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Abstract: The pavement structure tends to shrink under low temperature conditions and cracks
will appear upon crossing threshold binder stiffness. Decreasing the binder viscosity at such low
temperatures, by introducing additional oil fraction (aromatics and saturates) in asphalt colloidal
systems, may result in improved resistance to thermal cracking. A single multi-grade engine oil
(5W30) was used in this study to analyze the rheological properties imparted to binders. Rotational
Viscosity (RV) test revealed that after Rolling Thin Film Oven (RTFO) aging, fresh oil and waste oil
have a similar effect on decreasing the viscosity of binder and construction temperatures, reducing
them by 5~8 ◦C. Fourier Transform Infrared Spectroscopy (FTIR) test results showed an abrupt
increase of carbonyl concertation when fresh engine oil was used for rejuvenation while waste engine
oil was less susceptible to oxidative aging. Dynamic analysis of modified binders proved that engine
oil has better thermal cracking resistance but relaxation ability of binders and rutting resistance was
impaired. Filtered waste engine oil resulted in a 35% decrement in the stiffness of binder compared to
virgin asphalt after short term aging but upper Performance Grade (PG) was compromised by 1~3 ◦C
with 2.5% oil inclusion. Unfiltered waste engine oil proved to have the least overall performance
compared to fresh and filtered waste engine oil.

Keywords: waste engine oil; asphalt; rheological analysis; low temperature stiffness; Discovery
Hybrid Rheometer (DHR)

1. Introduction

Asphalt binder is frequently utilized in hot mix asphalt (HMA) for binding the aggregates mass.
Regardless of the global use of asphalt as a binder, its cost is comparatively high. The increased
urbanization and surging demand of paved roads led to the need for enhancing asphalt binder
intrinsic properties, exclusively the resistance for rutting and thermal cracking. Thermally induced
cracking of flexible pavements is critical in cold regions [1], such as South Korea. As the pavement
structure tends to shrink under low temperature conditions [2], tensile stresses are developed resulting
in cracks or failure. Therefore, asphalt modification is needed as it fundamentally effects the properties
of bituminous mixtures. Recently, more attention has been given to improving performance of asphalt
binder by modifying it with polymers, resulting in improved engineering properties of asphalt [3–7].
At low temperatures, a decrease in viscosity of the binder is intended to avoid making asphalt too stiff
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and losing cohesion with aggregates. The viscosity of asphalt can be manipulated by changing the oil
fraction in asphalt colloidal system [8].

Engine oil is a by-product of petroleum refining which provides lubrication to rotating bearings
and pistons in automobile engines. After being used by vehicles, it gets contaminated with impurities
and toxic chemicals like Polycyclic Aromatic Hydrocarbons (PAHs) [9]. Thus, the final waste product,
known as Waste Engine Oil (WEO), may cause serious damage to the environment and organic life if
it is dumped without proper treatment [10,11]. There is a thriving interest in the pavement industry
to utilize waste materials and de-escalate the use of natural resources; this is also cost effective as
compared to utilizing new materials. South Korea generated about 370 million liters of waste oil in
2012 [12]. This substantial amount of waste oil is mostly consumed as fuel or re-sold after refining.
Chemically, the molecular structure of engine oil is similar to asphalt binder [13,14], therefore waste
engine oil can be considered a compatible modifier for asphalt cement [15].

With the increased traffic volume, production of waste engine oil has increased many folds in
recent years. Therefore, it is imperative to use the waste engine oil in partial replacement of asphalt
binder which will also reduce the cost of Hot Mix Asphalt (HMA) or Reclaimed Asphalt Pavement
(RAP). Ayman et al. [16] investigated the potency of different rejuvenators on aging and fatigue
cracking resistance. They concluded that paraffinic oils were most suitable to rejuvenate the aged
RAP binders without adversely compromising the rut resistance. Research conducted by Zaumanis
et al. [17] claimed that waste engine oil with a 12% dose significantly improved the low temperature
cracking susceptibility of RAP mixture. A considerable loss of volatiles during RTFO aging was
observed during mass loss test which indicates an increased aging susceptibility.

Based on the results by Villanueva et al. [18], modifying asphalt binder with 0–10% of used
lubricating oil enhanced the critical cracking temperature to about 2 ◦C but high temperature PG
grade was compromised. Hallizza et al. [19] studied the use of cooking oil as a bitumen rejuvenator.
Their research proved that modification of a 40/50 penetration grade aged asphalt binder with
4% waste cooking oil decreased its viscosity to an unaged 80/100 penetration grade condition.
Xiaoyang et al. [20] found that a decrement in optimum asphalt content improved fatigue resistance
of the mixture and an increased concentration of carbonyl functional groups in asphalt binder after
waste engine oil modification. This increase in carbonyl groups left the asphalt binder susceptible to
oxidative aging. Oil inclusion also reduced the stiffness at low temperatures but elastic recovery of
binder at high temperatures was undermined.

Eriskin et al. [21] focused on reducing the construction cost by decreasing the optimum content of
bitumen with partial replacement of waste frying oil. Their study proved that with the inclusion of
only 3–5% of frying oil, the bitumen content was reduced by 11%. They further concluded that the fry
oil modification enhanced the self-healing properties of HMA at low temperatures. Xavier et al. [22]
utilized the used and virgin maize oil for binder modification. Their results showed that with the
increase of maize oil content the elasticity was increased while the stiffness was reduced. The mixing
and compaction temperatures were decreased by 5~10 ◦C, proving an efficient modifier for warm mix
asphalt (WMA). Zhang et al. [15] investigated the effect of bio-based and refined waste oil on low
temperature properties of asphalt binder. They discovered that the glass transition temperature tended
to decrease and the fracture energy of asphalt binder could be enhanced up to three folds by using
5% refined waste oil. Simon et al. [23] performed X-Ray fluorescence spectroscopy on asphalt cement
modified with waste engine oil. They observed a premature failure in pavement due to loss of strain
tolerance and physical hardening of asphalt binder caused by waste oil residues after modification.

Waste engine oil addition can soften and rejuvenate aged asphalt binders and results in an
environmentally friendly mixture [24,25]. In this context, the use of waste engine oil in partial
replacement of binder in HMA, RAP or WMA can prove to be an acceptable and sustainable
solution to managing this waste material. This study was carried out to evaluate the rheological
properties of asphalt binder with 2.5% of a single multigrade fresh and waste (filtered and un-filtered)
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engine oil, with an aim to decrease the viscosity (rejuvenation) and stiffness (thermal cracking) at
low temperatures.

Objective(s)

Taking into account the previous literature, the objectives of this research work are as follows

1. To assess the properties imparted to asphalt cement with a specific viscosity grade engine oil
(5W30) rather than a collective blend of different waste engine oils.

2. To study the effect of metal traces present in waste engine oil on rheological properties of modified
asphalt cement.

3. To evaluate the effect of waste oil modification on low and high temperature properties of
asphalt cement.

2. Materials and Methods

2.1. Materials

2.1.1. Asphalt Binder

A PG 64-22 (AP5) asphalt binder frequently used in South Korea was chosen as the base binder
for sample preparation and laboratory experimentation. Some standard physical characteristics of
virgin asphalt binder are given in Table 1.

Table 1. Physical properties of virgin asphalt binder (PG64-22) [26].

Property Virgin Asphalt

Flash Point, ◦C >230
Specific Gravity at 15.6 ◦C 1.0386

Absolute Viscosity at 60 ◦C, poise 2030
Kinematic Viscosity at 135 ◦C, centistokes 362

2.1.2. Engine Oil

Waste engine oil (Figure 1) employed in this study was taken from a local automotive repair
shop. Engine oils are available in different viscosity grades [27] and can have variable viscosity ranges
according to selected viscosity grades [28]. Thus, waste engine oil obtained from different vehicles
might have different viscosities. Considering this fact, an SAE 5W30 multigrade engine oil was selected
for this study. Some physical characteristics of fresh and waste SAE 5W30 oil have been presented in
Table 2.
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Table 2. Physical properties of fresh and waste engine oil (SAE 5W30) [29,30].

Property Fresh Oil Waste Oil

Density at 15 ◦C, (g/cm3) 0.861 0.9116
Viscosity at 40 ◦C, centistokes 71 107.48
Viscosity at 100 ◦C, centistokes 11.75 12.93

Figure 2 demonstrates and compares the chemical composition of base asphalt and engine oils
after FTIR spectroscopy. Each peak in the spectrum signifies a functional group in the medium. Most
of the observed peaks in fresh engine oil were similar to asphalt binder which proves its compatibility
to bond with asphalt molecules. On the other hand, waste engine oil exhibited additional peaks at
1738 and 1216 wavenumbers indicating the chemical decomposition and aging of fresh oil after vehicle
use. Small peaks around 1540 wavenumbers indicated the formation of PAHs waste engine oil, which
were negligible in fresh oil. Additional peaks between 2300~2400 were due to CO2 in the atmosphere
and should not be considered as a chemical change between asphalt and engine oil.
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2.1.3. Filter Paper

Due to wear and tear of the engine during vehicle performance, engine oil was contaminated
with metal traces and exposed to repeated heating and oxidation actions [31]. Metallic elements like
Potassium, Calcium, zinc and iron were found in weathered motor oil [32]. These metal traces might
have changed the rheological properties of asphalt binder after modification. Therefore, to check this
rheological difference, waste engine oil was filtered using a Whatman™ grade filter. Some physical
properties of filter paper are shown in Table 3.

Table 3. Physical properties of Whatman™ filter paper.

Property Filter Paper Grade: 1822-047

Material Glass Fiber
Pore Size 1.2 um

Nominal Thickness 260 um
Water Flow Rate 200 (L/min/cm2 at 100 kPa)

Nominal Basis Weight 53 g/m2

Max. Temperature 180 ◦C
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2.2. Methods

2.2.1. Research Approach

Although there are positive and negative effects of using waste engine oil in asphalt binder, more
research is needed to incorporate this waste product efficiently and to avoid direct harmful effects
on the environment. Considering these factors and literature available, this research work focused
on evaluating the possibility of using a specific viscosity grade waste engine oil as a rejuvenator for
asphalt binder and studied its effects on rheological properties considering high and low temperatures.
The waste engine oil addition was further assessed on removal of metal traces by filtration process and
with short term aging conditions. Rheological tests were performed to check the properties imparted
to rejuvenated asphalt. Finally, master curves for a comprehensive characterization of modified asphalt
cement were constructed and compared. An outline of the procedure for this study is shown in
Figure 3.
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2.2.2. Preparation of Modified Asphalt Binder and Sampling

To study the effect of waste engine oil on asphalt performance and to make the waste oil
components blend well with asphalt, a high shear mixer along with a heating mantle model
MS-DBM604 (MTOPS®, Yangju-si, Kyunggi-do, Korea) was used. Mixing speed was kept at 2000 rpm.
The blending time and temperature were controlled at 30 min and 150 ± 5 ◦C for each mixing
turn, respectively.

Samples were prepared by mixing 2.5% (by weight of asphalt) fresh oil, un-filtered waste engine oil
and filtered waste engine oil into asphalt binder (Table 4). At least three, and a maximum of five samples
for each condition and for each laboratory test were prepared to check the repeatability and results
were shown as an average. Virgin binder with the same sheared conditions (2000 rpm/30 min/150 ◦C)
was prepared and termed as Base Binder for better comparison.
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Table 4. Experimental samples and respective codes.

Sample Code

Base Binder 1 BB
Asphalt + 2.5% Fresh Engine Oil FR

Asphalt + 2.5% Un-Filtered Waste Engine Oil UFO
Asphalt + 2.5% Filtered Waste Engine Oil 2 FO

1 Base Binder was sheared with same mixing criteria (2000 rpm, 30 min, at 150 ◦C); 2 Filtration done by Whatman™
filter paper.

2.2.3. Rotational Viscosity (RV) Test

This test was employed to check the flow changes on the fresh and waste oil rejuvenated binders
and the effect of metal traces present in waste engine oil. Viscosity measurements were taken using
Brookfield DV2T Viscometer (Brookfield Engineering Laboratories, Inc., Boston, MA, USA) Dynamic
viscosity tests can be conducted at various temperatures, but since manufacturing and construction
temperatures are fairly similar regardless of the environment, the test was carried out at a range from
135 ◦C to 175 ◦C.

The torque on the apparatus-measuring geometry, rotating in a thermostatically controlled
sample holder containing a sample of asphalt, was used to measure the relative resistance to rotation.
The torque and speed were used to determine the viscosity of the asphalt. The test was conducted
according to AASHTO T 316 and ASTM D 4402 testing standards. Between 11~13 g samples of the
base binders and rejuvenated binders were poured into disposable RV testing containers and were
tested with SPC4-27 spindle at 20 RPM. At least three samples for each binder configuration were
tested and the results were reported as an average. Ideal mixing and compaction temperature for base
and modified binder were calculated in unaged and RTFO aged condition by using viscosity data.

2.2.4. Fourier Transform Infrared Spectroscopy (FTIR) Test

The FTIR spectroscopy test helps to characterize changes in functional groups and chemical
alteration of base asphalt due to engine oil addition. This test was performed using JASCO 4200
spectrometer (TS Science Co., Ltd., Seoul, Korea) with Attenuated Total Reflection (ATR) accessory in
the range of 4000 to 650 cm−1 wavenumbers. ATR provides reliable and repeatable spectra compared
to transmission configuration which is prone to erroneous readings with sample preparation and film
thickness variations. Infrared radiations are bombarded on a thin sample of asphalt binder, directly
placed on the ATR crystal. This excites some of the molecular bonds within the asphalt molecule
according to their natural vibration frequency. Some part of the incident infrared rays is absorbed due
to the bond excitations. These molecular vibrations/excitations are then detected by a detector in FTIR.
Detector measures the percentage of the transmitted or absorbed radiation to the source radiation and
a spectrum is processed and displayed by a computer program [33], imitating the functional groups
present in the material. For each spectrum obtained, a total of 36 consecutive scans at a resolution of
4 cm−1 were executed and averaged.

Some characteristic functional groups, with their respective wavenumber ranges that can be
detected with FTIR, are presented in Table 5. These functional groups can also be present in asphalt
molecules which helps us to understand the basic chemistry of base, aged and rejuvenated asphalts.
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Table 5. Functional groups with their respective range of occurrence in wavenumbers [20,34,35].

Wavenumber Range (cm−1) Functional Group Bond Vibration Type
(Stretching/Bending/Rocking)

3100–3500 N-H group Stretching vibration
1550–1640 N-H group Bending vibration
2500–3300 O-H Stretching vibration, Strong Intensity
2927–2935 -CH2 Asymmetric or symmetric stretch

1628–1650 C=O (1652 cm−1)
cis C=C (1654 cm−1)

Stretching vibrations

1735–1750 C=O (ester) Stretching vibrations, strong intensity
1800–1830 C=O (anhydride) Stretching vibrations, two bands

1435 CH2 (1462 cm−1) Bending vibrations
1417 CH bonds Rocking vibrations
1404 CH bonds Rocking vibrations
1346 CH3 Bending vibrations

1000–1300 C-O group Stretching vibration, two bands or more
1111 and 1097 -CH -CH Bending and Deformation Vibrations

1065–1068 C-O Stretching
400–1000 “Fingerprint region” –

2.2.5. Discovery Hybrid Rheometer (DHR) Test

A Discovery Hybrid Rheometer (DHR-2) test with Environmental Temperature Control (ETC)
system was used for determination of viscoelastic behavior of base and rejuvenated binders. DHR
is a stress controlled shear rheometer which uses magnetic bearing to rotate the spindle and provide
frictionless application of torque to the asphalt sample. ETC accessory provided fast response and
temperature stability and allowed us to achieve any temperature ranging from −160◦C to 600◦C.

Multi Stress Creep Recovery

A Multiple Stress Creep and Recovery (MSCR) test was conducted for predicting the rutting
behavior and delayed relaxation response of asphalt binders. The MSCR test was carried out with
a repeated loading and unloading of stress on RTFO aged asphalt binders. This test can predict the
rut resistance by measuring non-recoverable creep compliance (Jnr) and binder modifications in the
non-linear viscoelastic region. AASHTO T 350 testing guidelines were followed for 1 s creep at a
constant stress and 9 s recovery with zero stress level. Ten cycles of creep and recovery were performed
at 34, 46, 58 and 64 ◦C temperatures with 0.1 kPa and 3.2 kPa stress levels.

Strain Sweeps

Strain sweep tests were performed on each testing temperature ranging from −15 ◦C to 95 ◦C
in strain controlled mode. Parallel plates measuring 8mm were used for −15 ◦C to 35 ◦C testing
temperatures while 25 mm parallel plate geometry was used for a high temperature range of 45 ◦C
to 95 ◦C. Percent Strain value was swept from 0.1 to 80% at a fixed frequency of 10 rad/s and initial
stress value of 3.295 Pa. Complex shear modulus (G*) for all binders were measured and the percent
strain value at which G* was reduced to 95% of its initial value and was noted as a threshold for linear
viscoelastic (LVE) region. Table 6 lists the target strain values selected for LVE region for frequency
sweep testing.
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Table 6. Target strain values for linear viscoelastic region.

Temperature (◦C) Target Strain (%)

−15 1.0
−5 1.5
5 3.5

15 5.0
25 7.0
35 9.0

45–95 * 12.0

* Strain values were greater than 20% for all temperatures above 45 ◦C, therefore target strain was fixed at 12%.

Frequency Sweeps

Frequency sweep tests were performed on a temperature range of −15 ◦C to 95 ◦C in stress
controlled mode. Parallel plates measuring 8 mm were used for −15 ◦C to 35 ◦C testing temperatures
while 25 mm parallel plate geometry was used for a high temperature range of 45 ◦C to 95 ◦C.
Target strain values were fixed as per Table 6, to establish LVE region of measurement. The testing
procedure was followed as per AASHTO T315-10. Frequency was swept from 0.01 Hz to 30 Hz for
each testing temperature and complex shear modulus (G*) and phase angle (δ) were obtained for each
binder sample.

Master Curve

Master curves for the whole temperature range were developed using frequency sweep isotherms
for an overall assessment of rejuvenating the asphalt binder with engine oil. It exhibited the impact
of loadings on rheological performance of asphalt cement over a wide range of loading frequency or
times. Isotherms obtained from frequency sweep tests were shifted to a reference temperature using the
time-temperature superposition principle [36,37]. Shift factor (αT) for superpositioning of isotherms
can be obtained by using William-Landel-Ferry (WLF) equation and Arrhenius function [38,39] shown
as Equations (1) and (2) respectively.

log(aT) = −
c2(T− TR)

c2 + T− TR
(1)

In Equation (1), c1 and c2 are coefficients, T is target temperature, TR is reference temperature.
Values of C1 and C2 are usually taken 19 and 92, respectively [40].

log(aT) = −
Ea

2.303R

(
1
T
− 1

Tref

)
(2)

In Equation (2), Ea is activation energy, T is target temperature and Tref is reference temperature.
The shifting of isotherms can also be done using a new dynamic modulus function know as Sigmoidal
Model [41]. The equation for sigmoidal model is shown as Equation (3)

log|G∗| = δ− α

1 + eβ+γ(logfref)
(3)

where,

δ = Min. G* of asphalt binder,
α = Max. G*−Min. G*

β and γ are S-shaped function parameters of sigmoidal curve for point of turning and slope of
curve respectively. In this study, construction of master curve was done using the sigmoidal model.
Shift factors were obtained using Arrhenius equation which wer then used for horizontal shift of
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isotherms. Data were fitted using the sigmoidal model and master curves were constructed for all
asphalt binders.

3. Results and Discussions

3.1. Flow Behavior

The high temperature flow behavior of asphalt binders is an important property to establish
in-plant and in-field temperatures [42,43]. The viscosity of binder depicts its competence for pumping
through an asphalt plant, its ability to properly coat the aggregate particles in asphalt mixture and the
workability required to place the asphalt mixture in field and appropriate compaction. Therefore, RV
test was carried out from 135 ◦C to 175 ◦C with an increment of 10 ◦C.

Figure 4 demonstrates the changes in viscosity of asphalt binders in an unaged condition and
after RTFO aging on temperature increments. It can be clearly seen that inclusion of oil into asphalt
decreased its viscosity and construction temperatures, which is in line with previous literature.
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In-field mixing and compaction temperatures were selected based on the viscosity of binder.
As recommended by Asphalt Institute [44], temperature at 170 ± 20 cP is to be taken as mixing
temperature while 280 ± 30 cP depicts the compaction temperature of bitumen. It is evident from
Figure 4a and Table 7, there was an overall 5~8 ◦C decrement of compaction and mixing temperature
for the unaged binder condition. FR had the highest effect on reducing the mixing and compaction
temperatures due the fact that fresh oil had not been aged before and had very low viscosity compared
to waste oil.

Table 7. Compaction and mixing temperature changes with engine oil addition.

Binder Property and Condition
Temperature (◦C)

BB UFO FR FO

Compaction Unaged 146.5 141.5 138 140
RTFO 156.5 150.5 149 149

Mixing Unaged 155.5 151 147 150
RTFO 166 162 160 160

After RTFO aging, in Figure 4b, even though the compaction and mixing temperatures increased
due to stiffening of binder, oil addition reduced the compaction temperature of BB by 6~7 ◦C while
mixing temperature decreased by up to 5 ◦C. No significant difference was observed in construction
temperatures between FO and FR, while UFO depicted 1 ◦C increment from other rejuvenated binders.
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This 1 ◦C difference might have been caused by comparatively high viscosity of UFO due to the metal
traces present in the asphalt matrix.

3.2. Chemical Analysis

In Figure 5, FT-IR spectra of unmodified asphalt binder and after rejuvenating with fresh and
waste engine oil has been presented. Noticeable differences can be clearly seen in intensities of
functional groups before and after waste oil addition.Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 18 
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Figure 5. FTIR spectra comparison of unaged asphalt binders.

The strong peaks between ν ≈ 3000 cm−1 to 2800 cm−1 represent aliphatic -CH3, -CH2 and CH
stretching vibrations. Peaks around ν≈ 2359 cm−1 are due to CO2 and its intensity can be controlled by
experimental accuracies. Peak in the finger print region from ν ≈ 1000 cm−1 to ν ≈ 700 cm−1 indicates
benzene rings in asphalt. Signals observed at ν ≈ 1739 cm−1 and ν ≈ 1028 cm−1 are representative
bands of carbonyl and sulfoxide groups. Intensity changes at these bands are a direct indication of
aging binder. In the unaged condition, only FO and UFO exhibited signals at ν ≈ 1739 cm−1, proving
high concentrations of carbonyl functional group C=O due to severe oxidation and heat exposure of
waste engine oil during usage in vehicle, which is in line with the previous research [20]. The peak
at ν ≈ 1456 cm−1 is due to CH2 and CH3 bending vibration while ν ≈ 1375 cm−1 depicts symmetric
stretching. The band at ν ≈ 1216 cm−1 represents C-O bond due to ester molecules in the lubricant oils.

Figure 6 illustrates the chemical profile of the RTFO aged condition for all binders. A significant
difference in intensity of carbonyl functional group can be identified at ν ≈ 1737 cm−1. FR has
undergone a severe aging due to the fact that it contains the higher amount of unsaturated
hydrocarbons. FO and UFO, containing already aged engine oil, provide less opportunity to produce
oxidized products and can be expected to resist aging compared to FR. An increase in peak of FR
at ν ≈ 1216 cm−1 was also observed, which reveals the increased intensity of ester molecules in
aged binder.
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3.3. Dynamic Mechanical Analysis

Asphalt binder is a visco-elastic material which behaves as elastic solid at low temperatures while
exhibiting fully viscous properties at higher temperatures. In mid-range temperatures, both elastic
and viscous properties are shown. Distresses like fatigue and rutting in binder structure depends on
the temperature and loading frequency. Dynamic mechanical analysis was done using DHR apparatus
and G* and δ were obtained. Complex shear modulus (G*) is the ratio of maximum shear stress to
maximum shear strain while the phase angle (δ) is the delay in response of material to applied stress
and resulting strain.

3.3.1. Temperature Dependency

Figure 7 explains the behavior of asphalt binders in unaged and RTFO aged conditions at low
temperatures at fixed frequency of 10 rad/s. It is obvious from the figure that BB has the highest
stiffness at lower temperatures compared to oil rejuvenated binders. In the unaged condition, fresh oil
addition worked better than waste oil in reducing the stiffness of base binder.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 18 
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After RTFO aging, a dramatic rise in stiffness of FR was observed compared to waste oil
rejuvenated binders. As FR has more unsaturated bonds to react with oxygen in air compared
to FO and UFO, the aging effect is much more severe in fresh oil rejuvenated binder.

Figures 8 and 9 show the effect of waste oil inclusion on high temperature properties of asphalt
binder. As per Superpave criteria, unaged binder should have a minimum 1.0 kPa or above value of
G*/sinδ to prevent rutting failure. It can be clearly observed that in the unaged condition, there was
1 ◦C, 2 ◦C and 3 ◦C decrease in upper PG grade of UFO, FO and FR binder, respectively. The waste
oil in UFO and FO had already been exposed to aging during engine operations which resulted in
increased viscosity of rejuvenated binder. FR had the lowest viscosity among all binders due to the
unaged fresh oil.
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After RTFO aging, stiffness of base binder was increased and there was a 3 ◦C rise in upper
grade of BB. After rejuvenating with oil, the stiffening effect of RTFO aging was relaxed by about 2 ◦C.
There was no considerable difference among the performance FR, FO, UFO binders.

3.3.2. Rutting and Delayed Relaxation

Figure 10 compares the first 5 cycles of Creep and Recovery test at 34 ◦C and two different stress
levels. At low stress level (Figure 10a), BB showed less ability to deform due to higher stiffness while all
oil rejuvenated binders (FO, FR, UFO) had higher strain accumulations. When the stress was increased



Appl. Sci. 2018, 8, 1194 13 of 19

up to 3.2 kPa, strain accumulation in FR was highest which depicts a less stiff material compared
to FO and UFO. Increasing the temperature to 64 ◦C (Figure 11) meant binder stiffness decreased
and accumulated strains tended to dissipate into the pavement structure causing rutting problems.
At higher temperatures and higher stress levels (Figure 11b), no significant difference was observed
among FR, FO and UFO binders.
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Figure 12 shows the %Recovery, non-recoverable creep compliance and stress sensitivity of all
binders. Percent recovery (%R) describes the delayed relaxation ability of asphalt binder to applied
stresses while Jnr is a direct measure of rut resistance. Recovery increased as we decreased the
temperature and stress level while Jnr showed an opposite trend on the same criteria. The results
from MSCR showed that rut resistance decreased with oil addition. FR had the higher rut resistance
compared to FO and UFO while FO performed slightly better than UFO.
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3.3.3. Frequency Sweep Isotherms

Frequency was swept from 0.01 to 30 Hz for each test temperature and complex shear modulus
(G*) and phase angle (δ) were measured. Figure 13 demonstrates the effect of frequency changes on
stiffness of base and rejuvenated asphalt binder in the unaged condition. For brevity, G* and Phase
angle data for only three testing temperatures (−5, 25, 55 and 95 ◦C) were shown. It is clear from the
figures that with the increase of frequency, G* tended to increase while increasing temperature had
an opposite effect on G*. An abrupt behavior in G* at −5 ◦C was depicted by UFO binder, which
happened due to partial slippage or breakage of asphalt material sandwiched between the parallel
plate geometry at low temperatures. However, FO samples did not show any breakage of material
under the same testing conditions which can be regarded to the presence of metal traces hindering the
molecular bonding and causing cracking of binder.
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Phase angle, ratio of permanent deformation to elastic deformation, increased with increasing
temperatures until 70 ◦C, after which it tended to decrease. At lower temperatures, asphalt binder
behaved more elastically which resulted in low phase angle values and higher storage modulus. On the
other hand, at higher temperatures, viscous behavior is more prominent and asphalt binder started to
behave like a Newtonian fluid and hence resulted in higher phase angle values where almost all the
response to applied loading was dissipated within the binder.
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3.3.4. Master Curve

Isotherms (−15 to 95 ◦C) obtained after the frequency sweep test were then shifted to a reference
temperature (25 ◦C) using the superposition principle. Figure 14 shows shifting of isotherms for Base
binder (BB). Shifting of all other binder configurations was carried out using the same procedure.
Frequency was reduced using shift factors which were obtained using Equation (2). Activation
Energy (Ea) in Equation (2) was calculated while minimizing the sum of square of errors in theoretical
and practical measured values of G* (Table 8). After obtaining a reduced frequency axis, G* values
measured in the laboratory were plotted against this reduced frequency axis by horizontal translation
of the curves obtained at different temperatures to a reference temperature.
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Table 8. Activation energy Ea of binders.

Binder Code
Ea (kJ/mol) 1

Unaged RTFO Aged

BB 143.293 149.361
FR 137.983 146.175

UFO 141.774 137.443
FO 138.415 139.156

1 Activation energies were obtained while minimizing the sum of square of errors in the Sigmoidal Model.

Afterwards, theoretically measured G* values were fitted to the actual measured values of G*
using the solver function in excel by minimizing the sum of squares of errors and Mastercurves were
obtained for each binder (BB, FR, UFO, FO) as shown in Figures 15 and 16. It is illustrated that waste oil
rejuvenated asphalts (FR, UFO, FO) in the unaged condition had lower modulus values as compared
to BB on low temperature side and hence were more capable of resisting fatigue or thermal cracking.
Reduction of stiffness in case of FO and FR binders were higher compared to UFO. However, on the
high temperature end, higher modulus values were desired to resist rutting. Waste-oil rejuvenated
binders predicted slightly less rut resistance as compared to base binder.
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After RTFO aging, FO showed a slightly lower modulus compared to FR binder. UFO showed a
much lower erroneous modulus after RTFO aging which was caused by the material breakage under
the same testing criteria and should not be assessed as better fatigue resistance. The material breakage
of UFO can be supported by its less activation energy compared to the unaged condition (Table 8).
There was no significant difference on the high temperature end, among all binders, even after short
term aging.

In summary, this study evaluates the properties imparted to asphalt binder by mixing 2.5% of
fresh and waste engine oil and the effect of filtering the waste oil before rejuvenation. Virgin asphalt
binder employed in this research is locally used in South Korea for pavement construction. Laboratory
experimentation incorporates RV, FTIR and DHR tests for rheological and chemical analysis of binders.
RV test results showed that, initially, the decrement in asphalt viscosity after oil addition was more
significant in fresh oil. However, after RTFO aging no significant difference was observed between
fresh and waste engine oil. An increased amount of carbonyl functional group in rejuvenated asphalt
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molecules can be visualized through FTIR spectra. FO and UFO binder proved to be less age susceptible
considering the deficiency of unsaturated hydrocarbons. DHR test data demonstrated improvement
in low temperature properties at the expense of upper PG grade which was compromised by 1~3 ◦C.
DHR data were further analyzed with a Modified Sigmoidal Model to construct Mastercurves for a
comprehensive assessment of fatigue cracking and rutting resistance on a wide range of frequency
and temperatures.

4. Conclusions

Based on the results presented here, the following conclusions can be drawn;

• Infrared spectra demonstrated that engine oil has a similar molecular configuration to asphalt
binder. Fresh engine oil is prone to severe plant aging compared to waste engine, indicated by an
abrupt increase in carbonyl functional groups.

• Rotational viscosity test showed that inclusion of 2.5% filtered waste engine oil generally resulted
in decreased viscosity of asphalt binder and hence imparted better flow properties. No significant
difference in rejuvenating the asphalt binder were observed after RTFO aging for fresh oil,
filtered waste oil and unfiltered waste oil. Filtered engine oil performed similar to fresh oil in
viscosity decrement.

• By adding 2.5% waste engine oil, stiffness of binder was decreased at both temperature ends
undermining the upper PG grade by 2~3 ◦C. Elastic recovery of asphalt binder was compromised
and rejuvenated binders were prone to rutting.

• Mastercurves showed that engine oil rejuvenated binders have low modulus values at low
temperatures and high frequencies compared to virgin binder, indicating a possibility for better
fatigue life. More tests should be performed to verify the improvements in fatigue resistance.

5. Recommendations

• Waste engine oil has the properties to rejuvenate the aged binder to its unaged condition. However,
more research work is need to compensate for the improvement in high temperature distresses.

• A concentration study to optimize the content of waste engine oil along with other polymer
additives is recommended to commercialize the use of waste engine oil as a potential rejuvenator.
A study on environmental concerns should also be carried out to quantitatively assess the use of
this waste material in asphalt pavements.
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