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Abstract: Interventional cancer clinical trials are generally too restrictive, and some patients are
often excluded on the basis of comorbidity, past or concomitant treatments, or the fact that they are
over a certain age. The efficacy and safety of new treatments for patients with these characteristics
are, therefore, not defined. In this work, we built a model to automatically predict whether short
clinical statements were considered inclusion or exclusion criteria. We used protocols from cancer
clinical trials that were available in public registries from the last 18 years to train word-embeddings,
and we constructed a dataset of 6M short free-texts labeled as eligible or not eligible. A text classifier
was trained using deep neural networks, with pre-trained word-embeddings as inputs, to predict
whether or not short free-text statements describing clinical information were considered eligible.
We additionally analyzed the semantic reasoning of the word-embedding representations obtained
and were able to identify equivalent treatments for a type of tumor analogous with the drugs used
to treat other tumors. We show that representation learning using deep neural networks can be
successfully leveraged to extract the medical knowledge from clinical trial protocols for potentially
assisting practitioners when prescribing treatments.

Keywords: clinical trials; clinical decision support system; natural language processing;
word embeddings; deep neural networks

1. Introduction

Clinical trials (CTs) provide the evidence needed to determine the safety and effectiveness of
new medical treatments. These trials are the bases employed for clinical practice guidelines [1] and
greatly assist clinicians in their daily practice when making decisions regarding treatment. However,
the eligibility criteria used in oncology trials are too restrictive [2]. Patients are often excluded on the
basis of comorbidity, past or concomitant treatments, or the fact they are over a certain age, and those
patients that are selected do not, therefore, mimic clinical practice. This signifies that the results
obtained in CTs cannot be extrapolated to patients if their clinical profiles were excluded from the
clinical trial protocols. Given the clinical characteristics of particular patients, their type of cancer,
and the intended treatment, discovering whether or not they are represented in the corpus of CTs that
is available requires the manual review of numerous eligibility criteria, which is impracticable for
clinicians on a daily basis.

The process would, therefore, greatly benefit from an evidence-based clinical decision support
system (CDSS). Briefly, a CDSS could scan free-text clinical statements from medical records and
output the eligibility of the patient in both completed or ongoing clinical trials based on conditions,
cancer molecular subtypes, medical history, and treatments. Such a CDSS would have the potential
advantages of (1) assessing the representation of the patient’s case in completed studies to more
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confidently extrapolate study results to each patient when prescribing a treatment in clinical practice,
and (2) screening a patient’s eligibility for ongoing clinical trials.

In this work, we constructed a dataset using the clinical trial protocols published in the
largest public registry available, and used it to train and validate a model that is able to predict
whether short free-text statements (describing clinical information, like patients’ medical history,
concomitant medication, type and features of tumor, such as molecular profiles, cancer therapy, etc.)
are considered as Eligible or Not Eligible criteria in these trials. This model is intended to inform
clinicians whether the results obtained in the CTs—and, therefore, the recommendation in the standard
guidelines—can be confidently applied to a particular patient. The ultimate goal of this work is to
assess whether representation learning using deep neural networks could be successfully applied to
extract the medical knowledge available on clinical trial protocols, thus paving the way toward more
involved and complex projects.

In the present work, the text was first preprocessed in order to construct training and validation
sets. After extracting bigrams and word-embeddings (which are commonly used techniques used
to generate semantic representations), we explored different state-of-the-art classification methods
(FastText, Convolutional Neural Networks (CNN), Support Vector Machines (SVM), and k-Nearest
Neighbors (kNN)). Finally, after validating and comparing the final classifiers, the model was further
tested against an independent testing set.

The main contributions of this work are as follows:

• We propose a method to learn the eligibility for cancer clinical trials collected in last 18 years.
• Several classifiers (FastText, CNN, SVM, and kNN) are evaluated using word-embeddings for

eligibility classification.
• Using learned deep representations, CNN and kNN (in this case, with average word-embeddings)

obtain a similar accuracy, outperforming the other methods evaluated.
• Representation learning extracts medical knowledge in cancer clinical trials, and word-embeddings

are suitable to detect tumor type and treatment analogies.
• In addition, word-embeddings are also able to cluster semantically related medical concepts.

The remainder of this paper is organized as follows. Section 2 provides a brief review of the
methods related to the proposed work. Section 3 describes the dataset constructed and the methodology
used, including the details employed to train the embeddings and the text classifiers. The evaluation
results are detailed in Section 4, along with an analysis of the word-embeddings that were learned.
Finally, Section 5 addresses our conclusions and future work.

2. Related Work

Artificial intelligence methods include, among others, rule-based systems, traditional machine
learning algorithms, and representation learning methods, such as deep learning architectures.

Rule-based approaches in Natural Language Processing (NLP) seek to encode biomedical
knowledge in formal languages in such a way that a computer can automatically reason about
text statements in these formal languages using logical inference rules. MetaMap [3] is a widely
known rule-based processing tool in the broader domain of biomedical language. It is a named-entity
recognition system which identifies concepts from the Unified Medical Language System Metathesaurus
in text (and MetaMap Lite [4]), the clinical Text Analysis and Knowledge Extraction System (cTAKES [5]),
and DNorm [6]. Many systems have been built upon those tools. For example, in [7], an NLP System
for Extracting Cancer Phenotypes from Clinical Records was built to describe cancer cases on the
basis of a mention-annotation pipeline based on an ontology and a cTAKES system, and a phenotype
summarization pipeline based on the Apache Unstructured Information Management Architecture
(UIMA [8]).

With regard to the specific domain of clinical trials, prior work has focused on the problem of
formalizing eligibility criteria using rule-based approaches and obtaining a computational model that
could be used for clinical trial matching and other semantic reasoning tasks. Several languages could
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be applied in order to express eligibility criteria, such as Arden syntax, Gello, and ERGO, among others.
Weng et al. [9] presented a rich overview of existing options. SemanticCT allows the formalization of
eligibility criteria using Prolog rules [10]. Milian et al. [11] applied ontologies and regular expressions
to express eligibility criteria as semantic queries. However, the problem of structuring eligibility
criteria in clinical trials so as to obtain a generalizable model still remains unsolved.

Devising formal rules and representations with sufficient complexity to accurately describe
biomedical knowledge is problematic. As an example, the problem with discrete representations in
biomedical taxonomies and ontologies is that they miss nuances and new words (e.g., it is impossible
for them to keep up to date with the new drugs in cancer research). In addition, they are subjective,
require human labor to create and adapt them, and it is hard to compute word similarity accurately.
In order to solve these issues, machine learning methods can be trained to acquire this knowledge by
extracting patterns from raw data.

In traditional machine learning, the features employed to train algorithms, such as SVMs or
kNN, are usually given, while in representation learning (deep learning methods such as CNN),
these features are learned [12]. Nonetheless, many factors regarding variation influence the semantic
interpretation of the biomedical language, thus making it very difficult to extract high-level abstract
features from raw text. Deep learning solves this central problem by means of representation learning
by introducing representations that are expressed in terms of other simpler representations.

Deep learning models are beginning to achieve greater accuracy and semantic capabilities [13]
than the prior state of the art with regard to various biomedical tasks, such as automatic clinical text
annotation and classification. For example, a recent work [14] presented an attentional convolutional
network that predicts medical codes from clinical text. It aggregates information from throughout the
document using a CNN, and then uses an attention mechanism to select the most relevant segments for
each of the thousands of possible codes. With regard to clinical text classification tasks, [15] proposed
an approach with which to automatically classify a clinical text at a sentence level using deep CNNs to
represent complex features.

To the best of our knowledge, this work is the first reported study to explore the use of deep
learning techniques in order to directly achieve a semantic interpretation of eligibility criteria in
clinical trials. In contrast to classic NLP approaches, to build the model, we omitted the constraints
and limitations of previous steps, such as tokenization, stemming, syntactic analysis, named entity
recognition (NER), the tagging of concepts to ontologies, rule definition, or the manual selection of
features.

3. Materials and Methods

The system architecture is shown in Figure 1. Clinical trials statements were first preprocessed as
described in Section 3.1. Then, word-embeddings were trained,as shown in Section 3.2, and classification
to obtain the eligibility prediction is detailed in Section 3.3.

3.1. Dataset Building

A total of 6,186,572 labeled clinical statements were extracted from 49,201 interventional CT
protocols on cancer (the URL for downloading this dataset is freely available at https://clinicaltrials.
gov/ct2/results?term=neoplasm&type=Intr&show_dow). Each CT downloaded is an XML file that
follows a structure of fields defined by an XML schema of clinical trials [16]. The relevant data for
this project are derived from the intervention, condition, and eligibility fields written in unstructured
free-text language. The information in the eligibility criteria—both exclusion and inclusion criteria—are
sets of phrases and/or sentences displayed in a free format, such as paragraphs, bulleted lists,
enumeration lists, etc. None of these fields use common standards, nor do they enforce the use
of standardized terms from medical dictionaries and ontologies. Moreover, the language had the
problems of both polysemy and synonymy.

https://clinicaltrials.gov/ct2/results?term=neoplasm&type=Intr&show_dow
https://clinicaltrials.gov/ct2/results?term=neoplasm&type=Intr&show_dow
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The original data were exploited by merging eligibility criteria together with the study condition
and intervention, and subsequently transforming them into lists of short labeled clinical statements that
consisted of two extracted features (see example in Figure 2), the label (Eligible or Not Eligible), and the
processed text that included the original eligibility criterion merged with the study interventions and
the study conditions. These processes are detailed in the following section.

Figure 1. System Architecture: The objective of the final model is to predict whether or not short clinical
statements concerning the type of tumor, including the molecular profile, the oncologic treatment,
the medical history, or concomitant medication, were included in clinical trials.

Figure 2. Extraction of labeled short clinical statements. The two example criteria indicated with the
arrows were extracted from their original source, preprocessed, and labeled.
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3.1.1. Text Preprocessing

We transformed all the eligibility criteria into sequences of plain words (and bigrams) separated by
a whitespace. Each eligibility criterion was augmented with information concerning study intervention
and cancer type, as illustrated in Figure 2. This was done by:

• Splitting text into statements: The implementation took into consideration different kinds of
bullets and lists, and not mistakenly splitting into sentences common abbreviations used in
mutations and other medical notations, which include dots, semicolons, or hyphens.

• Removing punctuation, whitespace characters, all non-alphanumeric symbols, separators,
and single-character words from the extracted text. All the words were lowercase. We decided
not to remove stop words because many of them, such as “or”, “and”, “on”, were semantically
relevant to the clinical statements.

• Transforming numbers, arithmetic signs (+/−), and comparators (>, <, =, ...) into text.

In order to filter out nonrelevant or useless samples, we discarded all the studies where the
conditions did not include any of the tokens or suffixes in “cancer”, “neoplasm”, “oma”, or “tumor”.
Given that the presence or absence of redundancy in eligibility criteria, both intra- or interstudy,
is relevant information to be learned by the model, we did not filter out samples by this criteria,
so that the original redundancy distribution was preserved in the dataset. Because preprocessing the
entire dataset is a costly process, for those readers interested in reproducing this work but would
like to skip the preprocessing steps, we made publicly available a random preprocessed subsample
(https://www.kaggle.com/auriml/eligibilityforcancerclinicaltrials, at section Data, Download all) of
106 samples (for details, see Section 3.1.1).

3.1.2. Bigrams

In the scope of this work, we define bigrams as commonly found phrases that are very frequent
in medicine. Some frequent bigrams were detected and replaced in the text. Bigrams can represent
idiomatic phrases (frequently co-occurring tokens) that are not compositions of the individual words.
Feeding them as a single entity to the word-embedding rather than each of its word separately,
therefore, allows these phrase representations to be learnt. In our corpus, excluding common terms,
such as stop words, was unnecessary when generating bigrams. Some examples of bigrams in this
dataset are: sunitinib malate, glioblastoma multiforme, immuno histochemistry, von willebrand,
dihydropyrimidine dehydrogenase, li fraumeni, etc.

Phrase (collocation) detection was carried out using the GenSim API [17]. The threshold parameter
defines which phrases will be detected on the basis of their score. The score formula applied [18] is:

score(wi, wj) =
count(wi, wj)− δ

count(wi) · count(wj)
(1)

For this dataset, after several tests, the most suitable threshold was set to 500, and the discounting
coefficient δ was based on a min count of 20. The discounting factor prevents the occurrence of too
many phrases consisting of very infrequent words. A total of 875 different bigrams were retrieved
from the corpus and substituted in the text.

3.1.3. Data Augmentation

In this work, data augmentation consisted of adding the cancer types and interventions being
studied to each criterion using statements such as: “patients diagnosed with [cancer type]”.

In the case of CTs that studied multiple cancer types or interventions, we replicated each criterion
for each intervention and condition, increasing the number of prototypes.

https://www.kaggle.com/auriml/eligibilityforcancerclinicaltrials
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3.1.4. Labeling

After preprocessing and cleaning the data, the available set had 6,186,572 short clinical statements
containing a total of 148,038,397 words. The vocabulary consisted of 49,222 different words. Each statement
had in average 23.9 words with a range from 6 to 439 words. The distribution of number of words by
statement had a mean = 23.9, variance = 171.3, skewness = 3.13, and kurtosis = 21.05.

For the ground truth, we automatically labeled the clinical statements—previously processed
from the eligibility criteria, study conditions, and interventions—as “Eligible” (inclusion criterion) or
“Not Eligible” (exclusion criterion) on the basis of:

• Their position in relation to the sentences “inclusion criteria” or “exclusion criteria”, which usually
preceded the respective lists. If those phrases were not found, then the statement was
labeled “Eligible”.

• Negation identification and transformation: negated inclusion criteria starting with “no” were
transformed into positive statements and labeled “Not Eligible”. All other possible means of
negating statements were expected to be handled intrinsically by the classifier.

The classes were unbalanced, and only 39% of them were labeled as Not Eligible, while 61% were
labeled as Eligible. As the dataset was sufficiently large, we used random balanced undersampling [19]
to correct it, resulting in a reduced dataset with 4,071,474 labeled samples. The “eligibility” variable
containing the text for each criterion, as expected in NLP, has a highly sparse distribution and only
450 entries were repeated.

3.2. Embedding Training

We used two different approaches (FastText [20] and Gensim [17]) to generate Word2Vec
embeddings based on the skip-gram and CBOW models [21]. Word2vec [18] is a predictive model
that uses raw text as input and learns a word by predicting its surrounding context (continuous BoW
model) or predicts a word given its surrounding context (skip-gram model) using gradient descent
with randomly initialized vectors. In this work, we used the Word2Vec skip-gram model. The main
differentiating characteristic of FastText embeddings, which apply char n-grams, is that they take into
account the internal structure or words while learning word representations [20]. This is especially
useful for morphologically rich languages. FastText models with char n-grams perform significantly
better when carrying out syntactic tasks than semantic tasks, because the syntactic questions are related
to the morphology of the words.

We explored different visualizations projecting the trained word-embeddings into the vector
space (Sections 4.5.1 and 4.5.2), grouped terms in semantic clusters (Section 4.5.3), and qualitatively
evaluated the embeddings according to their capacity to extract word analogies (Section 4.5.4).

Table 1 shows the best hyperparameters found to generate 100 dimensional embeddings with
the FastText and Gensim Word2Vec models. A random search strategy [22] was used in order to
optimize the values of these parameters. The Gensim model was trained with three workers on a final
vocabulary of 22,489 words using both skip-grams and CBOW models.
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Table 1. Word2Vec hyperparameters using FastText and GenSim. Optimization was performed using
random search [22].

Hyperparameter FastText GenSim

Learning rate 0.025 0.025
Size of word vectors 100 100
Size of the context window 5 5
Number of epochs 5 5
Min. number of word occurrences 5 5
Num. of negative sampled 5 5
Loss function negative sampling negative sampling
Sampling threshold 10−4 10−3

Number of buckets 2,000,000
Minimum length of char n-gram 3
Maximum length of char n-gram 6
Rate of updates for the learning rate 100

3.3. Classifier Training

Once the word-embeddings were extracted, the next stage consisted of sentence classification.
For this, we explored four methods: Deep Convolutional Neural Networks [13] with or without
pre-trained word-embeddings at the input layer, FastText [23], Support Vector Machines (SVM),
and k-Nearest Neighbors (kNN).

Learning curves were built for all models with increasing dataset sizes (1K, 10K, 100K, 1M,
and 4.07 M samples). Each dataset was sampled from the full dataset, applying random balanced
sampling so that, for each resulting dataset, both label classes (“Eligible” and “Not Eligible”) had the
same number of samples. We split each dataset into 80% samples for the training set and 20% for the
test set. A standard 5-fold cross-validation was then performed for each dataset size.

Because the accuracy concerning sentence classification depends on the dataset evaluated and we
were unable to find any previous reports that used the present corpus for text classification, there are
no clearly defined benchmarks with which to perform a comparison.

For example, in different domains, the reported accuracy for classifying the “Hacker News”
posts into 20 different categories using a similar method was 95%, while in the case of “Movie
reviews”, the reported performance was 81.5% [24]. In the medical domain, a high-performance
model is potentially useful in a CDSS. Using previously published computer-aid systems and related
work [25–27] as a basis, we defined the minimum target as an accuracy of 90%, and a Cohen’s
Kappa with a minimum of [0.61–0.80] for substantial agreement, or [0.81–1] for an almost perfect
agreement [28].

3.3.1. FastText

FastText [20,23] for supervised learning is a computationally efficient method that starts with
an embedding layer which maps the vocabulary indexes into d dimensions or, alternatively, it can use
pre-trained word vectors. It then adds a global average pooling layer, which averages the embeddings
of all the words in the sentence. Finally, it projects it onto a single unit output layer and squashes it
with a sigmoid.

3.3.2. Convolutional Neural Network

In the first experiment, the pre-trained word-embeddings were used as the input for the 1D
CNN model, which has a final dense output layer. In a different experiment, we also trained the
word-embeddings for our classification task from scratch. As the training data was sufficiently large
and the vocabulary coverage was also appropriate for the cancer research domain, it was expected that
the model would benefit from training the embeddings in this particular domain.
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We used the Keras [29] library to build a CNN topology (see Table 2), inspired by the text classifier
model for the 20 Newsgroup datasets [30]. After the necessary adaptations, we followed the steps
shown below:

1. Convert all the sentences in the dataset into sequences of word indexes. A word index is simply
an integer identifier for the word. We considered only the top 20,000 most commonly occurring
words in the dataset, and truncated the sequences to a maximum length of 1000 words.

2. Shuffle, stratify, and split sequences of word indexes into training (80%) and validation sets (20%).
3. Prepare an embedding matrix which contains at index i the embedding vector for the word

from index i. We loaded this embedding matrix into an embedding layer which was frozen
(i.e., its weights, the embedding vectors, were not updated during training).

4. A 1D CNN ending in a Softmax layer with two classes was built on top of it.
5. During training, the data were shuffled with random seed before each epoch (we used 10 epochs).

Table 2. CNN topology used in this work. The architecture was chosen after evaluating the accuracy
on the test set using different kernel sizes, number of layers, activation functions, etc.

Layer Description

Input 1000 × 100 dimensional embedded word sequences
Convolution 128 5 × 1 convolutions with stride 1 and ReLu activation
Max Pooling 5 × 1 max pooling with stride 1
Convolution 128 5 × 1 convolutions with stride 1 and ReLu activation
Max Pooling 5 × 1 max pooling with stride 1
Convolution 128 5 × 1 convolutions with stride 1 and ReLu activation
Max Pooling 35 × 1 max pooling with stride 1
Fully Connected 128 fully connected layer with ReLu activation
Fully Connected 2 fully connected layer with Softmax activation

3.3.3. SVM

A support vector machine [31] constructs a hyperplane or set of hyperplanes in a high- or
infinite-dimensional space, which can be used for classification. Intuitively, a good separation is
achieved by the hyperplane that has the largest distance to the nearest training data points of any class
(so-called functional margin), since, in general, the larger the margin, the lower the generalization
error of the classifier. We trained an SVM model with the following hyper-parameters selected using
exhaustive grid-search optimization: penalty parameter C or the error term = 1, kernel = rbf, kernel
gamma coefficient = 1, shrinking heuristic = True, tolerance for stopping criterion = 0.001.

For each short clinical statement, its pre-trained word-embeddings (obtained with FastText using
the skip-gram model, as explained in Section 3.2) were used to calculate an average vector of dimension
100 for each clinical statement. Therefore, given a statement, an average vector of word-embeddings
serves as input to the SVM. This representation was chosen to reduce the dimensionality of the
input data.

3.3.4. kNN

Neighbors-based classification is a type of instance-based learning or nongeneralizing learning:
it does not attempt to construct a general internal model, but simply stores instances of the training
data. Classification is computed from a simple majority vote of the nearest neighbors of each point:
a query point is assigned the data class which has the most representatives within the nearest neighbors
of the point. The same input data used for SVM were evaluated using kNN. We trained a kNN model
with the following hyper-parameters selected using exhaustive grid-search optimization: number of
neighbors = 3, uniform weight for all points in each neighborhood, and Euclidean distance metric.
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4. Results

4.1. Metrics

The performance of the models was calculated using the F-measure (F1), precision and recall,
the confusion matrix, and the coefficient of agreement.

Precision (also called positive predictive value) is the fraction of retrieved instances that are
relevant. Recall (also known as sensitivity) is the fraction of relevant instances that are retrieved.
Precision, Recall, and F1, which is the harmonic mean of precision and sensitivity, are calculated as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2× Precision · Recall
Precision + Recall

where TP (true positives) denotes the number of correct predictions, FP (false positives) is the number
of “Not Eligible” labels wrongly predicted as “Eligible”, and FN (false negatives) is the number of
“Eligible” labels wrongly declared as “Not Eligible”.

Cohen’s Kappa (κ) is a statistic that measures the inter-rater agreement for qualitative (categorical)
items. It is generally considered to be a more robust measure than a simple percent agreement
calculation, since κ takes into account the possibility of the agreement occurring by chance [32]. It is
calculated as:

κ =
po − pe

1− pe
= 1− 1− po

1− pe
(2)

where po is the relative observed agreement among raters, and pe is the hypothetical probability of
a chance agreement, using the observed data to calculate the probabilities of each observer randomly
yielding each category.

4.2. Model Evaluation and Validation

All the models were evaluated using different configurations of hyper-parameters, and the best
results obtained for each classifier are given in Table 3. This section details the classifier settings to get
these results, and analyzes the learning curves that can be seen in Figure 3.

Table 3. Overall results on the validation set for all the classifiers using a dataset of 106 samples and
the full dataset (4.1 × 106) samples. Both experiments were performed using 20% of the prototypes for
validation and 80% for training. The best results are marked in bold.

Classifier Dataset Size Precision Recall F1 Cohen’s κ

FastText 106 0.88 0.86 0.87 0.75
4.1 × 106 0.89 0.87 0.88 0.76

CNN 106 0.88 0.88 0.88 0.76
4.1 × 106 0.91 0.91 0.91 0.83

SVM 106 0.79 0.79 0.79 0.57
4.1 × 106 0.79 0.79 0.79 0.58

kNN 106 0.92 0.92 0.92 0.83
4.1 × 106 0.93 0.93 0.93 0.84
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(a) FastText (b) CNN

(c) SVM (d) kNN

Figure 3. Learning curves with 5-fold cross-validation on the FastText, Convolutional Neural Network
(CNN), Support Vector Machine (SVM), and k-Nearest Neighbors (kNN) classifiers. Horizontal axes
show the total training samples, whereas vertical axes are the F1-score. The green region represents the
standard deviation of the models.

4.2.1. FastText Classifier Results

In order to choose the parameters for the FastText model, we compared the F1 between successive
experiments. Using a random search [22] strategy for hyperparameter search, the best results were
obtained with 100 dimensions and a learning rate of 0.1, as shown in Table 4.

We also tested the predictive performance of this model when using or not using pregenerated
bigrams, but there was no significant impact on the results, as shown in Figure 4.

The F1 achieved when using 106 samples (800K for training) was 0.87 (see Table 3). The Cohen’s
Kappa coefficient of agreement between the predicted and the true labels in the validation set was
κ = 0.75, which is regarded as a substantial agreement. The results did not improve significantly when
using the full dataset of 4.1 × 106 samples. In this case, the F1 achieved was 0.88 with a Cohen’s Kappa
coefficient κ = 0.76.

The learning curve (Figure 4) shows the evolution of the F1 during training when the number of
training samples was increased from 800 to 800K. The curve converged with the score obtained in the
training sample to a maximum of 0.88 when using the full dataset, as shown in Table 3. The validation
score converges with the training score, and the estimator does not benefit much from more training
data, denoting a bias error. It has been reported that the phenomenon of not being able to increase the
performance with additional data can be overcome with the use of deep learning models applied to
complex problems, in contrast to a fast but thin architecture such as FastText (as will be proved later
when using CNNs). On the contrary, the model did not suffer from a variance error. Cross-validation
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was used to assess how well the results of the model generalized to unseen datasets and obtained
robust average validation results with a decreasing standard deviation over the k folds (Figure 3a).

Table 4. FastText classifier hyper-parameters. Optimization was performed using random search [22].

Hyper-Parameter Value

Learning rate 0.1
Size of word vectors 100
Size of the context window 5
Number of epochs 100
Minimum number of word occurences 1
Number of negatives sampled 5
Loss function Softmax
Minimum length of char n-gram 0
Maximum length of char n-gram 0
Maximum length of word n-gram 1
Sampling threshold 10−4

Rate of updates for the learning rate 100
Use of pre-trained word vectors for supervised learning Yes

(a) With bigrams (b) Without bigrams

Figure 4. Learning curves with 5-fold cross-validation on the FastText classifier using as input
pre-trained word-embeddings learned (a) with bigrams and (b) without bigrams. The green region
represents the standard deviation of the model.

4.2.2. CNN Classifier Results

The hyper-parameters used to train the CNN model are shown in Table 5. The results obtained
when using both Gensim and FastText generated embeddings were studied, and the F1 obtained was
similar when using or not using pre-trained word-embeddings. Only the number of dimensions and
epochs had a great impact on the performance and the computational cost of the model.

With regard to the batch size, sizes of 1, 10, 64, 128, and 512 were investigated and, as expected,
the higher the value, the greater the computational efficiency. The noisiness of the gradient estimate was
reduced in batch sizes by using higher values. This can be explained by the fact that updating by one
single sample is noisy when the sample is not a good representation of all the data. We should consider
a batch with a size that is representative of the whole dataset. For values higher than 128, the predictive
performance deteriorated in earlier epochs during training and, therefore, we chose a value of 128.
In fact, it has been reported that the loss function landscape of deep neural networks is such that
large-batch methods are almost invariably attracted to regions with sharp minima [33] and that,
unlike small-batch methods, they are unable to escape the basins of these minimizers. When using
a larger batch, there is consequently a significant degradation in the quality of the model, as measured
by its ability to generalize.
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Table 5. CNN classifier hyper-parameters.

Hyper-Parameter Value

Batch size 128
Learning rate 0.001
Size of word vectors 100
Number of epochs 10
Max number of words 20,000
Max sequence length 1000
Loss function Categorical cross-entropy
Optimizer RMSProp
RMSProp rho 0.9
epsilon 10−8

decay 0

The CNN learning curve (Figure 3b) shows that the network is capable of generalizing well
and that the model is robust. Unlike that which occurs with the FastText classifier, no overfitting is
produced when the dataset is small.

Nonetheless, it also had a bias error, but, in this case, the model achieved higher scores for both
the training and the validation sets, converging to a maximum F1 = 0.91, beyond which adding more
data does not appear to be beneficial.

One additional difference with the FastText learning curve is that the CNN model needs more data
to learn, in comparison with FastText. This is reflected by the fact that the CNN model was underfitting
and not properly learning for a sample size 103 with a validation score of only 0.72, while for FastText
and a sample size 103, the model was clearly overfitting with a training score close to 1.

The model of the whole dataset, using 3,257,179 training examples, bigrams, and pre-trained
word-embeddings, eventually yielded an accuracy of 0.91 for the validation set comprising
814,295 samples. The coefficient of agreement between the predicted and the true labels in the
validation set was κ = 0.83 (see Table 3), which is regarded as an almost perfect agreement and implies
that the model is reliable.

4.3. SVM Classifier Results

The learning curve (Figure 3c) shows the evolution of the F1 during training when the number of
training samples was increased from 800 to 800K. The curve converged with the score obtained in the
training sample to a maximum of 0.79 when using the full dataset, as shown in Table 3. The validation
score converges with the training score, and the estimator does not benefit much from more training
data, denoting a bias error.

The F1 achieved when using 106 samples (800K for training) was 0.79 (see Table 3). The Cohen’s
Kappa coefficient of agreement between the predicted and the true labels in the validation set was
κ = 0.57. The results did not improve when using the full dataset of 4.1 × 106 samples. In this case,
the F1 achieved was 0.79 with a Cohen’s Kappa coefficient κ = 0.58.

4.4. kNN Classifier Results

The learning curve (Figure 3d) shows the evolution of the F1 during training when the number of
training samples was increased from 800 to 800K. The validation curve with a maximum of 0.92 still
did not reach the training score obtained in the 800K training sample and further reached 0.93 in the
full dataset, as shown in Table 3. This estimator benefited the most, compared with the other models,
from more training data. Nonetheless, as expected, the computational cost on prediction time was
expensive, and using 106 samples was equivalent to 16 core-hours of CPU.

The F1 achieved when using 106 samples (800K for training) was 0.92 (see Table 3). The Cohen’s
Kappa coefficient of agreement between the predicted and the true labels in the validation set was
κ = 0.83, which is regarded as an almost perfect agreement. The results did not improve significantly
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when using the full dataset of 4.1 × 106 samples. In this case, the F1 achieved was 0.93 with a Cohen’s
Kappa coefficient κ = 0.84.

4.4.1. Evaluation Using a Clinical Practice Simulation

Finally, in order to assess the potential of the proposed approach as a clinical decision support
system, we checked its performance using a clinical practice simulation. The two final models were,
therefore, further tested with unseen inputs consisting of a small set (50 samples) of short clinical
statements that would be used in routine clinical practice. Although the test size is too small to be
able to draw meaningful conclusions, the models yielded very promising results with an accuracy of
0.88 and κ = 0.76. This favors the hypothesis that it would be possible to generalize such a model to
a different source of data (i.e., routine clinical practice notes) beyond clinical trial protocol eligibility
criteria texts, which was the source used to build and validate it.

Some examples of correctly classified statements that would require an expert knowledge of
oncology to judge whether or not they are cases being studied in available clinical trials (Yes/No) are
shown below.

Lapatinib to treat breast cancer with brain metastasis→ Yes;
Pertuzumab to treat breast cancer with brain metastasis→ No;
CAR to treat lymphoma→ Yes;
TCR to treat breast cancer→ No.

The performance achieved with the CNN classifier fits expectations with an F1 = 0.91 and
an almost a perfect agreement, outperforming the FastText results. We can, therefore, conclude that it
is possible to address the problem of predicting whether or not short clinical statements extracted from
eligibility criteria are considered eligible in the available corpus of cancer clinical trials.

4.5. Word-Embeddings

The word-embeddings are an interesting part of this work. Adding pre-trained embeddings to
the classifiers did not alter the classification results. However, the embeddings were, in themselves,
sufficiently interesting to be qualitatively assessed and discussed using word space visualizations.

4.5.1. t-SNE (t-Distributed Stochastic Neighbor Embedding) Representation of a Subset of Words

The word-embeddings obtained with FastText, in which each word is represented in a
100-dimensional space, can be used as a basis on which to visualize a subset of these words in a
reduced space. We use t-Distributed Stochastic Neighbor Embedding (t-SNE [34]) for this purpose,
which is a dimensionality reduction method that is particularly well suited to the visualization of
high-dimensional datasets. The objective of this algorithm is to compute the probability distribution
of pairs of high-dimensional samples in such a way that similar prototypes will have a high probability of
being clustered together. The algorithm subsequently projects these probabilities into the low-dimensional
space and optimizes the distance with respect to the sample’s location in that space.

We defined those words from the complete corpus that we wished to analyze (as it is not possible
to visualize all 26,893 words), and obtained the vectors of these words. The t-SNE representation in
Figure 5 shows two aspects: on the one hand, the words are grouped by semantic similarities, and on
the other, the clusters seem to follow a spatial distribution in different regions in a diagonal direction
from intrinsic/internal to extrinsic/external concepts with respect to the human body: [G5] body
organs→ [G4] body symptoms→ [G3] infections, cancer and other diseases→ [G1,G2] treatments.
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Figure 5. Word-embeddings projected into a reduced space with t-Distributed Stochastic Neighbor
Embedding (t-SNE).

4.5.2. Interactive Visualization of the Whole Set of Words

TensorBoard from TensorFlow [35] provides a built-in visualizer, called the Embedding Projector,
for the interactive visualization and analysis of high-dimensional data. The Word2Vec embeddings
obtained with Gensim were converted into Tensorflow 2D tensor and metadata formats for
embedding visualization.

Figure 6 shows an example of these results when using the word “ultrasound” as a query. We can
appreciate that the 87 nearest points to ultrasound were all related to explorations, and mainly medical
imaging. The nearest neighbor distances are also consistent when using other concepts. For example,
Table 6 shows that the model successfully extracted hormonal therapies from breast cancer as the
t-SNE nearest neighbors to “Tamoxifen”.

Table 6. Nearest neighbors of “Tamoxifen” using Euclidean distance on the embedding t-SNE space.
All of them are hormonal therapies.

Word Distance

Raloxifene 0.569
Letrozole 0.635
Anastrozole 0.656
Fulvestrant 0.682
Arimidex 0.697
Antiandrogens 0.699
Exemestane 0.715
Aromatase 0.751
Antiestrogens 0.752
Toremifene 0.758
Serm 0.760
Estrogens 0.769
Agonists 0.773
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Figure 6. Search for “Ultrasound” on the Tensorboard Embedding Projector.

4.5.3. Word Clusters

We also used the resulting word vectors to generate word clusters fitting a k-means model [36].
The number of clusters were estimated by applying a reduction factor of 0.1 to the total number of
words to be read (maximum 10,000). The implementation and resulting clusters can be found at
https://github.com/auriml/capstone. Upon sampling 20 clusters at random, a total of 16 were judged
to be relevant as to whether their words were syntactically or semantically related. Some examples are
shown in Table 7.

Table 7. Samples of clustered words.

mri, scan, imaging, radiographic,
magnetic, resonance, scans,
abdomen, radiological, mr,
radiologic, image, technique,
images, perfusion, sectional,
weighted, spectroscopy, mris,
dce, imaged, lp, neuroimaging,
volumetric, mrs,
multiparametric, mrsi, imagery

pelvis, skull,
bones,
skeleton,
femur, ribs,
sacrum,
sternum,
sacral, lfour,
rib, humerus

pulmonary, respiratory,
obstructive, asthma, copd,
restrictive, emphysema,
bronchiectasis, bronchodilator,
bronchitis, bronchospasm,
pneumothorax, ssc,
bronchopulmonary, cor, expired,
onel, congestion, airflow

abuse, alcohol,
substance,
dependence,
alcoholism,
addiction,
dependency,
illicit, recreational,
user, illegal,
misuse, abusers

Note that medical abbreviations, such as lfour (L4), mri (Magnetic Resonance Imaging), or copd
(Chronic Obstructive Pulmonary Disease) were correctly clustered.

https://github.com/auriml/capstone
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4.5.4. Word Analogies

The word vectors generated were also useful for accurately resolving analogy problems, such as
“Tamoxifen is used to treat breast cancer as X is used to treat prostate cancer?”. To find the top-N most
similar words, we used the multiplicative combination “3CosMul” objective proposed by Levy [37]:

[‘tamoxifen’ − ‘breast + ‘prostate’] ≈ [(‘enzalutamide’, 0.998), (‘antiandrogens’, 0.972), (‘abiraterone’, 0.952),
(‘finasteride’, 0.950), (‘zoladex’, 0.946), (‘adt’, 0.933), (‘dutasteride’, 0.927), (‘acetate’, 0.923), (‘flutamide’,
0.916), (‘leuprolide’, 0.910)]

These are, in fact, very precise results, because all these terms belong to the hormone-therapy
family of drugs which are specifically used to treat prostatic cancer, and are the equivalents of
tamoxifen (hormone-therapy) for breast cancer. In other words, the model learned the abstract
concept “hormone-therapy” as a family of drugs and was able to apply it distinctively depending on
the tumor type.

5. Conclusions

In this work, we have trained, validated, and compared various classifiers (FastText and a CNN
with pre-trained word-embeddings, kNN, and SVM) on a corpus of cancer clinical trial protocols
(www.clinicaltrials.gov). The models classify short free-text sentences describing clinical information
(medical history, concomitant medication, type and features of tumor, such as molecular profile, cancer
therapy, etc.) as eligible or not eligible criteria for volunteering in these trials. SVM yielded the lowest
accuracy results, and kNN obtained top accuracy performance similar to the CNN model, but it had
the lowest computational performance. Particularly, the high accuracy achieved with kNN is the
immediate consequence of using as input a highly efficient clinical statement representation which is
based on averaged pre-trained word-embeddings. A possible reason for this is that the kNN accuracy
relies almost exclusively on using a highly efficient vector representation as the input data and on the
dataset size. Being a non-parametric method, it is often successful—as in this case—in classification
situations where the decision boundary is very irregular. Nonetheless, in spite of its high accuracy and
the minimal training phase, we favor the use of deep learning architectures for classification (such as
CNN) over a kNN model because of its lower computational cost during prediction time. In fact,
classifying a given observation requires a rundown of the whole dataset being too computationally
expensive for large dataset as in this work.

All models were evaluated using a 5-fold cross-validation on incremental sample sizes (1K, 10K,
100K, 1M, samples) and on the largest available balanced set (using undersampling) with 4.01 million
labeled samples from a total of 6 million. Overall, the models proved robust and had the ability to
generalize. The best performance was achieved with kNN using a balanced sampling of the whole
dataset. The results fit expectations, with an F1 = 0.93 and an agreement of κ = 0.84. The fact that the
CNN model outperformed FastText may be explained by its greater depth, but more efforts should be
made to experiment with alternative CNN topologies.

This CNN model was also evaluated on an independent clinical data source, thus paving the way
toward its potential use—taking into account pending improvements—in a clinical support system for
oncologists when employing their clinical notes.

During the experiments, the word-embedding models achieved high-quality clusters, in addition
to demonstrating their capacity for semantic reasoning, since they were able to identify the equivalent
treatments for a type of tumor by means of an analogy with the drugs used to treat other tumors.
These interesting reasoning qualities merit study in a future work using this dataset.

The evaluation results show that clinical trial protocols related to cancer, which are freely available,
can be meaningfully exploited by applying representation learning, including deep learning techniques,
thus opening up the potential to explore more ambitious goals by making the additional efforts required
to build the appropriate dataset.

www.clinicaltrials.gov
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Our most immediate future work is to use a larger sample test of short clinical text from medical
records for real simulation and include the effectiveness of CT interventions in the model, thus enabling
us to not only predict whether or not a patient’s case has been studied, but also whether the proposed
treatment is expected to be effective based on the results of completed clinical trials for each indication.
The problem would be a multilabel classification task, where the classes would be “effective” vs.
“non-effective” and “studied” vs. “non-studied”, and both could be either true or false. This would
allow us to classify from four types of cases: effective and studied, potentially effective but not studied,
not effective and studied, and potentially not effective and not studied. The main effort in this case lies
in the dataset building, which entails including the obtained efficacy results for each study. As only a
subset of CTs (5754 samples, 11%) have the results reported on clinicaltrials.gov, it means that, for this
goal, it would be necessary to augment data from other sources, such as PubMed [38]. Following prior
effort, a new model could be built to output potential cancer treatments that could be considered for
a particular patient case based on the efficacy results of completed clinical trials.
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