 14 mm which were placed at each of the two side cells and the middle cell of the
specimen, as shown in Figure 3a. The horizontal reinforcement was with two steel bars of diameter
12 mm and a spacing of 200 mm, as shown in Figure 3b. The reinforcement of the specimens was
selected according to the Chinese Code GB 50003-2011 [3] to ensure the designed flexural failure of
the specimens. The horizontal and vertical reinforcement ratios of all walls were 0.60% and 0.29%,
which satisfies the minimum ratios of the reinforcement in RMSWs.

Table 1. Summary of test wall details.

Wall
Reinforcement Axial Compression

Ratio σn/ f ′m

Construction
TechnologyVertical ρv% Horizontal ρh%

CMW-1 5Φ14 0.29 2Φ12@200 mm 0.60 0.10 Traditional Method
CMW-2 5Φ14 0.29 2Φ12@200 mm 0.60 0.15 Traditional Method
PMW-1 5Φ14 0.29 2Φ12@200 mm 0.60 0.10 Precast
PMW-2 5Φ14 0.29 2Φ12@200 mm 0.60 0.15 Precast

Note: Φ denotes the HRB400 reinforced bar with theoretical yielding strength of 400 MPa; ρv and ρh denote the
vertical and horizontal reinforcement ratio of the specimens, respectively; σn denotes the axial compressive stress of
RMSW; and f ′m denotes the compressive strength of grouted RMSW.

Two criteria for determining the foundation beam size and material are to assure sufficient
strength to avoid cracking of the beam during testing and to provide sufficient anchorage length for
vertical reinforcement of the specimen.

A series of standard two-cell hollow concrete masonry blocks, which are widely used in China,
was selected for the construction. The traditional walls were fabricated using both the cleaning-hole
blocks and the normal blocks on the foundation beams by two experienced masons under supervision.
The redundant mortar was cleared through the cleaning holes at the bottom layer during the fabrication
of the hollow masonry wall. Then the vertical steel bars were placed through the cell from the top of
the wall to the bottom region and were fixed with the vertical bars extended above the foundation
beam by lap joints (see Figure 4a) through the cleaning holes.
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Figure 3. Reinforcement of the test walls: (a) vertical reinforcement; (b) horizontal reinforcement.

Furthermore, the precast hollow masonry walls were constructed only using the normal full and
half blocks by the same masons at special foundations. Considering three days as the hardening time
of mortar, the hollow walls were fastened, lifted by a crane, and placed on the foundation beam with
prepositioned mortar. The hollow walls were passed through by aligned vertical steel bars, which were
fixed on the beam by a welded connection (see Figure 4b) and extended above the footing to the full
height of the wall. After that, all traditional and precast walls were fully grouted with the same concrete
with an initial slump of 200 mm and were cured under the appropriate environmental conditions.
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2.2. Material Properties

The dimensions of the full and half blocks used in this study were 390 mm × 190 mm × 190 mm
and 190 mm × 190 mm × 190 mm, respectively. The details of the normal blocks and cleaning-hole
blocks are shown in Figure 5. The cell ratio of the full units is about 47%. Five full hollow blocks were
tested according to Chinese Code GB/T 4111-2013 [17], and the average compressive strength, based
on the gross area of block, was 22.8 MPa.

The mix proportion of the mortar by weight was 1.0:0.6:3.2:2.5 × 10−4 for cement, water, sand,
and chemical additive. Six mortar cubes with side length of 70.7 mm were tested according to the
Chinese Code JGJ/T 70-2009 [18], and the average compressive strength was 21.5 MPa.

The mix proportion of the grouted concrete by weight was 1.0:0.5:2.1:2.5 for cement, water, sand,
and coarse aggregate. Based on GB/T 50107-2010 [19], tests of six concrete cubes with side length of
100 mm were conducted on a press machine with a capacity of 200 kN. The grout concrete had an
average compressive strength of 32.2 MPa.

Compressive tests of grouted masonry were conducted according to the Chinese Code GB/T
50129-2011 [20]. Six 5-block high prisms were tested on a press machine with a capacity of 500 kN,
and the compressive strength of the grouted masonry prisms was, on average, 23.1 MPa.

Tensile tests were carried out to analyze the rebar of the specimens. Three samples of each rebar
were tested according to Chinese Code GB/T 228-2010 [21] and the average yield strengths for the
horizontal and vertical rebars were 393 MPa and 405 MPa, respectively.
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2.3. Test Setup, Instrumentation, and Loading Procedure

Figure 6 shows the setup of the quasi-static test. The lateral cyclic loading was exerted by a
1000-kN-capacity MTS hydraulic actuator. A 2000-kN-capacity jack was applied to exert the vertical
load on the specimen and a pressure sensor was used to monitor the exporting axial force. A set
of steel rollers was used to reduce the friction in the cyclic test and a spherical joint support was
utilized to eliminate the extra bending moment produced by axial pressure due to the specimen’s
lateral movement. A reusable steel beam was placed at the top of each specimen to transfer the axial
and horizontal load to the specimen and prevent local compression failure. The bottom reinforced
concrete beam simulated a rigid foundation and was anchored to the laboratory floor to avoid the
uplift and slippage of the base. Since the specimen had a high aspect ratio of 2, two parallel lateral
bracings were used to avoid the out-of-plane movement and keep the wall stabilized.
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5 spherical joint; 6 hydraulic jack; 7 steel loading beam; 8 displacement sensor; 9 anchoring bolt; 10 wall
foundation beam; 11 reaction wall; 12 reaction slab; 13 lateral bracing; and 14 steel reaction frame.

The lateral deflection, base slippage, and uplift of the specimens during the test were monitored
by a set of eight displacement meters, which is shown in Figure 6. Figure 2 illustrates the wall internal
instrumentation. The strain gauges were attached to the horizontal and vertical rebars to monitor
their contribution to the seismic performance of the specimen and to ensure the yield range of the
vertical rebar.

All traditional and precast shear wall specimens were subjected to similar loading histories.
The quasi-static tests were carried out under a mixed force and displacement-control loading scheme.
First, the target vertical load was exerted to the full amount and a horizontal load, which corresponded
to approximately 20% of the predicted cracking load, was applied to the specimen to examine the
test setup and the instruments. Second, the specimen was unloaded and reloaded up to the designed
axial load. Lateral loading displacements were imposed on the specimens according to the following
loading scheme, as shown in Figure 7.
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3. Experimental Results

3.1. Failure Mode

Figure 8 illustrates the cracking patterns of the specimens under cyclic loading. In general,
both traditional and precast masonry test walls exhibited a similar typical flexural failure mode even
though some differences existed in the damage progression.
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During the test, horizontal cracks initially appeared in bed joints at the base of the walls
(see Figure 9a). This damage was due to the tensile bond strength of the block-mortar interfaces
being surpassed. As loading continued, the length and width of horizontal cracks tended to
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increase, which led to the translation of the neutral axis, the reduction of the compression zone
depth, and increasing compressive stress [22]. Furthermore, strains of the vertical rebar developed
significantly, which manifested its effective role in bearing the tensile stresses due to flexure.

With the increase of the imposed lateral displacement, vertical splitting cracks formed in blocks at
the corner (see Figure 9b). It should be noted that some vertical cracks initiated along the cleaning hole
of the first layer blocks in traditional RMSW (see Figure 9c). Then the vertical splitting cracks developed
quickly and crushed for successive imposed lateral displacement, which resulted in significant damage
at the wall toes. The strain gauges showed that the vertical rebar at the sides of the specimen yielded.
At this stage, the test walls reached their peak loads. The load capacities of both traditional and precast
test walls were governed by the tensile yielding of the vertical rebar and the compressive crushing of
the corner. At the post-peak stage, after face shell crushing and spalling (see Figure 9d), the outermost
grout column began to split (see Figure 9e) and crumble due to increasing compression stress (see
Figure 9f) which coincided with buckling and even rupture of the vertical rebar in the tensile region of
the test wall (see Figure 9g,h).
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web; (e) splitting of the grout column; (f) crumbling of the grout column; (g) buckling of the vertical
rebar; and (h) rupture of the vertical rebar.
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3.2. Hysteretic Curve

Figure 10 illustrates the load–displacement relationships of each specimen and Table 2 summarizes
the average values of the experimental results including the cracking load (Fcr) and the corresponding
displacement (Dcr), the peak load (Fp), and the corresponding displacement (Dp), as well as the
theoretical flexural capacity of the test walls.
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Figure 10 shows that both traditional and precast test walls exhibited similar hysteretic behavior
under lateral cyclic loading tests. All test walls behaved in a linear-elastic manner at the early stage of
the loading process. As the imposed lateral load increased, inelastic deformation of the specimens
occurred and the horizontal cracks initiated in the bed joints. As can be seen in Table 2, precast test
walls showed a relatively higher cracking load than traditional walls and axial compression also
delayed the appearance of horizontal flexural cracks. With the development of inelastic deformation,
the outmost vertical rebar in the test walls yielded and the lateral resistance increased to the peak
load. At this stage, the area of the hysteresis loops increased significantly, which led to higher levels of
energy dissipation. As observed, the second cycle of loading exhibited less resisting force of the shear
wall, which indicated the stiffness degradation of the specimen for accumulated damage [23]. Table 3
shows that CMW-1 and PMW-1 with an axial compression of σn/ f ′m ≈ 0.10 reached peak load at about
0.6% drift while CMW-2 and PMW-2 with an axial compression of σn/ f ′m ≈ 0.15 reached their peak
load at a smaller displacement of about 0.4% drift. A detailed discussion on the lateral load capacity of
test walls is given in Section 4.1.

At the post-peak stage, both precast and traditional test walls exhibited ductile flexural failure.
Nonetheless, Figure 10 shows that CMW-2 and PWM-2 with an axial compression of σn/ f ′m ≈ 0.15



Appl. Sci. 2018, 8, 1071 10 of 16

experienced slightly more distinct strength degradation from the peak point, which proved that axial
compression had a detrimental effect on the ductile behavior of the specimens. In addition, the curves
of both traditional and precast RMSWs showed obvious pinching behavior and the phenomenon
concurs with the report of Ramírez [24]. Furthermore, abrupt step-like decline of lateral load was
observed in the hysteretic curves of test walls due to steel rupture and seriously compressive toe
crushing under high loading displacements.

Table 2. Summary of test results.

Wall
First Crack Peak Fp,t (kN) Fcr/Fp Fp/Fp,t

Fcr (kN) Dcr (mm) Fp (kN) Dp (mm) % Drift

CMW-1 125 2.1 248 16.3 0.6 289 0.50 0.86
CMW-2 175 2.0 330 8.8 0.3 387 0.53 0.85
PMW-1 150 2.4 267 17.5 0.6 289 0.56 0.92
PMW-2 250 3.0 366 12.7 0.5 387 0.68 0.95

Note: Fp ,t denotes the theoretical lateral capacity calculated by Chinese Code (GB 50003-2011) [3].

Table 3. Summary of calculated displacement and ductility of test walls.

Specimen Dy (mm) Du (mm) % Drift µ

CMW-1 6.1 33.2 1.2 5.4
CMW-2 5.6 27.8 1.0 5.0
PMW-1 6.4 33.0 1.2 5.2
PMW-2 5.9 26.6 1.0 4.6

4. Evaluation of Seismic Performance

4.1. Lateral Load Capacity

In seismic design, shear walls should have adequate lateral load capacity to resist the horizontal
seismic action. The general wall behavior of each specimen is shown in Table 2 of Section 3.2. Based on
the plane section assumption, the predicted load capacity Fp,t is calculated according to the Chinese
Code GB 50003-2011 [3]. The experimental and theoretical load capacity versus the axial compression
ratio of each specimen are presented in Figure 11.
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As seen in Figure 11, precast RMSWs have relatively better bearing capacity than traditional
RMSWs with the same reinforcement and axial compression. More specifically, the lateral load of
PMW-1 (σn/ f ′m ≈ 0.10) and PMW-2 (σn/ f ′m ≈ 0.15) exhibit an 8% and 11% increase when compared to
the peak loads of CMW-1 and CMW-2, respectively. The test results showed that the flexural capacity
of precast walls increased approximately 10% on average, when compared to traditional RMSWs
under the same axial compression. Therefore, it could be reasonably inferred that the cancellation of
the cleaning-hole unit at the bottom layer in the precast masonry wall increased the local compressive
strength of the wall toe, which eventually increased the flexural capacity of the RMSWs.

In addition, with the increasing axial stress, the peak load of both traditional and precast walls
exhibited a similar major increase of about 35%, which proves that axial compression has a remarkable
influence on the load capacity of the shear wall.

It should be noted that when compared with the experimental results, the theoretical capacity
for traditional and precast test walls was overestimated on average by 14% and 7%, respectively.
This could be explained by the fact that the reversed cyclic loading caused accumulated damage to the
specimen, especially under high axial compression [25].

4.2. Displacement Ductility

Structures should exhibit not only good load capacity but also proper deformation capacity to
avoid brittle failure under an earthquake. Displacement ductility is a measurement of the ability
of the shear wall to deform in the elasto-plastic stage without significant degradation of strength.
The appropriate definition of the shear wall’s ductility has been discussed in the literature [23–26].
In this study, ductility is defined as the ratio between the top displacement corresponding to 0.85
Fp in the post-peak stage and the yield displacement of the specimen. The yielding point of the test
wall was determined according to the equal energy method [27], as shown in Figure 12. Accordingly,
the ductility is calculated by the equation below.

µ =
Du

Dy
(1)

where Du is the displacement corresponding to the post-peak load equal to 0.85 Fp, Dy is the yield
displacement of the specimen. Each specimen’s Du, Dy, and µ are summarized in Table 3.
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As seen in Table 3, all the specimens exhibited relatively high ductility for flexural failure featured
by toe crushing and flexural yielding of vertical steel. Each specimen had its own post-yielding
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deformation characteristics due to different combinations of construction technology and axial
compression. CMW-1 had a comparable ductility value to PMW-1 with the same compression ratio of
0.10 while CMW-2 had a higher ductility value (5.0) than that of PMW-2 with a compression ratio of
0.15. With the increase of the axial load, the ductility of traditional RMSW and precast RMSW had
decreases of 7% and 12%, respectively. The results proved that the axial load has a detrimental effect
on the displacement ductility of shear walls, which is more obvious for precast RMSW. In addition,
Table 3 also shows that, on average, the post-peak lateral load of both traditional and precast RMSW
decreased to 0.85 Fp at approximately 1.1% drift.

4.3. Stiffness Degradation

Stiffness is an important coefficient to evaluate the seismic behavior of the shear walls. Under
reversed cyclic loading, both traditional and precast RMSWs behaved non-linearly after yielding and
experienced accumulated damage in the test, which was indicated by the degradation of stiffness.
In this paper, secant stiffness was used to investigate the specimen’s stiffness degradation in cyclic
loading. The secant stiffness (Ks,i) of the specimen at each loading cycle can be defined by the
equation below.

Ks,i =
|+Fmax,i|+ |−Fmax,i|
|+Di|+ |−Di|

(2)

where +Fmax,i and −Fmax,i are the maximum loads of the first ith cycle in the push and pull loading
direction, respectively; +Di and −Di are the displacements corresponding to +Fmax,i and −Fmax,i,
respectively. Then the calculated secant stiffness, Ks, was normalized with respect to the corresponding
initial stiffness, K0, which was defined as the stiffness of the specimen working at the elastic stage.

Figure 13 shows the variation of normalized stiffness Ks/K0 with respect to the lateral
displacement and drift of each specimen. As observed from the figure, the normalized wall stiffness of
both traditional and precast test walls declined with a similar power law as displacement increased.
A similar observation of traditional RMSWs was reported by Shedid [28]. The normalized secant
stiffness of test walls decreased rapidly from the initial loading up to about 14 mm (0.5% drift) and
then degradation occurred gradually until the termination of the test. The relevant results indicate that
the wall stiffness degraded to 50% of the initial stiffness at about 0.2% drift. At 0.5% drift, the test wall
exhibits about 21% of the initial stiffness.
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4.4. Energy Dissipation

During an earthquake, when a structure comes into the elastic-plastic phase, the seismic energy
is mainly dissipated by the hysteretic behavior of the components (beams, columns, and walls) of
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the structure. Therefore, the energy dissipation through hysteretic damping, Ed, is commonly used
to evaluate the seismic performance of the shear wall. In this paper, the energy dissipation of the
specimens is calculated by the area of the hysteresis loop (the horizontally hatched area) of each first
loading cycle in the test, which is shown in Figure 14.
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The energy dissipation of the test wall in one loading cycle is shown in Figure 15a where the
hysteretic energy in the last cycles of the test was omitted because the hysteresis loops were either
unstable or incomplete due to serious damage of the specimens. The figure shows that the energy
dissipation of both traditional and precast RMSWs improved with the increasing loading displacement.
At low displacement levels, precast shear walls exhibited nearly the same low energy dissipation as
traditional shear walls. As the loading continued, the dissipated energy of both traditional and precast
shear walls increased significantly due to yielding of the vertical rebar at the sides and the inelastic
deformation of the shear wall. The figure shows that precast RMSWs have an energy dissipation
capacity similar to that of traditional RMSWs.
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Normalized energy dissipation of each specimen, which is defined as the ratio between the
hysteresis energy of the test wall at a certain displacement and the hysteresis energy at the yield
displacement, is plotted versus the ratio of the post-yield displacement D to the yield displacement Dy

in Figure 15b. The figure shows that, although the construction method and axial compressive stress
were different for the specimens, a nearly linear increase of the normalized energy dissipation was
observed with the increase of D/Dy until the displacement of the specimens was more than six times
the yield displacement. A similar finding in traditional RMSWs has also been reported by Shedid and
Zhao [28,29]. The hysteretic energy at the displacement of 3 Dy, was on average about five times the
energy dissipation at yield of the test walls.

5. Conclusions

This paper presents an innovative application of precast technology in the construction of
reinforced masonry shear walls, by which the special cleaning-hole blocks can be eliminated in
the masonry structures. Quasi-static tests were conducted to evaluate the seismic performance of
the newly-developed precast RMSWs. The inelastic behavior of each specimen was investigated
based on the cracking patterns, hysteretic curves, lateral load capacity, ductility, stiffness degradation,
and energy dissipation capacity. From the experimental results and analysis, the following conclusions
can be made.

(1) Precast RMSWs have better load capacity than traditional RMSWs due to the elimination of the
cleaning-hole blocks at the bottom layer, which leads to improved integrity and compressive
strength of the masonry.

(2) Precast RMSWs that failed in the flexural mode had a favorable deformation capacity and an
acceptable average displacement ductility value of 4.9 corresponding to 15% strength degradation,
which was slightly smaller than the 5.2 for traditional RMSWs.

(3) The normalized stiffness of traditional and precast test walls degraded with a similar power law
as the displacement increased. The wall stiffness decreased at a rapid rate at early elasto-plastic
stage, but at large displacement, the stiffness declined gradually.

(4) The traditional and precast RMSWs exhibited a great energy dissipation capacity in flexural failure
mode. The hysteresis energy of RMSWs increased significantly with the increasing displacement,
and the relationship between the normalized energy dissipation at yield and the ratio of the
post-yield displacement to the yield displacement was almost linear for each specimen up to six
times the yield displacement.
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(5) Axial load significantly affects the flexural performance of both traditional and precast RMSWs.
Higher values of the axial compression ratio lead to the increase of lateral load capacity. However,
more brittle behavior associated with a reduction of displacement ductility occurs with increasing
axial load.

In summary, this paper experimentally studied the seismic performance of precast RBMWs
failing in flexure, proving that the precast RMSWs have comparable seismic performance compared
to traditional walls, and have the potential to be used in seismic regions. Further research will be
concentrated on the potential comprehensive advantage of the precast RMSWs in practical application.
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