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Featured Application: The proposed hybrid intelligent model can be applied in engineering
design, material performance prediction, numerical calculation, and the prediction of physical
and chemical properties.

Abstract: A quantitative structure-property relationship (QSPR) model is proposed to explore the
relationship between the pKa of various compounds and their structures. Through QSPR studies,
the relationship between the structure and properties can be obtained. In this study, a novel
chaos-enhanced accelerated particle swarm algorithm (CAPSO) is adopted to screen molecular
descriptors and optimize the weights of back propagation artificial neural network (BP ANN). Then,
the QSPR model based on CAPSO and BP ANN is proposed and named the CAPSO BP ANN model.
The prediction experiment showed that the CAPSO algorithm was a reliable method for screening
molecular descriptors. The five molecular descriptors obtained by the CAPSO algorithm could
well characterize the molecular structure of each compound in pKa prediction. The experimental
results also showed that the CAPSO BP ANN model exhibited good performance in predicting
the pKa values of various compounds. The absolute mean relative error, root mean square error,
and square correlation coefficient are respectively 0.5364, 0.0632, and 0.9438, indicating the high
prediction accuracy. The proposed hybrid intelligent model can be applied in engineering design and
the prediction of physical and chemical properties.

Keywords: quantitative structure-property relationship; hybrid intelligence; artificial neural network;
particle swarm optimization

1. Introduction

In quantitative structure-property relationship (QSPR) modeling, some mathematical and artificial
intelligence methods are used to explore the chemical and physical properties of various substances.
These methods, including mathematical statistics, machine learning methods, and artificial intelligence
methods, can reflect the relationship between the activity and structure of compounds. Through
QSPR studies, the relationship between the structure and activity of compounds can be mined [1,2].
The QSPR model can be used to predict the activity of unknown materials and discover key influencing
factors of the activity of related substances, such as groups or substituents determining the activity of
the molecular structure [3,4]. Nowadays, QSPR has been applied in the fields of computer science,
chemistry, materials science, medicine science, and life sciences [5,6].
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The establishment of the QSPR model mainly involves the following steps: acquisition of experimental
data, construction and optimization of the molecular structure, calculation and screening of molecular
descriptors, establishment and verification of the model, etc. First of all, the variable selection is
important in many fields, such as spectroscopy [7,8], QSPR [9,10], and other fields [11,12]. The selection
of molecular descriptors largely determines the quality of the QSPR model [13–15]. The step
of molecular descriptor screening aims to reflect more structural information so that there is no
noise in the descriptors. Many methods have been developed to screen molecular descriptors
and can be mainly divided into two categories [16–18]. The first category includes the common
methods, such as Akaike information criterion (AIC), Bayesian information criterion (BIC), and
forward/backward/bi-directional stepwise multiple linear regression (MLR). The second includes
the modern search algorithms, such as genetic algorithm (GA), simulated annealing algorithm
(SA), ant colony algorithm (AC), particle swarm optimization (PSO), and other swarm intelligence
algorithms [7,11,19–21]. The common methods are the most simple and efficient, but their overall
performances are low in complex nonlinear problems. The modern search algorithms based on the
optimization strategy have obvious advantages and can search for optimal variables and deal with
complex large data points. The model establishment is important in the QSPR study and commonly
used QSPR models include two-dimensional (2d), three-dimensional (3d), and four-dimensional (4d)
models [22–24]. According to the modeling ideas, these methods can be divided into linear and
nonlinear QSPR methods. Linear methods mainly include multiple regression methods (MLR), partial
least squares (PLS), and principal component regression (PCR) [25]. Nonlinear methods include
support vector regression (SVR) and artificial neural network (ANN) methods [26–30].

However, the QSPR study based on various artificial intelligence algorithms also has some
shortcomings, such as high computational cost [31]. Therefore, it is necessary to develop a QSPR
model with high accuracy, high efficiency, and good stability.

The pKa value is a key parameter of some compounds, but its determination experiments are
cumbersome. Therefore, it is important to develop a pKa prediction model with high accuracy.
Polanski et al. [32] proposed a model based on ANN and PLS to predict the pKa of aromatic acids and
alkyl acids. Luan et al. [33] developed a model with radial basis function artificial neural network
(RBF ANN) and the heuristic method (HM) and obtained the better performance in pKa prediction.
These studies showed that ANN has outstanding performance in pKa prediction. However, the
performance of ANN is sensitive to its parameters and training algorithm. Many artificial intelligence
algorithms, including various evolutionary algorithms, are applied in ANN training. However, the
evolutionary algorithm also has its own shortcomings, such as the tendency to fall into the local
extreme value and a slow convergence rate in the later stage, which lead to unsatisfactory results of
QSPR modeling based on the evolutionary algorithm [34–37]. In this paper, a novel QSPR model is
proposed based on BP ANN and the chaos-enhanced accelerated particle swarm algorithm (APSO)
reported in recent years [38]. An improved APSO is applied in the screening of molecular descriptors
and the optimization of the weights of BP ANN. Then, combined with other artificial neural networks,
the QSPR model is used to predict the pKa values of various compounds.

2. Modeling Theory and Methods

2.1. Chaos-Enhanced Accelerated Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) was proposed by Eberhart and Kennedy in 1995 [39], but the
performance of the standard PSO algorithm was not high enough and showed some defects, such as
parameter sensitivity, premature convergence, and slow local search. In recent years, a variant PSO
called accelerated PSO (APSO) has attracted wide attention from scholars [38,40–42]. Although the
APSO improves the convergence speed, it may also lead to premature convergence and omit some
extreme values. Therefore, in this study we propose a new chaos-enhanced accelerated particle
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swarm optimization algorithm (CAPSO) by integrating chaos theory into the improvement of the
APSO algorithm.

In the APSO algorithm, the influence of the inertial weight factor or cognitive factor on the particle
is not considered and the algorithm is only improved by the global exploration factor [43]. The main
idea of the algorithm is to fully attribute the power to the variable that is responsible for global search
and to consider the update of the particle with the exploration factor. In the whole search process,
the particle is only constrained by the global extreme value. The position update formula is:

XK+1
i,d = (1− C2)XK

i,d + C2 pK
g,d + C1r (1)

where C1 and C2 are learning factors; r is the random number between 0 and 1; XK+1
i,d is the position of

particle i in d-dimensional k-th iteration; and pK
g,d is the position of the global extremum of the whole

population in the d-th dimension.
Compared with the standard PSO algorithm, APSO adds two parameters, C1 and C2, to reduce

the randomness in the iterative process. In this paper, C1 represents the monotonically decreasing
function: C1 = δt, where 0 < δ < 1 and t is the current iteration number. Therefore, the performance of
the APSO algorithm is mainly affected by parameter C2. For common problems, the value is (0.2,0.7).
When C2 is 1, the particle can converge at any time to the current global value and does not change
any more. Moreover, the global value may not be the real global value at all. When C2 is 0, the global
search speed of the algorithm is extremely slow. Therefore, the optimization of C2 is important in the
APSO algorithm.

A chaotic system refers to a deterministic system involving random irregular movements, whose
behavior is uncertain, unrepeatable, and unpredictable. In a chaotic system, when the initial conditions
are slightly changed, the system will be greatly different after continuous amplification. In the process
of the APSO algorithm, the value of learning factor C2 is uncertain and unpredictable and has partial
chaotic characteristics. Therefore, in order to simulate the chaotic characteristics of C2, the classical
logistic equation is used to realize the evolution of chaotic variables and optimize the parameters in
this paper. The iterative formula is provided as follows:

XK+1
i = 4XK

i (1− XK
i ) (2)

when 0 < XK
i < 1, the logistic equation is in a completely chaotic state.

The CAPSO algorithm involves the following steps:

Step 1: To initialize the particle group. The particles in the PSO algorithm are initialized. The optimal
value of the individual extremum is selected as the global optimal value to generate chaotic values;

Step 2: To calculate the adaptive value of group particles;
Step 3: The adaptive value of each particle is compared with that of the particle at the best position.

If the adaptive value is better, the best position is updated;
Step 4: The learning factor C2 is obtained from the chaotic sequence (generated by Equation (2))

and the position of the particle is updated with Equation (1);
Step 5: If the end condition of the algorithm is satisfied, the global optimum position is the optimal

solution. The result is saved and the algorithm is completed. Otherwise, return to Step 2.

2.2. QSPR Model Based on the Hybrid Intelligent Method

The back propagation artificial neural network (BP ANN) is one of the most important network
models. It generally consists of an input layer, hidden layer, and output layer [44–46]. The implementation
of BP ANN mainly consists of two processes: a learning process and a working process [47,48].

In a three-layer BP ANN, each layer consists of several nodes. The input layer receives the input
information of the network. Then, the input information is processed and sent to the hidden layer.
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The relationship between the input and output can be expressed as:

Input : net = x1w1 + x2w2 + . . . xnwn (3)

Output : y = f (net) =
1

1 + e−net (4)

where xi, x2, . . . xn are the input vectors of the network; wi, w2, . . . wn are the connection weights for
each input vector; and y is the output of the network.

In the BP ANN model, the nonlinear relationship between input and output is established by
determining the weight and deviation between each layer. Structurally, the nonlinear relationship
between the input and output can be understood as: output y = f (wih, who, bo), where wih, who, bo are,
respectively, the weight vector between the input layer and the hidden layer, the weight vector between
the hidden layer and the output layer, and the deviation vector of the hidden layer. The performance
of the network depends on the three main parameters of the network (wih, who, bo).

To improve the BP algorithm, a prediction model based on CAPSO and BP ANN, called CAPSO
BP ANN, is proposed based on the optimization of BP ANN parameters with the CAPSO algorithm.
The CAPSO BP ANN model makes full use of the strong global search capability of the PSO algorithm
and the fast local search capability of the BP algorithm, thus improving the prediction speed and
accuracy of the model. In CAPSO BP ANN, the PSO algorithm is proposed to optimize BP ANN
parameters (wih, who, bo). Therefore, in the PSO optimization algorithm, the particle is designed as the
structure with weight vector wih, weight vector who, and deviation vector bo:

particle(i) = [wih, who, bo] (5)

The implementation of the CAPSO BP ANN model can be simply described as follows:

Step 1: To initialize the model. The connection weights, deviations, and population parameters of
the model are initialized by the random method;

Step 2: Model training. The CAPSO algorithm is used to optimize the parameters of BP ANN and
the particle structure is designed.

Step 3: Parameter adjustment. Based on the error of the output, the parameters are adjusted until
the number of execution times reaches the set value or the error satisfies the setting condition.

Step 4: Output. After training, the model outputs each parameter and then the trained model
is tested.

2.3. Model Evaluation

The evaluation of the model is mainly based on the stability and reliability of the model [49].
In this paper, the evaluation indices of prediction accuracy including the absolute average relative
deviation (AARD) and the root mean square error of prediction (RMSEP) are defined as follows:

AARD =
1
N

N

∑
i=1

|yi − yi|
yi

(6)

RMSEP =

√√√√ 1
N

N

∑
i=1

(yi − yi)
2 (7)

The squared correlation coefficient (R2) reflects the correlation between predicted values and
experimental values and is defined as follows:
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R2 =

[
N
∑

i=1
(yi − yave)(yi − yave)

]2

N
∑

i=1
(yi − yave)

2 N
∑

i=1
(yi − yave)

2
(8)

In these formulas, N is the number of samples; yi is the predicted or calculated value of the model;
yi is the actual value obtained in experiments; yave is the average of actual values of the samples; and
yave is the average of predicted values.

3. Experimental Study

3.1. Experimental Data

The comprehensive performance of the model was verified by the prediction experiments of the
pKa values of various compounds. The experimental database was obtained from References [50–52]
and is shown in Table 1. Table S1 lists the compound families used for the QSPR modeling in this
paper. The database consists of 268 records of data. The largest organic molecules contain up to 50
non-hydrogen atoms, eight aromatic rings, and 11 heteroatoms. In order to obtain a more reasonable
prediction model, the database is randomly divided into three subsets: training set, verification set,
and testing set [53]. The training set is used to establish the model. The verification set is used to
optimize and validate the model. The testing set is used to test the performance of the model and the
tested performance can directly reflect the comprehensive performance of the model.

Table 1. Statistical table of experimental data.

Number of Compounds Experimental pKa References

31 0.70–4.99 [50,51]
34 5.00–6.99 [50–52]
16 7.00–7.99 [50–52]
46 8.00–8.99 [50–52]
80 9.00–9.99 [50–52]
45 10.00–10.99 [50–52]
16 11.00–13.80 [50,51]

In this paper, 70% of the data are used for training. Both the verification set and testing set account
for 15%. The numbers of the experimental data in the training set, validation set, and testing set are
188, 40, and 40, respectively.

3.2. Screening of Molecular Descriptors

The molecular descriptors are generated by the following methods:

• Construction of molecular structure. This is performed using Chemdraw UItra 7.0 software.
• Optimization of molecular structure. The molecular structure is further optimized in Hyper Chem

7.5 software.
• Calculation of molecular descriptors. The optimized molecular structure is imported into

CODESSA software and the corresponding molecular descriptors are obtained by calculation.

Through molecular descriptor computing software, 733 molecular descriptors are generated and
some of the molecular descriptors are closely related to each other. When modeling, it is necessary to
filter a large number of calculated molecular descriptors in order to select the descriptors which are
the most closely related to the research questions. The quality of the QSPR model depends on the way
to determine molecular descriptors to a large extent.
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In this study, the CAPSO algorithm is used to screen a large number of calculated molecular
descriptors. The implementation process of filtering molecular descriptors with CAPSO is described
as follows:

Step 1. Population initialization. To set the population size and initialize the population individual
as a molecular descriptor; to set the number of iterations and the maximum number of iterations.

Step 2. Adaptive evaluation. To calculate the fitness of all the molecular descriptors of a population.
Step 3. Molecular descriptor selection. To select the next generation of molecular descriptors

based on individual fitness values.
Step 4. Population renewal. To iterate the molecular descriptors in the population and obtain the

next generation of molecular descriptor population.
Step 5. Re-evaluation of individual adaptive values. To calculate the fitness of all of the molecular

descriptors of the population through iterative evolution and re-evaluate the merits and demerits of
the individuals.

Step 6. Iteration. To judge whether the iteration condition is satisfied. If it is satisfied, the evolution
is ended, otherwise turn to Step 3 and continue to perform the iteration.

Finally, five molecular descriptors were selected through CAPSO’s search for molecular
descriptors (Table 2).

Table 2. Molecular descriptors selected by the chaos-enhanced accelerated particle swarm optimization
algorithm (CAPSO) algorithm.

No. Molecular Descriptors Descriptor Types

MD1 Relative number of N atoms Constitutional descriptors

MD2 Randic index (order 3) Topological descriptors

MD3 RNCG relative negative charged (QMNEG/QTMINUS)
(Quantum-Chemical PC) Electrostatic descriptors

MD4 RNCS Relative negative charged SA (SAMNEG * RNCG) (Zefirov’s PC) Electrostatic descriptors

MD5 Maximum net atomic charge Quantum descriptors

Five molecular descriptors belonging to four types were selected by CAPSO: constitutional
descriptors, topological descriptors, electrostatic descriptors, and quantum descriptors.

The relative number of N atoms (molecular descriptor 1 (MD1)) is a constitutional descriptor
and usually proportional to the density of the electron cloud. When the polarity of the positive and
negative charge of a molecule increases, its pKa value decreases. The relative number of N atoms can
be used to characterize the composition of the molecular structure.

The Randic index (order 3) (MD2) is a topological descriptor for molecular size, shape, branching
degree, and dispersion force. As the molecular dispersion increases, the molecular volume increases,
leading to the decrease of pKa value. The Randic index (order 3) can represent the topological structure
of molecules.

RNCG relative negative (QMNEG/QTMINUS) (quantum-chemical PC) (MD3) and RNCS relative
negative charged SA (SAMNEG * RNCG) (Zefirov’s PC) (MD4) are electrostatic descriptors, which
depend on the distribution of the charges on the molecule. The negative coefficient of the relative
negative charge is inversely proportional to the pKa value and the probability that positive ions replace
protons is inversely proportional to the contact area and the pKa value of the negative atomic solvent.
The relative negative charge and its surface area can be used to characterize the electrostatic parameters
of molecules.

The maximum net atomic charge (No. MD5) is a quantum chemical descriptor, which is proportional
to pKa and related to the largest net atom. It can be used to characterize the quantum chemical
structure of molecules.
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In conclusion, the molecular descriptors selected by the CAPSO algorithm can objectively
characterize the molecular structure theoretically and reflect the relationship between the pKa value
and the molecular structure. The CAPSO algorithm can provide a reference for the selection of
molecular descriptors in all methods of QSPR modeling.

3.3. Model Structure

The CAPSO BP ANN model was established with the molecular descriptors selected by CAPSO.
The CAPSO BP ANN model adopted the three-layer structure composed of the input layer, the hidden
layer, and the output layer. The input layer includes five input parameters representing the selected
five molecular descriptors. The input parameters are: relative number of N atoms, Randic index
(order 3), RNCG relative negative charged (QMNEG/QTMINUS) (Quantum-Chemical PC), RNCS
relative negative charged SA (SAMNEG * RNCG) (Zefirov’s PC), and maximum net atomic charge.
The output layer has one output parameter representing the corresponding pKa value.

In this paper, the number of hidden layers is estimated with the formula: (2 × sqrt(m × n) + 1,
where m and n are the numbers of the nodes of the input and output layers), and then the number
of optimal hidden layer neurons is determined by the heuristic method. The model in this paper
contains five input nodes and one output node, so the number of hidden layer neurons is estimated to
be 5. Then, we assumed that the number of the neurons of the hidden layer was tested from 3 to 15,
respectively. Figure 1 shows the comparison diagram of predicted errors and the number of hidden
layer neurons.
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Figure 1. Optimization comparison diagram of the number of hidden layer neurons. MSE: Mean
square error.

As shown in Figure 1, with the increase in the neurons of the hidden layer, the mean square error
(MSE) decreases first and then increases. When the number is 7, the training MSE is the lowest and the
structure of the prediction model is optimal. The model structure is 5-7-1.

4. Results and Discussion

A three-layer (5-7-1) CAPSO BP ANN prediction model was established to predict the pKa values
of the compounds. MSE values were adopted as performance metrics for the model. To ensure the
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generalization ability, the model was run 10 times. The optimized CAPSO BP ANN parameters used
in this paper are summarized in Table 3.

Table 3. Optimized model parameters.

Parameters Values

Training data proportion 70%
Validation data proportion 15%

Testing data proportion 15%
Training algorithm CAPSO

Number of input neurons 5
Number of hidden neurons 7
Number of output neuron 1

Number of particles in CAPSO 50
Maximum iteration times 1000

First, 188 sets of data from the training set and 40 sets of data from the validation set were
respectively used for model training and validation. Figure 2 shows the comparison between the
experimental value and the predicted value in the training set and validation set, respectively. The circle
and square respectively represent the predicted values of the model in the training set and the
validation set. The vertical distances between the predicted data points and lines represent the absolute
error of predicted values and experimental values.
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Figure 2. Comparison between the predicted and experimental values in the training and validation sets.

In the training set, the predicted value of the model training is distributed around the actual value,
indicating the high coincidence degree. From the vertical distance between the prediction data points
and the line, we can see that the prediction error of the model is small and that the prediction accuracy
is high. In the validation set, the prediction results are significantly better than those in the training set,
indicating that the training effect of the model is good.

Figure 3 shows the correlation between the actual value and the predicted value of the model in
the testing set. In the testing set, the predicted value of the model is also consistent with the actual
value. Table 4 shows the results of the model in the training set, validation set, and testing set.
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Table 4. Statistics of the model prediction performance. AARD: Absolute average relative deviation.
RMSEP: Root mean square error of prediction. R2: Squared correlation coefficient.

Sets AARD RMSEP R2

Training 0.3436 0.0335 0.9771
Validation 0.3101 0.0211 0.9886

Testing 0.5364 0.0632 0.9438

The prediction results of the model in each subset are good and the prediction error is small,
indicating the better comprehensive performance. The prediction performance of the model is better in
terms of prediction accuracy and correlation. The above results prove that the prediction performance
of the model is excellent.

In this paper, the partial derivative (PaD) method [13,54] was adopted to assess the sensitivity of
the output against slight changes of the five molecular descriptors in the inputs. Figure 4 shows the
contributions of the five input variables (five molecular descriptors).

Quantitatively, the Randic index (order 3) (MD2) contributes the most; the relative number of
N atoms (MD1) and maximum net atomic charge (MD5) contribute roughly the same proportion
(about 20%). The contributions of RNCG relative negative charged (QMNEG/QTMINUS)
(Quantum-Chemical PC) (MD3) and RNCS relative negative charged SA (SAMNEG * RNCG) (Zefirov’s
PC) (MD4) are relatively small, but they all belong to the electrostatic descriptors. Among the four
types of descriptors, electrostatic descriptors contribute the most, followed by topological descriptors
and constitutional descriptors, and the quantum descriptors contribute the least (Figure 4).

Moreover, three artificial intelligence models, BP ANN, SVM, and PSO BP ANN, were selected
as the comparison models. In addition, Jensen et al. [50] used PM6, PM7, PM3, AM1, and DFTB3
methods to predict the pKa values of some amine groups and indicated that PM3/COSMO was
the best pKa prediction method. Therefore, in order to verify the performance of the model, the
PM3/COSMO model [50] was selected as the comparison model in the study. Figure 5 shows the
correlation and residual curve between the experimental values and the predicted values of each
model in the testing set.
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As shown in Figure 5a, the vertical distance between the prediction data points and the experimental
data indicates that the prediction data of CAPSO BP ANN model are close to the experimental values.
The prediction performance of the method proposed in this study is better than that of other methods.
It can be seen from the residual curve that the error of the model proposed in this study is close to
0 (Figure 5b). Apart from some prediction points that have large errors, the prediction errors are
generally smaller than those of other comparison models. Table 5 shows the evaluation results of
each model.
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Table 5. Statistical results of each model. AARD: Absolute average relative deviation. RMSEP: Root
mean square error of prediction. R2: Squared correlation coefficient.

Models AARD RMSEP R2

PM3/COSMO 0.8724 0.1439 0.8346
SVM 0.7333 0.1038 0.8863

BP ANN 1.2134 0.5354 0.6958
PSO BP ANN 0.7229 0.1029 0.8872

CAPSO BP ANN 0.5364 0.0632 0.9438

In order to verify the performance of each comparison model, the confidence interval (C.I.) of
RMSEP in the testing set was calculated [49–55] (Table 6).

Table 6. Confidence intervals of RMSEP for each model. C.I.: Confidence interval.

Models C.I. (90%) C.I. (95%) C.I. (99%)

PM3/COSMO (0.04721, 0.24059) (0.02904, 0.25876) (0.00067, 0.29450)
SVM (0.03368, 0.17393) (0.02050, 0.18710) (0.00054, 0.21303)

BP ANN (0.39482, 0.67598) (0.36841, 0.70240) (0.31644, 0.75437)
PSO BP ANN (0.03327, 0.17253) (0.02019, 0.18561) (0.00056, 0.21135)

CAPSO BP ANN (0.05066, 0.07574) (0.04830, 0.07810) (0.04367, 0.08273)

Table 5 shows that the accuracy and relevance of the CAPSO BP ANN model have obvious
advantages, including the lowest RMSEP and the highest R2. The performances of PM3/COSMO
and SVM are equivalent to that of the PSO BP ANN model. From Table 6, it can be observed that the
CAPSO BP ANN model has the narrowest C.I., 90%, 95%, or 99%. From the tables, we can see that the
CAPSO BP ANN model with the lowest RMSEP and the narrowest C.I. is superior to other models.

To verify the stability and robustness of the models, an applicability domain study was proposed,
as shown in Figure 6. The critical leverage is 0.213. The CAPSO BP ANN model has eight outliers (four
outliers from the training set, two outliers from validation set, and two outliers from the testing set)
and six influential values. The PSO BP ANN model has 11 outliers, including six outliers from training
sets, three outliers from the verification set, and one outlier from the testing set. The SVM model has
nine outliers and seven influential values, while the BP ANN model has 10 outliers and six influential
values. All of the other values are within the applicability domain. Although all models show good
performance, the CAPSO BP ANN proved its superiority, and the highest number of its respective
observations was found to be within the warning limits of the defined applicability domain.
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5. Conclusions

In this study, in order to solve the problem of molecular descriptor selection and model establishment
in QSPR research, a novel chaos-enhanced accelerated particle swarm optimization algorithm (CAPSO)
was proposed. The algorithm was applied in the selection of molecular descriptors and QSPR modeling,
and a prediction model called CAPSO BP ANN was obtained. Through the prediction experiment of
the pKa values of compounds, the conclusions are drawn as follows:

The CAPSO algorithm could be applied in the selection of molecular descriptors. Prediction
experiments showed that the five molecular descriptors selected by the CAPSO algorithm could
well represent the molecular structures of various compounds in the prediction of the pKa value and
provide the basis for the selection of molecular descriptors.

The CAPSO BP ANN model based on the PSO algorithm and BP ANN exhibited good performance
in the prediction experiment of the pKa values of various compounds and achieved a higher prediction
accuracy and correlation. The experimental results showed that the CAPSO BP ANN model could
provide the basis for QSPR modeling.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/8/7/1121/s1,
Table S1: The experimental compounds in this paper.
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