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Abstract: In data-driven methods for prognostics, the remaining useful lifetime (RUL) is predicted
based on the health indicator (HI). The HI detects the condition of equipment or components by
monitoring sensor data such as vibration signals. To construct the HI, multiple features are extracted
from signals using time domain, frequency domain, and time–frequency domain analyses, and which
are then fused. However, the process of selecting and fusing features for the HI is very complex
and labor-intensive. We propose a novel time–frequency image feature to construct HI and predict
the RUL. To convert the one-dimensional vibration signals to a two-dimensional (2-D) image, the
continuous wavelet transform (CWT) extracts the time–frequency image features, i.e., the wavelet
power spectrum. Then, the obtained image features are fed into a 2-D convolutional neural network
(CNN) to construct the HI. The estimated HI from the proposed model is used for the RUL prediction.
The accuracy of the RUL prediction is improved by using the image features. The proposed method
compresses the complex process including feature extraction, selection, and fusion into a single
algorithm by adopting a deep learning approach. The proposed method is validated using a bearing
dataset provided by PRONOSTIA. The results demonstrate that the proposed method is superior to
related studies using the same dataset.

Keywords: continuous wavelet transform; convolutional neural network; bearings; remaining useful
lifetime; prognostics and health management; health indicator

1. Introduction

In recent years, interest in prognostics and health management (PHM) has rapidly increased
across industry. PHM includes machine maintenance and prognostics, and aims to maximize machine
availability and reliability. Unexpected machine breakdown can result increased production downtime
and maintenance costs and reduced productivity. Therefore, remaining useful lifetime (RUL) prediction
is crucial for determining the condition of machines and establishing a maintenance strategy [1–4].
Vibration sensors are widely used to monitor the condition of the machine. Therefore, RUL prediction
methods using vibration signals are actively studied in the industry and academia.

RUL prediction is divided into two major categories: model-based (i.e., physics-based) methods
and data-driven methods. The model-based methods derive mathematical or physical models to
estimate the degradation process of the machine. The commonly used models include Markov
process, Wiener process, and Gaussian mixture model [3]. These methods rely on the expert’s domain
knowledge of the failure mechanism. However, in practice, creating a robust mathematical model is
difficult because of the complex and noisy working environments [5]. On the contrary, data-driven
methods derive their health indicators (HIs) from measured data, e.g., vibration signals, using signal

Appl. Sci. 2018, 8, 1102; doi:10.3390/app8071102 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-7088-1478
http://www.mdpi.com/2076-3417/8/7/1102?type=check_update&version=1
http://dx.doi.org/10.3390/app8071102
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 1102 2 of 17

processing and machine learning techniques. Data-driven methods can be limited when the collected
data is insufficient or uncertain. However, if massive data are available, degradation trends can be
estimated without physical domain knowledge. Data-driven methods are more flexible and easier
to apply to the system than model-based methods. Particularly, with the development of advanced
sensors and computing technologies, data-driven prognostics methods have become much more
popular in recent years [6]. In this study, we focus on data-driven methods to predict the RUL from
vibration signals.

The general framework of data-driven prognostics methods comprises three steps: data
acquisition, HI construction, and RUL prediction [7]. The performance of RUL prediction relies
on the HI construction step. Therefore, the most important challenge is to extract representative
features from the measured signals. A HI that is properly designed by using high-quality features
can efficiently monitor the degradation of bearings [8]. Many studies related to feature extraction for
prognostics have been conducted [8–10]. Time domain and frequency domain analyses are traditional
methods for extracting features from vibration signals. Wang et al. [11] extracted 14 time domain
features using statistics such as root mean square, mean, variance, and crest factor to denoise the
raw signal and capture the degradation trend. Time domain features are suitable for stationary
signals. However, they may be sensitive to changes in the signal and could inherit nonlinearity [12].
Frequency domain features can describe additional information that cannot be observed in the
time domain because of their superior ability to identify and isolate frequency components [13].
Time–frequency domain features consider both time and frequency domains. Generally, the vibration
signal of a bearing is nonstationary and has a weak defect signal within a strong background of
noise. Time–frequency analysis is a powerful and effective way to analyze nonstationary and transient
vibration signals. Short-time Fourier transform, wavelet transform, wavelet packet decomposition
(WPD), and empirical mode decomposition (EMD) have been extensively used to extract features from
raw signals [14–18]. The HI is constructed using comprehensive multi-domain feature information,
including time domain, frequency domain, and time–frequency domain. Therefore, researchers
have proposed suitable HIs by selecting, extracting, and fusing multiple features. Hong et al. [4]
extracted time–frequency features using WPD and EMD techniques. Then, they used self-organizing
maps (SOM) to construct a HI confidence value (CV). Soualhi et al. [19] analyzed vibration signals
using the Hilbert-Huang transform and developed a HI using support vector machine and support
vector regression (SVR). Zhao et al. [20] extracted textual features of time-frequency representation
and predicted RUL by transforming high-dimensional features into low-dimensional features using
principal component analysis and linear discriminant analysis (LDA). Lei et al. [3] proposed the use
of the weighted minimum quantization error (WMQE) as a HI, which is a fusion of 10 time domain
features, 16 time-frequency domain features, and two features based on trigonometric functions. While
most of these studies relied on feature extraction, selection, and fusion techniques to construct the
HI, these complex processes are labor-intensive. Additionally, HIs constructed using shallow models
(e.g., SVR or LDA) lack prognostics capability and adaptability [6].

To solve these problems, various deep learning techniques (e.g., convolutional neural networks
(CNNs), deep belief networks, and recurrent neural networks (RNNs)) have been employed to build
advanced HIs for big data. Ren et al. [21] proposed an integrated deep learning approach-based HI
by fusing both time and frequency domain features. The method captured high-quality degradation
trends of rolling bearings from massive data. Guo et al. [2] extracted 11 time domain features, five
frequency domain features, and eight time–frequency domain features. The most sensitive features
were selected using monotonicity and correlation metrics. The selected features were fed into an RNN
architecture to construct a HI. The RNN-HI has proved to be superior to the SOM-based HI. These
studies improved prediction performance using the deep learning approach, but expert knowledge
or feature engineering is still required. Therefore, instead of extracting and fusing multi-domain
features, researchers have adopted CNN to automatically discover useful features from the raw signal
to construct the HI. The CNN was first proposed by LeCun et al. [22] and has led to considerable
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advancements in image processing and speech recognition. Zhao et al. [5] developed convolutional
bi-directional long short-term memory (CBLSTM) networks to predict tool-wear conditions. They
extracted local features using the convolutional and pooling layers of the CNN from the raw signal.
The features are inputted into long short-term memory (LSTM) neural networks to construct the HI.
Eren [23] also directly inputted the raw signal to a one-dimensional (1-D) CNN, which incorporates
feature extraction and fault detection into a single algorithm. Although the CNN was originally
designed to process two-dimensional (2-D) visual signals, most of the research in the prognostics field
has been used to process 1-D vibration signals. To improve the feature extraction of the CNN, another
study has been conducted using a 2-D CNN based on the time-window approach after converting
multi-sensor signals into a 2-D form [1]. However, limitations still exist in using the raw signal instead
of 2-D image data. Generally, the vibrational raw signal contains a large amount of noise and has
nonstationary characteristics. Therefore, if the raw signal is used to learn, it can degrade the learning
capability of the CNN [24].

To address these issues, we present a novel image feature-based CNN method that adopts the
continuous wavelet transform (CWT) for HI construction and RUL prediction. The CWT performs a
2-D wavelet transform of the time–frequency domain to convert the vibration signal into a multi-scale
power spectrum image. The power spectrum visually shows that the frequency components have
changed over time. In addition, it does not require the analyst to have much experience in fault
diagnosis or signal processing [25]. As a result, the CWT is widely used for mechanical fault diagnosis
such as bearings and gearboxes [26,27]. Therefore, we adopted the CWT to take the visual advantage
of decomposing vibration signals and localizing faults. Wavelet-based feature extraction and CNN
application have been studied in machine fault classification. However, in the PHM field, it has become
increasingly important to predict the RUL accurately for predictive maintenance, rather than simply
diagnosing and classifying faults in a machine or component [24,28,29]. To the best of our knowledge,
no research on RUL prediction using deep learning with 2-D image features is found in the literature.
Therefore, we propose the image feature-based RUL prediction method. The proposed method can be
used for prognosis as well as diagnosis.

Our major contribution is to improve the accuracy of RUL prediction using the HI combined
with CWT and CNN (i.e., CWT- and CNN-based HI (CWTCNN-HI)). First, CWT is used to convert a
1-D vibration signal into a 2-D image feature using wavelet power spectrum. The raw signal contains
only time domain information, but the transformed image feature is effective for visualizing both time
and frequency domain information of the vibration signals. In addition, CWT can effectively isolate
non-stationary and transient data such as vibration signals and can detect weak defect signal, even in
strong noises [26]. Once the raw signal is converted into an image feature, the image is directly entered
into the 2-D CNN architecture. CNN is used as a regression model to estimate the CWTCNN-HI based
on training images. The HI quantifies the condition of the machine or component. Since the RUL is
predicted by the estimated HI, the accuracy of the prediction model becomes critical. Although CNN
requires a large amount of training data and tuning of hyper-parameters, previous studies have shown
its superior performance in image analysis [28–30]. In addition, CNN automatically discovers useful
features through multi-layer convolutional filters. Therefore, the process of extracting, selecting, and
fusing multi-domain features can be compressed with a single algorithm. With more training data,
prediction performance of the proposed method can be improved. In this study, we use the vibration
dataset of bearings provided by PRONOSTIA for RUL prediction [31]. The experimental results
demonstrate the superiority of the proposed method compared to related works on the same dataset.

The rest of the paper is organized as follows. Section 2 presents the proposed CWTCNN-HI with
brief introductions of CWT and CNN. Section 3 showcases the validation of the proposed method
using the PRONOSTIA dataset, and the experimental results are compared to other related research.
Finally, in Section 4, we conclude with a discussion and mention future research topics.
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2. Time–Frequency Image Feature-Based HI

In this section, we present the deep learning-based HI for RUL prediction. The procedure of the
CWTCNN-HI-based method is shown in Figure 1. This method is composed of three stages: image
feature extraction, CWTCNN-HI construction, and RUL prediction. In the feature extraction stage,
image features are extracted from raw vibration signals using CWT. The image features of the training
dataset are utilized to construct deep learning-based HI in the CWTCNN-HI construction stage. The
CWTCNN-HI model learns how frequency changes with the machine health condition from training
image features. The trained CWTCNN-HI model estimates the HI by inputting the image features of
the testing dataset. In the RUL prediction stage, the remaining lifetime is derived by assuming that
the failure occurs at the time the predicted HI reaches the threshold. The Gaussian process regression
(GPR) algorithm is used to predict HI and future degradation trends based on the estimated HI. Then,
to specify the threshold for RUL prediction, the testing datasets are clustered considering the similar
degradation trend. Finally, the RUL is predicted by calculating the difference between the time at
which the predicted HI reaches the threshold and the current time. More details about each of the
stages in the proposed prognostics method are presented as follows.
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Figure 1. Framework of the Continuous Wavelet Transform and Convolutional Neural Network-based
Health Indicator (CWTCNN-HI)-based prognostics method.

2.1. Continuous Wavelet Transform (CWT)

The CWT decomposes the signal into a time-scale plane by scaling and shifting the basis wavelet.
A mother wavelet, ψ ∈ L2(R), is a function of zero average and finite length, where L2(R) is the space
of square-integrable complex functions [24,26,28]. The family of time-scale waveforms is obtained by
shifting and scaling the mother wavelet:

ψa, b(t) = |a|−
1
2 ψ

(
t− b

a

)
, (1)

where a is the scale parameter for dilating or contracting the wavelet, and b is the shifting parameter for
transitioning the wavelet along the time axis. Thus, we obtain the components of the lower frequency
band using a long wavelet. Alternatively, we obtain a component of the high-frequency band using a
short wavelet. For the given signal, x(t), wavelet coefficient wt(a, b) can be represented as

wt(a, b) = |a|−
1
2

∫ ∞

−∞
x(t)ψ∗

(
t− b

a

)
dt, (2)
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where ψ∗ denotes the complex conjugate of ψ. The CWT is useful for obtaining both frequency and
spatial information. It is also better for visualizing the frequency components at different time scales
and resolutions. The details of the CWT can be found in the work of Daubechies [32].

2.2. Basic Theory of CNN

CNN is a deep learning model inspired by the visual cortex of the brain. It is widely used in
various fields such as computer vision, natural language processing, and speech recognition because
it can analyze an original image directly without complicated preprocessing [24]. A typical CNN
comprises three layers: convolutional, subsampling, and fully connected. To extract features from
image data, the CNN model alternately stacks the convolutional layer and the subsampling layer, and
configures the output layer as a fully connected layer.

The convolutional layers convolve the input from the previous layer with multiple kernels and
send it to the activation function to construct a feature map. The output feature map is the convolutional
results of the input maps and can be calculated as follows:

xl
j = f

 ∑
i∈Mj

xl−1
i ∗ kl

ij + bl
j

, (3)

where ∗ is a convolutional operator, xi is ith input map, k is a S× S convolutional kernel, bj is an
additive bias, Mj is a feature map of the convolutional layer, and l is the lth layer in the network.
Finally, the convolutional results are passed to the activation function, f [33]. The two most commonly
used activation functions (i.e., rectified linear unit (ReLU) and sigmoid function) are defined as follows.

ReLU(x) = max(0, x) (4)

sigmoid(x) =
1

1 + e−x (5)

The subsampling layer, located after the convolutional layer, produces low-resolution maps by
extracting the most significant local features. The most commonly used max-pooling layer extracts the
maximum value from each region, as shown in Figure 2.
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All feature maps are combined into a 1-D vector to construct a flatten layer. Then, in the fully
connected layer, all neurons of both layers are connected, like a traditional multilayer neural network.
The output of the fully connected layer can be expressed by

O = f

(
d

∑
j=1

xF
j wj + b

)
, (6)

where O is the output value, xF
j is the jth neuron in the fully connected layer, wj is the weight

corresponding to O and xF
j , bi is the bias corresponding to O, and f is a sigmoid function [28].
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2.3. CWTCNN-HI

In this study, we construct a CNN for image-based RUL prediction of the bearing. Wen et al. [30]
proposed 12 CNN models based on the classical CNN, LeNet-5, and compared performances. The best
CNN structure has shown that it can classify bearing faults with an accuracy of 99.79%. Therefore,
we designed the model by referring to the best CNN structure derived from Wen et al. [30]. The
structure of the proposed CWTCNN-HI model is shown in Figure 3. To use this model, the input data
is prepared by converting the CWT coefficients into a 2-D image. Then, four convolutional layers and
four pooling layers are connected alternately for feature extraction. The filter size of the convolutional
layer is 3× 3, and the filter size of the max pooling layer is 2× 2. The channels of the four convolutional
layers are 32, 64, 128, and 256. The last layers of the model comprise a flatten layer, two fully connected
layers, and one output layer. After the convolutional layers, the 2-D feature map is flattened and
connected to the fully connected layer. In the fully connected layers, 2560 and 768 nodes are selected,
respectively. Finally, the last fully connected layer and one output neuron are connected to obtain the
CWTCNN-HI. The ReLU function is applied to the convolutional and fully connected layers, and the
sigmoid function is used on the output layer, normalizing the output HI from 0 to 1. After parameter
setting, the model is trained to minimize the loss function

LOSS =
1
T

T

∑
t=0

(
Ŷt −Yt

)2, (7)

where Ŷt is a predicted value of the CWTCNN-HI model, Yt is an actual value at time t, and T is a failure
time. The Adam optimizer [34] is employed with mini batches to optimize the loss function. The batch
normalization is used to accelerate the training process and overcome the overfitting problem of the
model. For the experiment, we implemented the Python-based Keras deep learning framework [35],
which uses Tensorflow on the back-end to build the CWTCNN-HI model [36]. The parameters used
for model training such as optimizer, loss function, and normalization method were chosen by a trial
and error method.
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3. Experiment and Analysis

In this section, we discuss our enhancements to RUL prediction performance by using the image
feature and deep learning approach. Experiments were conducted using the bearing degradation
datasets to verify the effectiveness and superiority of the proposed method.

3.1. Experimental System and Vibration Data

The experimental dataset was collected on the PRONOSTIA platform, provided by the FEMTO-ST
Institute [31]. This dataset was used in the IEEE PHM 2012 Data Challenge for predicting the RUL
of bearings. The PRONOSTIA platform is shown in Figure 4. The experimental platform conducted
accelerated degradation tests to collect degradation data of ball bearings until their total failure. The



Appl. Sci. 2018, 8, 1102 7 of 17

vibration signals were measured by two accelerometers placed on the vertical and horizontal axes.
Acceleration measures were sampled every 10 s for a sample period of 0.1 s and a frequency of
25.6 kHz.Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 17 
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In the experiment, 17 bearings were tested under three different operating conditions (i.e.,
1800 rpm and 4000 N, 1650 rpm and 4200 N, and 1500 rpm and 5000 N), as shown in Table 1. In the
three operation groups, there were seven, seven, and three bearings. The first two bearings of each
group were used for training the run-to-failure dataset, and the remaining 11 bearings were truncated
to predict the RUL. The bearings were naturally degraded without initially assuming a type of failure.
Therefore, the degradation patterns of the bearings differed from each other. Any failures of the balls,
rings, or cage could occur simultaneously.

Table 1. Bearing dataset with operational conditions.

Operational Conditions Speed (rpm) Load (N) Training Dataset Testing Dataset

Condition1 1800 4000
Bearing1_1 Bearing1_3 Bearing1_4 Bearing1_5
Bearing1_2 Bearing1_6 Bearing1_7

Condition2 1650 4200
Bearing2_1 Bearing2_3 Bearing2_4 Bearing2_5
Bearing2_2 Bearing2_6 Bearing2_7

Condition3 1500 5000
Bearing3_1 Bearing3_3
Bearing3_2

3.2. Extraction of Time—Frequency Image Features

The vibrational raw signal of bearing 1_1, during its whole lifetime, is shown in Figure 5.
In the time domain vibration signal, the horizontal and vertical axes represent time and amplitude,
respectively. The unit g, representing the acceleration of gravity, is usually used to define the amplitude.
Here, 1 g is equivalent to 9.81 m/s2. The amplitude of the vibration signal increased gradually over
time, indicating that the signal had abundant information for diagnostics and bearing prognostics.
High-quality features of the vibration signal contain useful information about degradation and
effectively filter out unnecessary information. However, the traditional fault diagnosis features,
based on frequency domain analysis, did not work efficiently, because the vibration of bearings
was nonstationary and nonlinear. Additionally, the frequency resolution was too low for detailed
analysis [7].
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Figure 5. Vibration raw signal of bearing1_1.

In this study, we used the Morlet-based CWT to extract image features from the raw vibration
signal. The basic principle of determining a wavelet function is to select a shape similar to the vibration
signal generated by a mechanical fault. The vibration signals from a failed bearing contain periodic
impulses, and the shape of the signal is known to be similar to the Morlet wavelet. In addition,
the previous studies have proven superior performance of fault classification using CNN with the
Morlet-based CWT [28,29]. Therefore, the Morlet wavelet was chosen in this study.

Figure 6 depicts the raw vibration signal and contour plot of wavelet power spectrum generated
by the Morlet-based CWT. The vibration signal sampled for 0.1 s at frequencies of 25.6 kHz has 2560
data points. Figure 6a shows a normal vibration signal and Figure 6c shows a fault vibration signal.
When the bearing is in a fault condition, the amplitude of the signal is about −30 g to 30 g, which is
larger than in the normal condition. In the wavelet power spectrum, the horizontal axis and vertical
axis represent time and frequency, respectively. The color of each point indicates the magnitude of
the wavelet coefficients on the time–frequency grid. The red color means that the energy level is high.
In Figure 6b, when the bearing is operating in normal condition, the most of the energy is concentrated
around 4 kHz. There is no clear periodicity in the energy distribution. On the other hand, Figure 6d
shows energy bursts in the frequency range from about 0.25 kHz to over 8 kHz. The impacts occur in
the frequency band between 0.25 kHz and 1 kHz at regular interval. When high energy is observed in
the low frequency band, it notices that the bearing is heading to the defect [25].

Figure 7 shows image features during the run-to-failure experiment of the training bearings. They
show the energy distribution of vibration signals according to the degree of progression of defects in
the time-frequency domain. The fault progress is calculated as a percentage of the operation time over
the lifetime of the bearing. Therefore, the fault progress of the bearing starts from 0% and gradually
increases with the operating time. In this study, we assumed that the bearing fails if the fault progress
reaches 100%. In Figure 7, the image features clearly visualize the degradation process in all training
bearings. Especially, as the fault progress approaches 100%, high energy is observed, and the impacts
occur at regular interval in the low frequency band.
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3.3. CWTCNN-HI Construction

The proposed model comprised a training step and a testing step. During the training step, six
bearings were used as a training set to construct the model for CWTCNN-HI estimation. The training
bearings are the same as those used in the IEEE PHM 2012 Data Challenge. The training set is
represented by Dtrain = {xt, yt}T

t=1, where xt ∈ RN×N is N× N image features extracted at time t, and
yt ∈ [0, 1] is a label indicating degradation percentage of bearings at time t. In this study, the size of the
input image feature is 128× 128. The degradation percentage is calculated as yt = t/T, where t is the
operation time, and T is the failure time (i.e., lifetime). For example, if the failure time of a bearing is
28,000 s, the degradation percentage, yt, is 0.5 at 14,000 s. The testing set is denoted by Dtest = {xt}T

t=1,
where xt is also N × N image features extracted from the testing dataset. In the testing step, the image
features of the testing dataset were entered into the trained model to obtain the CWTCNN-HI.

In the training step, we used approximately 7500 image features extracted from the six training
bearings to construct the CWTCNN-HI model. The training results are shown in Figure 8. The
horizontal axis represents the operating time while vertical axis represents the CWTCNN-HI value.
The estimated HI is marked as the colored points in the figure and the black line represents the actual
HI of the training bearings. The operating time to failure of the training bearings varies from 1 h to
7 h. The estimated HI of bearing 1_1 is slightly different from the actual HI. On the other hand, the
estimated HI of the other five bearings generally have a similar pattern to the actual HI. Some training
errors are acceptable because most estimations and actual values tend to match each other. This implies
that the CWT-based image features can extract high-quality information about the state of the bearing.
Thus, CNN is an effective method to estimate the degradation of bearings by analyzing images.
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3.4. RUL Prediction Results

Once the CWTCNN-HI was obtained, a GPR algorithm was used to predict the RUL of the
test bearings. The GPR is a kernel-based machine learning technique that can conveniently specify
high dimensional and flexible nonlinear regression [4]. In this study, we assumed that the mean
and covariance functions were zero and a linear function, respectively. Hyper-parameters for the
covariance function are optimized by maximizing the log-likelihood function. The GPR model predicts
future CWTCNN-HI by estimated CWTCNN-HI up to current time.

The estimated and predicted CWTCNN-HIs of bearing1_3, one of the testing datasets, are shown
in Figure 9. The obtained CWTCNN-HI up to the current time is indicated by a dot. The solid lines
represent the estimated and predicted CWTCNN-HIs before and after the current time obtained by
using the GPR model, respectively. The dotted lines are the 95 % confidence interval. The figure shows
that the health condition of the bearing gradually degrades over time with the increase of HI. The RUL
is calculated as the difference between the time at which the predicted HI reaches the threshold and
the current time. The RUL prediction results can be affected by the number of samples in the training
dataset. The large number of samples in the training data improves the accuracy of the estimated
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CWTCNN-HI. In addition, as the variance of the predicted CWTCNN-HI decreases, the confidence
intervals become narrowed and RUL prediction is more reliable.
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The RUL prediction results of the other ten testing datasets are shown in Figure 10. Most testing
bearings clearly show different degradation patterns, owing to different operating conditions and
failure types. For example, bearing1_5 and bearing1_6 rapidly degraded in their early stage and
gradually degraded after a certain period. Alternatively, bearing1_7 shows a constantly degrading
pattern, like bearing1_3.

In this study, the clustering-based failure threshold was adopted to accurately predict the RUL
of testing bearings. The failure threshold can be provided by an application expert or obtained
experimentally. In addition, the different thresholds are applied depending on the operating conditions
and characteristics of the bearings [4,37]. The bearings with similar operating condition and failure
mode exhibit a similar shape of degradation pattern. In this regard, we used the K-means clustering
algorithm to cluster testing bearings with similar degradation trends and applied the same threshold
for each cluster. The thresholds were chosen empirically to increase the accuracy of the RUL prediction.
To determine the number of clusters in the K-means clustering algorithm, the Dunn index [38] was
used to evaluate the clustering performance. The Dunn index is calculated as the ratio of the minimum
distance between two objects in different clusters to the maximum distance between two objects in the
same cluster as follows:

D =
min1≤i<j≤nd(i, j)

max1≤k≤nd′(k)
, (8)

where n is the number of clusters, d(i, j) is the distance between the ith cluster and jth cluster, and
d′(k) is the intra-cluster distance. A high index value means that the objects are well clustered. Based
on the Dunn indexes for different number of clusters, as shown in Figure 11, the testing bearings were
grouped into five different clusters.
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Figure 12 represents the result of clustering. Clusters 3 and 4 include four testing bearings. The
remaining three bearings with different degradation trends constitute three clusters. For example, the
bearing in cluster 1 shows the pattern of slow and steady degradation. On the other hand, the bearings
of cluster 3 show a pattern of rapid initial degradation. The degradation patterns of the bearings
vary depending on operational conditions and failure types. Therefore, the clustering-based failure
threshold improves RUL prediction performance by applying different threshold to bearings. For each
cluster, the failure threshold is set to 0.16, 1.23, 0.85, 0.83, and 0.71, respectively. If new bearings are
tested, the RUL can be predicted using the threshold of the cluster with a similar degradation pattern.

Figure 13 shows the comparison of the actual RUL and the predicted RUL of the two samples of
bearings. In Figure 13a, the predicted RUL of the initial and middle deterioration states is significantly
different from the actual RUL. The estimated HI of bearing 1_3 is fluctuated at the beginning of the
operation, and inconsistencies occur in the initial and middle states. However, the predicted RUL is
very close to the actual RUL when the bearing operating time exceeds 3 h. Figure 13b shows a slight
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discrepancy in the initial state, but the overall trend of the estimated RUL follows the change in the
actual RUL. In both bearings, the expected RUL of the final state closely matches the actual RUL, even
though the operating times are different from each other.Appl. Sci. 2018, 8, x FOR PEER REVIEW  13 of 17 
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3.5. Comparing Related Works

In this study, we measured the RUL prediction accuracy of testing bearings to evaluate the
proposed method and compare with related studies. As a performance evaluation measurement of the
RUL prediction, a score metric, mean, and standard deviation (SD) of the percent error were applied.
These metrics were used for the IEEE PHM 2012 Prognostic Challenge [31]. The percent error on the
ith bearing is defined as follows:

Eri = 100× ActRULi − ˆRULi
ActRULi

, (9)
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where ActRULi and ˆRULi are, respectively, the actual RUL and the predicted RUL of the ith testing
bearing. Underestimates and overestimates of the RUL were considered in different manners by the
following scoring function.

Ai =

{
exp(− ln(0.5)·(Eri/5)) i f Eri ≤ 0
exp(+ ln(0.5)·(Eri/20)) i f Eri > 0

(10)

The score Ai is 1 when the percent error is 0. As the percent error increases, the score decreases. If
the failure is predicted later than the actual occurrence (i.e., cases in which Eri ≤ 0), the score is cut
more than the earlier predictions. The average score of the RUL prediction for all testing bearings is
defined as follows.

Score =
1
11

11

∑
i=1

Ai (11)

To verify the superiority of the proposed method, we compared the prediction result with the
other four similar studies that predicted bearing RULs using the same dataset. Table 2 represents
the RUL prediction results of our related studies and proposed method. For each testing bearing,
the actual RUL and predicted RUL of the proposed method are displayed in columns 3 and 4,
respectively. The percent errors of the proposed method are shown in the final column, and the
four comparative studies are shown in columns 5 through 8. The mean and SD of the percent errors
and the score metric are displayed in the last three rows. The first similar study was published
by Sutrisno et al. [39], the winner of the IEEE PHM 2012 Prognostic Challenge. This study predicts
the RUL using frequency analysis-based anomaly detection, degradation feature extrapolation, and
survival time ratios. However, the method has the disadvantage of defining the anomaly detection
time point based on subjective criteria used to calculate the bearing survival time ratios. The means as
well as the deviations of the percent errors are large in the table. The second study was published by
Hong et al. [4] using the same bearing dataset. They used wavelet packet-EMD for feature extraction and
SOM for constructing the HI (i.e., CV). The method shows improved errors over previous studies, but
requires the extraction of approximately one hundred features to estimate bearing performance. The third
study, published by Lei et al. [3], proposed a new HI (i.e., WMQE) to predict the RUL of bearings. WMQE
was constructed by fusing a select few weighted features based on correlation clustering among the
28 features extracted from the bearings. The study showed the best performance among existing studies.
The most recent similar study is an RNN-based RUL prediction method published by Guo et al. [2]. The
proposed method was also constructed by selecting and fusing multiple features extracted from the time,
frequency, and time–frequency domains. To improve the accuracy of RUL prediction, a deep learning
approach was adopted. This method demonstrated its superiority over SOM-based HIs. However, it
obtained higher percent errors and lower scores than Lei et al. [3].

The proposed method shows overall low percent errors and low deviation, indicating that the
model worked accurately and reliably on every tested bearing. The score obtained in the study was
0.57, which is the highest among comparative studies. Compared to similar studies, the proposed
method performs better by using only image features instead of complicated extractions, selections,
and fusions of multiple numerical features to construct a HI. Additionally, the degradation trends of
the bearing show different patterns due to operational conditions and the simultaneous occurrence
of various fault types. In this study, we enhanced the RUL prediction accuracy by defining the
clustering-based failure threshold, considering a variety of degradation trends, such as accelerated
early degradation and monotonic degradation.
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Table 2. Performance comparisons of the proposed method with related research on the
PRONOSTIA dataset.

Testing
Dataset

Current Time
(s)

Actual RUL
(s)

Predicted RUL
(s)

Er (%)

Sutrisno et al. [39] Hong et al. [4] Lei et al. [3] Guo et al. [2] Proposed
Method

Bearing1_3 18,010 5730 5670 37 −1.04 −0.35 43.28 1.05
Bearing1_4 11,380 339 270 80 −20.94 5.60 67.55 20.35
Bearing1_5 23,010 1610 1430 9 −278.26 100.00 −22.98 11.18
Bearing1_6 23,010 1460 950 −5 19.18 28.08 21.23 34.93
Bearing1_7 15,010 7570 5360 −2 −7.13 −19.55 17.83 29.19
Bearing2_3 12,010 7530 3220 64 10.49 −20.19 37.84 57.24
Bearing2_4 6110 1390 1410 10 51.80 8.63 −19.42 −1.44
Bearing2_5 20,010 3090 3110 −440 28.80 23.30 54.37 −0.65
Bearing2_6 5710 1290 1840 49 −20.93 58.91 −13.95 −42.64
Bearing2_7 1710 580 530 −317 44.83 5.17 −55.17 8.62
Bearing3_3 3510 820 830 90 −3.66 40.24 3.66 −1.22

Mean 100.27 44.28 28.18 32.48 18.96
SD 173.28 90.29 35.41 37.57 25.59

Score 0.31 0.36 0.43 0.26 0.57

4. Conclusions

In this study, we presented a novel image feature for the RUL prediction based on the
CWTCNN-HI. In the proposed method, the vibration signal was converted into the 2-D image
feature using CWT instead of using the raw vibration signal or extracting multiple statistical features.
The image features of the wavelet power spectrum clearly visualize the degradation process of the
bearing. 2-D CNN analyzed the image by including information in both the time and frequency
domains. It extracted features from the image and constructed the HI without prior knowledge of
feature engineering and signal processing. The CNN model was used as a regression model to estimate
the HI between 0 and 1. The estimated CWTCNN-HI was used for the RUL prediction. Since the
failure type of the bearings is not defined, the bearings with similar degradation patterns are clustered
to set the threshold and predict the RUL. This study has experimentally proved that the image feature
can estimate the HI reflecting the condition of the bearings and improve the prediction performance of
the RUL. Experiments were conducted on the popular PRONOSTIA bearing dataset to validate the
effectiveness of the proposed method. As a result, CWTCNN-HI obtained the highest score and the
lowest error among the comparative studies. The CNN model automatically extracted, selected, and
fused features that reduce the prediction error of the HI from the image features. Therefore, the result
demonstrates that using the CWT-based image features and the CNN model is accurate and effective
in the RUL prediction.

However, there are still some limitations in the proposed method. In this study, the threshold
for each cluster of bearings was defined empirically. In future studies, thresholds will be defined
more systematically and mathematically based on the large amounts of training data. In addition, the
RUL will be determined by interaction between bearings and the other components in the system.
By doing so, we will improve the reliability of the HI by reflecting the correlation between bearings
and other parts in the future. The HI based on multisensory signals will also be studied by considering
temperature and vibration sensor data.
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