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Featured Application: We present a new computational method that can be used to investigate
the quantum dynamics of one- or two-electron systems during interaction with an ultrashort
laser pulse, including nuclear dynamics. The inclusion of both electronic and nuclear degrees
of freedom allows for a description of a wide range of processes, including charge migration
during the nuclear dissociation process.

Abstract: In this report, we introduce the static coherent states (SCS) method for investigating
quantum electron dynamics in a one- or two-electron laser-induced system. The SCS method solves
the time-dependent Schrödinger equation (TDSE) both in imaginary and real times on the basis
of a static grid of coherent states (CSs). Moreover, we consider classical dynamics for the nuclei
by solving their Newtonian equations of motion. By implementing classical nuclear dynamics,
we compute the electronic-state potential energy curves of H+

2 in the absence and presence of an
ultra-short intense laser field. We used this method to investigate charge migration in H+

2 . In particular,
we found that the charge migration time increased exponentially with inter-nuclear distance. We also
observed substantial charge localization for sufficiently long molecular bonds.

Keywords: static coherent states (SCS) method; time-dependent Schrödinger equation (TDSE);
quantum electron dynamics; classical nuclear dynamics; charge migration; ultra-short intense
laser field

1. Introduction

In the past two decades, the development of state-of-the-art technologies for generating and
controlling ultra-short intense laser pulses has paved the way for more profound insights into electron
and nuclear dynamics in atoms and molecules on their natural timescales [1–5]. Current theoretical
treatments largely focus on electronic dynamics. However, recent experiments have demonstrated the
retrieval of bond distances in simple diatomic molecules [6] and control over the ultrafast dissociation
process and resolution of bond dynamics of a polyatomic molecule using laser-induced electron
diffraction (LIED) [7]. To fully understand molecular dynamics during interaction with a strong laser
pulse, it is therefore essential to develop a theory that takes into account the bond dynamics and
dissociation process and thereby accurately describes nuclear, as well as electronic, motion. This is the
aim of the present work.

Among a wide variety of computational methods, one of the most applicable and important
approaches is the direct solution of the time-dependent Schrödinger equation (TDSE). This approach
is implementable for simulating systems with a limited number of particles in a limited region
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of momentum or coordinate space. There are different TDSE approaches for simulating the
electron dynamics in an atomic or molecular laser-induced system in one, two, or three (full)
coordinate (or momentum) dimensions [8–22]. Some of the TDSE approaches treat the nuclei in the
laser-induced system dynamically using classical or quantum mechanics. Currently, it is not feasible to
simulate multi-electron systems by applying the exact TDSE. To this aim, one should implement the
single-active-electron approximation. To study a multi-electron system, one could also develop and
evaluate other approximate methods, such as the time-dependent density functional theory (TDDFT)
[23], the multiconfiguration time-dependent Hartree-Fock (MCTDHF) [24], the multiconfiguration
time-dependent Hartree (MCTDH) [25], and the time dependent Hartree-Fock(TDHF) [26].

During the last two decades, a number of approaches have been developed to solve the TDSE for
high-dimensional quantum systems in the presence of an ultra-short intense laser field on the basis of
coherent states (CSs) and to investigate related phenomena [27–32]. CSs have many advantageous
features. First of all, their initial basis set can be generated randomly. Secondly, the Coulombic potential
singularities are removed and replaced by the complex error function on the basis of CSs. Finally,
on the basis of CSs, fewer configurations are needed for solving the TDSE of a system with high number
of degrees of freedom. By implementing CSs for solving the TDSE, Shalashilin et al. introduced the
coupled coherent states (CCS) method [27]. The CCS method was originally developed to simulate
systems with distinguishable particles. For simulating fermionic systems, two different versions of
a fermion coupled coherent state (FCCS) method were introduced [29,31,32]. The first version of the
FCCS method, which was introduced by Shalashilin et al., uses a Slater determinant to symmetrize
the CCS equations [29]. The second version of the FCCS method, introduced by Eidi et al. [31,32],
simplifies the process by (anti)symmetrizing the CSs grid, with all the governing equations the same
as for the CCS method. However, the CCS method and its derivatives are essentially trajectory-guided.
The most important concern regarding trajectory-guided approaches based on CCS is that they are not
completely successful for real-time simulations of single- or two-electron systems in the presence of
a laser field [27–29].

Here, we introduce the static coherent states (SCS) method, which can investigate the quantum
electron dynamics and the classical nuclear dynamics in single- and two-electron systems in the
absence or presence of an external laser field. In the SCS method, in contrast to the CCS method and
other older methods that use an evolving gird of CSs [33–36], the CSs grid remains constant throughout
the imaginary and real-time simulations. To simulate two-electron systems, the SCS method uses the
same algorithm used in FCCS-II for symmetrizing the CSs grid [31,32].

In this report, after reviewing CSs and their mathematical formulations, we introduce the SCS
method. Importantly, we account for nuclear dynamics classically, by solving the Newtonian equations
of motion. We apply SCS to compute the ground state of H+

2 at a fixed initial inter-nuclear distance by
propagating the TDSE in imaginary time. Implementing the Gram–Schmidt algorithm on the basis
of SCS, the first excited state of the system at the same inter-nuclear distance is achieved. By treating
the two nuclei dynamically, these two states are propagated in real time in the absence of an external
laser field. Consequently, the potential energy curves of the first two electronic states of the system
are achieved. Moreover, to investigate the charge migration between the ground state and the first
excited state in a laser-induced H+

2 , we repeat the real-time propagation for the ground state at the
initial inter-nuclear distance in the presence of attosecond laser pulses with different intensities.

2. Theory

On the basis of the SCS method, in order to simulate a single- or two-electron system, a static
grid of three- or six-dimensional CSs, respectively, is constructed in a phase space using a Gaussian
distribution function. Having generated the CSs grid, it remains constant throughout the whole
simulation. To achieve this, for each dimension of every electron in the system, the same number of
one-dimensional CSs is generated using
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z =
γ1/2
√

2
q + i

−γ1/2
√

2h̄
p, (1)

where γ tunes the width of CSs in phase space. In Equation (1), q is the position and p is the momentum
of the 1D CS. Using the fact that CSs are eigenkets of the annihilation operator and eigenbras of the
creation operator:

â |z〉 = z |z〉 , 〈z| â† = 〈z| z∗, (2)

it is easy to verify that these two operators are related to the position and momentum operators in
each dimension in such a way that

q̂ =
−γ1/2
√

2

(
â† + â

)
, p̂ = ih̄

γ1/2
√

2

(
â† + â

)
. (3)

For one-electron systems, a set of 3D CSs is constructed from 1D CSs of each dimension of the
electron using the tensor product

|Z〉 = |z1〉 ⊗ |z2〉 ⊗ |z3〉 = |z1z2z3〉 . (4)

For two-electron systems, two sets of 3D CSs corresponding to each electron construct a set of
6D CSs:

|Z〉 = |ze1〉 ⊗ |ze2〉 = |z1z2z3z4z5z6〉 . (5)

For two-electron systems, as the system is fermionic, the CSs grid should be constructed in such
a way that the total wave function of the system becomes anti-symmetric [29,31,32]. For example,
in the ground state of a two-electron system, as the spin wave function is anti-symmetric, the spatial
wave function should be symmetric. Because the SCS method deals with the spatial wave function,
the static CSs grid should be symmetrized (or anti-symmetrized) in order to be capable of simulating
the symmetric (or anti-symmetric) electronic states of a two-electron system [31,32].

Three- or six-dimensional CSs in the static CSs grid are non-orthogonal and make an over-complete
basis set: 〈

Z
∣∣Z′〉 = 3n

∑
j=1

exp
(
−1

2

(∣∣zj
∣∣2 + ∣∣∣z′j∣∣∣2)+ z∗j Z′j

)
, (6)

where n is the number of electrons in the system.
The wave function of a single- or two-electron system can be represented as a superposition of,

respectively, N three- or six-dimensional CSs:

|Ψ〉 =
N

∑
k=1

Dk |Zk〉 . (7)

In Equation (7), for Dk coefficients, we have

Dk =
N

∑
l=1

(
Ω−1

)
kl

Cl , (8)

where
Cl = 〈Zl |Ψ〉 (9)

and Ω−1 is the inverse of the overlap matrix Ω with elements

Ωkl = 〈Zk|Zl〉 . (10)
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Applying the identity operator of CSs [27,31]:

I =
N

∑
k,l=1
|Zk〉

(
Ω−1

)
kl
〈Zl | (11)

to the TDSE, we obtain

〈
Zj
∣∣ d |Ψ〉

dt
=
−i
h̄

N

∑
k,l=1

〈
Zj
∣∣H |Zk〉

(
Ω−1

)
kl
〈Zl |Ψ〉 . (12)

Because, in the SCS method, CSs are not evaluated by time, we can easily bring them into the time
derivative. Then by implementing Equations (8) and (9), we obtain

dCj

dt
=
−i
h̄

N

∑
k=1
〈Zk|H|Zl〉Dk, (13)

where H is the Hamiltonian of the system.
Considering no quantum dynamics for nuclei, the general Hamiltonian for a single– or

two–electron system would be

H =
n

∑
i=1

∣∣∣pei

∣∣∣2
2
−

n

∑
i=1

m

∑
j=1

1∣∣ri −Rj
∣∣ + n

∑
i=1

ri · E(t) +
1

|r1 − r2|
+

1
|R1 −R2|

, (14)

where n, m = 1, 2 are the indexes of electrons and nuclei in the system, respectively. In Equation (14),
the first term is for the kinetic energy of n electrons, and the second term is for the electron–nuclear
Coulombic potentials. In the presence of an external laser field, considering the dipole moment
approximation, the third term would be added to the first two terms. For two–electron systems,
one should also add the fourth term in Equation (14), which is the repulsive potential between two
electrons. In addition, for two–nuclei systems, the repulsive potential between two–nuclei should be
computed considering the fifth term in Equation (14).

For the matrix elements of the kinetic energy of electrons in Equation (14) on the basis of
a 3n-dimensional CSs grid, by employing Equations (2) and (3), it is easy to obtain

〈
Zk

∣∣∣∣∣∣∣
n

∑
i=1

∣∣∣pei

∣∣∣2
2

∣∣∣∣∣∣∣Zl

〉
= −γ

2
〈Zk|Zl〉

3n

∑
j=1

(
z∗k

2
j + zl

2
j − 2zk

∗
j zl j − 1

)
, (15)

where j is the dimension number. The matrix elements of electron–nuclear Coulombic potentials in
Equation (14) are also achieved by the following [31,37]:〈

Zk

∣∣∣∣∣ 1∣∣rei −Rj
∣∣
∣∣∣∣∣Zl

〉
= 〈Zk|Zl〉

1√∣∣ρei j
∣∣2 er f

(√
γ
∣∣ρei j

∣∣2), (16)

where i and j are the index numbers of electrons and nuclei, respectively, and

ρei j =
Z∗ki

+ Zli√
2γ

−Rj. (17)
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The matrix elements of electron–electron Coulombic potentials in Equation (14) are also computed
by the following [31,37]:〈

Zk

∣∣∣∣ 1
|re1 − re2 |

∣∣∣∣Zl

〉
= 〈Zk|Zl〉

1√
|ρ12|2

er f
(√

γ

2
|ρ12|2

)
, (18)

where

ρ12 =
Z∗k1

+ Zl1√
2γ

−
Z∗k2

+ Zl2√
2γ

. (19)

As is evident from Equations (16) and (18), one of the most important features of CSs is that they
remove the singularity of Coulombic potentials and replace it with the complex error function (er f ).

In this work, we assume that the external laser field is linearly polarized along the z-axis and that
the shape of the electric field is given by

E(t) = Aenv(t)E0cos(ωt)k̂. (20)

In Equation (20), E0 is the maximum amplitude of the laser field, ω is the angular field frequency,
and Aenv(t) = sin2( t

τ π) is the envelope with the full width at half maximum (FWHM) duration of τ.
In the presence of an external laser field, for the matrix elements of the external laser potential on the
basis of a SCS grid, we can easily obtain

〈Zk|re · E(t)|Zl〉 = 〈Zk|Zl〉
z3
∗
k + z3l√

2γ
Aenv(t)E0cos(ωt). (21)

In order to compute the time-dependent expectation value of any observable O on the basis of
a static grid of CSs, by employing the identity operator of CSs from Equation (11), one can write

〈Ψ|O|Ψ〉 = ∑
jklm

〈
Ψ
∣∣Zj
〉
(Ω−1)jk 〈Zk|O|Zl〉 (Ω−1)lm 〈Zm|Ψ〉 . (22)

Finally, by employing Equations (8) and (9) in Equation (22), we obtain

〈Ψ|O|Ψ〉 =
N

∑
k=1
〈Zk|O|Zl〉D∗k Dl . (23)

In order to obtain the ground state of the system, one must propagate Equation (13) in imaginary
time until the expectation value of the Hamiltonian of the systems (from Equation (23)) converges to
the lowest accessible value [31,38]. In this part, there is no external laser field in the system. Moreover,
obtaining the upper electronic states of the system is possible by employing the Gram–Schmidt
algorithm on the basis of CSs [32]. For a two-nuclei system, propagation of the TDSE in imaginary
time for a constant inter-nuclear distance would lead to the ground state of the system at that specific
inter-nuclear distance. When implementing this approach for two-nuclei systems, it is necessary to
repeat this process for a sufficient number of inter-nuclear distances to gain the potential energy curve
of different electronic states of the system [32].

Here, we introduce another approach based on the SCS method that simulates the electronic-state
potential energy curves of a two-nuclei system in the absence or presence of an ultra-short laser field.
This approach only needs the electronic states of the system for an initial inter-nuclear distance, where
the nucleus–nucleus force is strong enough to dissociate the two nuclei. Electronic states of other
inter-nuclear distances are computed by propagating the TDSE in real time on the basis of the initial
SCS grid, considering classical dynamics for the two nuclei. At first, to obtain the potential energy
curves of different electronic states of the system, the external laser field is turned off. Later, we turn
the laser field on to study the behavior of the laser-induced system.
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In our implementation of the SCS method, two complementary CSs grid boxes form the SCS grid.
NI CSs that are suitable for simulating the ground state of the system are distributed in an inner box.
As in the SCS approach, the CSs grid is static, and we need to widen the grid to ensure a good result is
obtained from computations of upper electronic states or real-time simulations of the system. To do so,
NO CSs are distributed differently in an outer box. The outer box plays a crucial stabilizing role in the
real-time propagation of the TDSE in the absence or presence of an external laser field considering
classical nuclear dynamics. However, both the inner and outer boxes participate in all simulation
procedures. In contrast to trajectory-guided approaches such as the CCS method [27], which has
serious convergence problems in real-time simulations, we extend our SCS grid by adding a number
of SCS (outer box) with a distribution scheme suited particularly for real-time simulations. By doing
so, we alleviate the problem of using trajectory-guided CSs.

Classical Dynamics of Nuclei

To treat the nuclei in a single- or two-electron system dynamically, we employ the Newtonian
classical equation of motion:

d2Rj

dt2 = aj =
1

Mj

(
n

∑
i=1

Fij + Fj′ j + Fl j

)
, j 6= j′ = 1, 2, (24)

where j and j′ are the indices of nuclei; a is the acceleration; M is the mass; i is the index of electrons;
Fij is the expectation value of the electron–nucleus attractive forces; in two-nuclei systems, Fj′ j is the
nucleus–nucleus repulsive force; and Fl j is the force exerted on each nucleus by the external laser
field. Employing the Verlet algorithm, the dynamic equation for each nucleus can be solved using the
following recursive equation:

Rjnt+1 = 2Rjnt
−Rjnt−1 + aj∆t2 + O(∆t4). (25)

In Equation (25), nt is the index of the classical time step for nuclear dynamics.
The expectation value of the electron–nucleus attractive forces can be computed by employing

Equation (23):
Fij = ∑

kl
Fijkl D

∗
k Dl , (26)

where

Fijkl =

〈
Zk

∣∣∣∣∣ rij∣∣rij
∣∣3
∣∣∣∣∣Zl

〉
(27)

represents the matrix elements of the attractive Coulombic force on the basis of a static grid of CSs and
rij = ri −Rj . To compute Fijkl , implementing the identity operator of coordinate states of electrons
leads to

Fijkl =
∫ ∞

−∞

∫ ∞

−∞
〈Zk|ri〉

〈
ri

∣∣∣∣∣ rij∣∣rij
∣∣3
∣∣∣∣∣r′i
〉〈

r′i
∣∣Zl
〉

dridr′i. (28)

Employing the continuous Dirac delta function in the coordinate representation
〈
ri
∣∣ f (ri)

∣∣r′i〉 = δ(ri − r′i) f (ri)

∫ ∞
−∞ f (ri)δ(ri − r′i)dri = f (r′i)

(29)

one obtains
Fijkl =

∫ ∞

−∞

〈
Zk
∣∣r′i〉 〈r′i∣∣Zl

〉 rij∣∣rij
∣∣3 dr′i. (30)
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Using the fact that CSs are Gaussian wave packets in the following coordinate
representation [27,31]:

〈Zk|ri〉 = (
γ

π
)3/4 exp

(
−γ

2
(ri −

√
2Z∗k
γ

1
2

)2 + (
Z∗k − Zk

2
)Z∗k

)
(31)

and by applying the Gaussian product rule [31], it can be verified that

〈
Zk
∣∣r′i〉 〈r′i∣∣Zl

〉
= (

γ

π
)3/2 exp

(
(Z∗k − Zk)Z∗k

2
−

(Zl − Z∗l )Zl

2
−

(Zl − Z∗k )
2

2

)
exp

(
−γ
∣∣∣r′c1 i

∣∣∣2), (32)

where

r′c1 i
= r′i − c1 , c1 =

Z∗k + Zl√
2γ

. (33)

Taking into account the over-completeness property of CSs (Equation (6)) and then substituting
Equation (32) into Equation (30), we obtain

Fijkl = 〈Zk|Zl〉 (
γ

π
)3/2

∫ ∞

−∞

r′ij∣∣∣r′ij∣∣∣3 exp
(
−γ
∣∣∣r′c1 i

∣∣∣2)dr′i. (34)

Now, by substituting the following Laplace transform:

1∣∣∣r′ij∣∣∣3 =
4√
3π

∫ ∞

0
exp

(
t−2/3

∣∣∣r′ij∣∣∣2)dt (35)

into Equation (34) and implementing again the Gaussian product rule, we obtain

Fijkl = 〈Zk|Zl〉
4γ3/2

3π2

∫ ∞

0
exp

(
− γt2/3

γ + t2/3

∣∣ρij
∣∣2) ∫ ∞

−∞
r′ij exp

(
−
(

γ + t2/3
)∣∣∣r′c2 ij

∣∣∣2)dr′idt, (36)

where

ρij =
Z∗ki

+ Zli√
2γ

−Rj , r′c2 ij
= r′i − c2ij , c2ij =

γ

γ + t2/3 c1i +
t2/3

γ + t2/3 Rj. (37)

One can also show that
r′ij = r′c2 ij

+
γ

γ + t2/3ρij. (38)

Substituting Equation (38) into Equation (36), applying the well-known 3D Gaussian integral:

∫ ∞

−∞
exp

(
−αr2

)
dr =

(π

α

)3/2
, (39)

and considering
t2/3

γ + t2/3 = u2, (40)

it is straightforward to verify that

Fijkl =

(
4γ3

π

)1/2

ρijF1

(
γ
∣∣ρij
∣∣2) 〈Zk|Zl〉 , (41)

where F1 is the first-order Boys function:
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F1(x) =
∫ 1

0
t2 exp

(
−xt2

)
dt. (42)

For the repulsive force between the two nuclei, we also have

F12 =
(R12)

R3
12

, F21 = −F12, (43)

where R12 = R1 −R2 and R12 = |R1 −R2| is the inter-nuclear distance.
In the presence of an external laser field, the electric force exerted on each nucleus must also be

taken into account. To do so, using the electric field from Equation (20), we simply obtain

Fl j = eAenv(t)E0 cos(ωt)k̂. (44)

3. Calculations and Results

In this report, the implemented SCS grid, which consisted of 1000 CSs in the inner box and
500 CSs in the outer box, was generated using the Gaussian distribution function with γ = 0.7 and
compression parameter [31] for the inner box of 0.9 and for the outer box of 1.0. CSs in the inner box
were randomly distributed in the phase space around the origin in the x, y, px, py, and pz directions
and between (−6 a.u., 6 a.u.) in the z direction. CSs in the outer box were randomly distributed in the
phase space between (−2.5 a.u., 2.5 a.u.) in the x, y, px, and py directions; between (−10 a.u., 10 a.u.)
in the z direction; and between (−5 a.u., 5 a.u.) in the pz direction.

We applied the classical nuclear dynamics approach to achieve the potential energy curves of the
ground state and the first excited state of H+

2 . At first, we computed the ground state of the system in
an initial inter-nuclear distance (R12 = 1.0 a.u.) by propagating the TDSE in imaginary time over the
whole static grid. Then, to compute the first excited state of the system in the same initial inter-nuclear
distance, we have employed the Gram-Schmidt algorithm [32]. Having computed the ground state
and the first excited state of the system in an initial inter-nuclear distance, we propagated each of
these electronic states in real time in the absence of any external field by considering classical nuclear
dynamics. The initial velocity of the two nuclei was set to zero. In this way, the potential energy curves
of the ground state and the first excited state of the system were calculated. The simulation results for
the dynamic nucleus (DN) approach are plotted in Figure 1 and compared to the results from the static
nucleus (SN) approach [32] and to the exact values [39]. It is evident from Figure 1 that the DN results
had a good agreement with the exact values [39]. In Figure 1, for the ground state, the computation
speed for the short inter-nuclear distances (less than 1.5 a.u.) was high in that the nuclear dynamics at
short inter-nuclear distances was fast. As the inter-nuclear distance increased (particularly to greater
than 4 a.u.), the nuclear dynamics (and consequently the computation speed) became slower.



Appl. Sci. 2018, 8, 1252 9 of 15

2 4 6 8 10

-0.6

-0.4

-0.2

0.0

0.2

0.4

En
er

gy
 (a
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Internuclear Distance (a.u.)

 G (DN)      G (SN)      1ssg(Exact)
 1st (DN)     1st (SN)     2psu(Exact)

Figure 1. Potential energy curve of the ground state and the first excited state of H+
2 computed by

employing the new dynamic nucleus (DN) approach. DN results are compared to the static nucleus
(SN) approach results [32] (which are adopted with permission from the Journal of Computational
Chemistry, published by John Wiley and Sons, 2018) and to the exact values [39] (which are adopted
with permission from Atomic Data and Nuclear Data Tables, published by Elsevier, 1970.)

For the next round of our investigation, the ground state of H+
2 at R12 = 1.45 a.u. was introduced

to a five-cycle ultra-short attosecond laser pulse using a wavelength of λ = 70 nm and different
intensities. Attosecond pulses are needed in such investigations in that the electronic dynamics
typically takes place on sub-femtosecond time scales. The shape of such laser pulses for the intensity
of 1014 W/cm2 is plotted in Figure 2. The corresponding energy for a single photon excitation
(17.712 eV = 0.6509 a.u.) could be high enough for exciting the ground state of the system to the
first excited state at R12 = 1.45 a.u.

0 10 20 30 40 50 60 70 80 90 100
-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

E z
 (a

.u
.)

Time (a.u.)

Figure 2. The implemented laser pulse was a five-cycle attosecond laser pulse with a wavelength of
70 nm and intensity of 1014 W/cm2.
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As can be seen from Figure 3, we tuned our simulation in such a way that when the laser field
reached its maximum amplitude, the inter-nuclear distance of H+

2 reached R12 = 1.45 a.u. in the ground
state. We repeated the simulation with different laser intensities (from 0.1× 1014 to 2.0× 1014 W/cm2).
An interesting phenomenon that could happen at this point is the charge migration between the
ground state and the first excited state of the system [8,40]. The wave function of the resulting coherent
superposition state that corresponds to a spatial displacement of the electronic charge is generally
expressed by

Ψs(r, t; R1, R2) = cg(t) exp
(
−i

Eg(R12)t
h̄

)
Ψg(r; R1, R2) + cu(t) exp

(
−i

Eu(R12)t
h̄

)
Ψu(r; R1, R2). (45)

In general, the inter-nuclear distance (R12) can be varied in time by considering classical nuclear
dynamics. It is easy to verify that the time-dependent electron density, which can migrate from one
atom to the other, is given by

|Ψs(r, t; R1, R2)|2 =
∣∣cg(t)

∣∣2∣∣Ψg(r; R1, R2)
∣∣2 + |cu(t)|2|Ψu(r; R1, R2)|2 + 2A cos(α(r; R1, R2)), (46)

where
A = c∗g(t)cu(t)Ψ∗g (r; R1, R2)Ψu(r; R1, R2), (47)

α(r, R1, R2) =
Eu(R12)− Eg(R12)

h̄
t− arg(A). (48)

One prerequisite for the occurrence of the charge migration is the existence of spatial overlap
(the third term in Equation (46)) between the electronic wave functions describing the charge in both
the ground state and the first excited state [40]. If we simply consider the initial superposition state in
an initial constant inter-nuclear distance as

Ψs(r, 0; R1, R2) =
Ψg(r; R1, R2) + Ψu(r; R1, R2)√

2
, (49)

then we can compute the migration period of electron density from one atom to the other by considering
|Ψs(r, t; R1, R2)|2 = |Ψs(r, 0; R1, R2)|2. By doing so, we obtain

T =
2πh̄

Eu(R12)− Eg(R12)
. (50)
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Figure 3. Potential energy curve of the electronic states of H+
2 in the presence of ultra-short laser field

with different intensities compared to the ground state and the first excited state of the system.
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As can be seen from Figure 4, by employing Equation (50), we computed the period of charge
migration between the two nuclei in H+

2 in terms of the inter-nuclear distance. This figure shows that
greater inter-nuclear distances corresponded to longer charge migration times between the two nuclei.
In Figure 4, it can be seen that the charge migration period in inter-nuclear distances between 1 and
2 a.u. was relatively low (about 200–300 as) and increased as the inter-nuclear distance grew. From
Figure 4, it can be also conceived that at distances greater than R12 = 6.0 a.u., the electron density was
practically localized on one nucleus.

In order to compute the population of each electronic state Ψg/u in the coherent superposition
state Ψs, implementing the identity operator of CSs (Equation (11)), one should compute

∣∣∣〈Ψg/u

∣∣∣Ψs

〉∣∣∣2 =

∣∣∣∣∣∑kl

〈
Ψg/u

∣∣∣Zk

〉
(Ω−1)kl 〈Zl |Ψs〉

∣∣∣∣∣
2

. (51)

Applying Equations (8) and (9), we reach

∣∣∣〈Ψg/u

∣∣∣Ψs

〉∣∣∣2 =

∣∣∣∣∣∑k
C∗g/uk

Dsk

∣∣∣∣∣
2

. (52)
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Figure 4. The charge migration period computed by employing Equation (50) for different inter-nuclear
distances in H+

2 in the absence of an ultra-short intense laser field.

From the population results in Table 1, which were computed (at t = 270 a.u.) using Equation (52),
one can deduce that as the intensity of a laser increases, the population of the ground state in the
coherent superposition state becomes lower and the population of the excited states becomes higher.
In agreement with this deduction, it can be also seen from Figure 3 that coherent superposition
states created by lasers with a lower intensity are closer to the ground state. A higher laser intensity
would also lead to a coherent superposition state with more contributors. For example, the coherent
superposition state created by using a laser field with an intensity of 2.0× 1014W/cm2 (in Figure 3) had
more contributors. Table 1 and Figure 3 demonstrate that after exposing the ground state of the system
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to an attosecond pulse, some of the population was promoted to the excited states. As the intensity of
the attosecond laser field was increased, a larger population was transferred to the excited states.

Table 1. Population of the ground state and the first excited state in coherent superposition states for
different intensities computed at t = 270 a.u.

Intensity ( W
cm2 ) Ground State First Excited State

0.1× 1014 0.980 0.020
0.5× 1014 0.895 0.102
1.0× 1014 0.801 0.191
2.0× 1014 0.671 0.298

Figure 5 shows the expectation value of the electron coordinate along the z-axis experiencing
ultra-short intense laser pulses with four different intensities. One can see that the amplitude of the
coordinate expectation value was larger for higher intensities. However, until 2.0 fs, the period seemed
to be the same for all intensities. As the dissociation rate of the two nuclei increased, the period
became longer for higher intensities (above t = 2.0 fs). In addition, we calculated the change rate of
the inter-nuclear distance for the ground state and the first excited state in the absence of a laser field
and for the ground state induced by ultra-short laser pulses with different intensities. The results,
depicted in Figure 6, show that the lowest (highest) rates of dissociation corresponded to the ground
(first excited) state in the absence of a laser field.

0 1 2 3 4 5 6 7
-2

-1

0

1

2

Y
q z
Y

t (fs)

 I=0.1´1014 (W/cm2)       I=0.5´1014 (W/cm2)
 I=1.0´1014 (W/cm2)       I=2.0´1014 (W/cm2)

Figure 5. Expectation value of the location of the single electron in a laser-induced H+
2 along z-axis.

Ultra-short intense laser fields (with four different intensities) strike the ground state of the system at
a specific time.
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Figure 6. Considering classical nuclear dynamics, the inter-nuclear distance in the ground state of an
ultra-short laser-induced H+

2 became faster, increasing from 1 to 8 a.u., compared with when there was
no laser (red line). The results are also compared to the fastest, which is related to the first excited state
of the system in the absence of a laser field (black line).

4. Conclusions

In this report, the SCS method is introduced. The TDSE of one- or two-electron systems can
be solved on the basis of a static grid of CSs. Propagating the TDSE in the absence of an external
laser field in imaginary time results in the ground state of the system. Upper electronic states of
the system can be achieved by implementing the Gram–Schmidt algorithm. In this work, we also
formulated all the equations needed for dynamically treating the nuclei in two-nuclei systems by
solving the classical equations of motion. Initiating from each electronic state of a two-nuclei system in
an initial inter-nuclear distance, the TDSE can be propagated in real time in the absence or presence of
an ultra-short intense laser field considering classical nuclear dynamics. By doing so, we obtain the
related potential energy curves of the system in the absence or presence of the external laser field.

Using the SCS method, we investigated molecular dissociation and charge migration in a H+
2

molecule. We found substantial charge localization as the molecular bond distance was increased.
This charge localization was reflected in the exponential increase in the expected charge migration
period as a function of bond length. Hence, our results shed further light on charge migration and
localization during the molecular dissociation process.

Author Contributions: Conceptualization, methodology and investigation, all authors. Development and
programming, M.E. Original draft preparation, M.E. Data curation and visualization, M. E and M.V. Validation
and formal analysis, all authors. Writing, review and editing, all authors. Supervision, A.L. and M.V. Project
administration, all authors.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Lin, C.D.; Le, A.T.; Jin, C.; Wei, H. Attosecond and Strong-Field Physics; Cambridge University Press:
Cambridge, UK, 2018. [CrossRef]

http://dx.doi.org/10.1017/9781108181839


Appl. Sci. 2018, 8, 1252 14 of 15

2. Ciappina, M.F.; Pérez-Hernández, J.A.; Landsman, A.S.; Okell, W.A.; Zherebtsov, S.; Förg, B.; Schötz, J.;
Seiffert, L.; Fennel, T.; Shaaran, T.; et al. Attosecond physics at the nanoscale. Rep. Prog. Phys. 2017,
80, 54401. [CrossRef] [PubMed]

3. Nisoli, M.; Decleva, P.; Calegari, F.; Palacios, A.; Martín, F. Attosecond Electron Dynamics in Molecules.
Chem. Rev. 2017, 117, 10760–10825. [CrossRef] [PubMed]

4. Cattaneo, L.; Vos, J.; Bello, R.Y.; Palacios, A.; Heuser, S.; Pedrelli, L.; Lucchini, M.; Cirelli, C.; Martín, F.;
Keller, U. Attosecond coupled electron and nuclear dynamics in dissociative ionization of H2. Nat. Phys.
2018, 14, 733–738. [CrossRef]

5. Villeneuve, D.M. Attosecond science. Contemp. Phys. 2018, 59, 47–61. [CrossRef]
6. Xu, J.; Blaga, C.I.; Zhang, K.; Lai, Y.H.; Lin, C.D.; Miller, T.A.; Agostini, P.; Dimauro, L.F. Diffraction using

laser-driven broadband electron wave packets. Nat. Commun. 2014, 5, 4635. [CrossRef] [PubMed]
7. Wolter, B.; Pullen, M.G.; Le, A.T.; Baudisch, M.; Doblhoff-Dier, K.; Senftleben, A.; Hemmer, M.;

Schröter, C.D.; Ullrich, J.; Pfeifer, T.; et al. Ultrafast electron diffraction imaging of bond breaking in
di-ionized acetylene. Science 2016, 354, 308–312. [CrossRef] [PubMed]

8. Yuan, K.J.; Bandrauk, A.D. Time-Resolved Photoelectron Imaging of Molecular Coherent Excitation and
Charge Migration by Ultrashort Laser Pulses. J. Phys. Chem. A 2018, 122, 2241–2249. [CrossRef] [PubMed]

9. Chelkowski, S.; Bandrauk, A.D. Photon-momentum transfer in molecular photoionization. Phys. Rev. A
2018, 97, 53401. [CrossRef]

10. Iravani, H.; Sabzyan, H.; Vafaee, M. Contribution of the pre-ionized H2 and the ionized H2
+ subsystems

to the HHG Spectra of H2 in intense laser fields. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 74003. [CrossRef]
11. Feng, L.; Kapteyn, H.J.; Feng, A.Y. Generations of even-order harmonics from vibrating H2

+ and T2
+ in

the rising and falling parts of the laser field. Chem. Phys. 2018, 505, 47–54. [CrossRef]
12. Safaei, N. Generation of isolated attosecond pulses by polarization gating of high-order harmonic emission

from H2
+ in intense ultrashort laser fields. Laser Phys. Lett. 2017, 15, 015202. [1703.02888]. [CrossRef]

13. Vafaee, M.; Ahmadi, H.; Maghari, A. Identifying spatially asymmetric high-order harmonic emission in
the falling edge of an intense laser pulse. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 25601. [CrossRef]

14. Ahmadi, H.; Vafaee, M.; Maghari, A. Understanding molecular harmonic emission at relatively long intense
laser pulses: Beyond the Born-Oppenheimer approximation. Phys. Rev. A 2016, 94, 33415. [CrossRef]

15. Li, W.Y.; Yu, S.J.; Wang, S.; Chen, Y.J. Probing nuclear dynamics of oriented HeH+ with odd-even high-order
harmonics. Phys. Rev. A 2016, 94, 053407. [CrossRef]

16. Korani, Y.; Sabzyan, H. Spin dynamics in HeH2+ molecular ion in intense laser fields. Phys. Chem.
Chem. Phys. 2016, 18, 31606–31621. [CrossRef] [PubMed]

17. Miao, X.Y.; Zhang, C.P. Multichannel recombination in high-order-harmonic generation from asymmetric
molecular ions. Phys. Rev. A At. Mol. Opt. Phys. 2014, 89, 33410. [CrossRef]

18. Emelin, M.Y.; Ryabikin, M.Y. Atomic photoionization and dynamical stabilization with subrelativistically
intense high-frequency light: Magnetic-field effects revisited. Phys. Rev. A At. Mol. Opt. Phys. 2014,
89, 13418. [CrossRef]

19. Madsen, C.B.; Anis, F.; Madsen, L.B.; Esry, B.D. Multiphoton above threshold effects in strong-field
fragmentation. Phys. Rev. Lett. 2012, 109, 163003. [CrossRef] [PubMed]

20. Zhao, J.; Lein, M. Positioning of bound electron wave packets in molecules revealed by high-harmonic
spectroscopy. J. Phys. Chem. A 2012, 116, 2723–2727. [CrossRef] [PubMed]

21. Vafaee, M.; Sabzyan, H. A detailed and precise study of the ionization rates of H+
2 in intense laser fields.

J. Phys. B At. Mol. Opt. Phys. 2004, 37, 4143–4157. [CrossRef]
22. Roudnev, V.; Esry, B.D.; Ben-Itzhak, I. Controlling HD+ and H2

+ dissociation with the carrier-envelope
phase difference of an intense ultrashort laser pulse. Phys. Rev. Lett. 2004, 93, 1–4. [CrossRef] [PubMed]

23. Casida, M. Time-dependent density-functional theory for molecules and molecular solids. J. Mol.
Struct. (Theochem) 2009, 914, 3–18. [CrossRef]

24. Caillat, J.; Zanghellini, J.; Kitzler, M.; Koch, O.; Kreuzer, W.; Scrinzi, A. Correlated multielectron systems in
strong laser fields: A multiconfiguration time-dependent Hartree-Fock approach. Phys. Rev. A At. Mol.
Opt. Phys. 2005, 71, 012712. [CrossRef]

25. Beck, M.H.; Jäckle, A.; Worth, G.A.; Meyer, H.D. The multiconfiguration time-dependent Hartree (MCTDH)
method: A highly efficient algorithm for propagating wavepackets. Phys. Rep. 2000, 324, 1–105. [CrossRef]

http://dx.doi.org/10.1088/1361-6633/aa574e
http://www.ncbi.nlm.nih.gov/pubmed/28059773
http://dx.doi.org/10.1021/acs.chemrev.6b00453
http://www.ncbi.nlm.nih.gov/pubmed/28488433
http://dx.doi.org/10.1038/s41567-018-0103-2
http://dx.doi.org/10.1080/00107514.2017.1407093
http://dx.doi.org/10.1038/ncomms5635
http://www.ncbi.nlm.nih.gov/pubmed/25105473
http://dx.doi.org/10.1126/science.aah3429
http://www.ncbi.nlm.nih.gov/pubmed/27846561
http://dx.doi.org/10.1021/acs.jpca.7b11669
http://www.ncbi.nlm.nih.gov/pubmed/29406713
http://dx.doi.org/10.1103/PhysRevA.97.053401
http://dx.doi.org/10.1088/1361-6455/aaafb1
http://dx.doi.org/10.1016/j.chemphys.2018.03.017
http://xxx.lanl.gov/abs/1703.02888
http://dx.doi.org/10.1088/1612-202X/aa9318
http://dx.doi.org/10.1088/1361-6455/50/2/025601
http://dx.doi.org/10.1103/PhysRevA.94.033415
http://dx.doi.org/10.1103/PhysRevA.94.053407
http://dx.doi.org/10.1039/C6CP05455B
http://www.ncbi.nlm.nih.gov/pubmed/27834977
http://dx.doi.org/10.1103/PhysRevA.89.033410
http://dx.doi.org/10.1103/PhysRevA.89.013418
http://dx.doi.org/10.1103/PhysRevLett.109.163003
http://www.ncbi.nlm.nih.gov/pubmed/23215075
http://dx.doi.org/10.1021/jp207838z
http://www.ncbi.nlm.nih.gov/pubmed/22047604
http://dx.doi.org/10.1088/0953-4075/37/20/009
http://dx.doi.org/10.1103/PhysRevLett.93.163601
http://www.ncbi.nlm.nih.gov/pubmed/15524988
http://dx.doi.org/10.1016/j.theochem.2009.08.018
http://dx.doi.org/10.1103/PhysRevA.71.012712
http://dx.doi.org/10.1016/S0370-1573(99)00047-2


Appl. Sci. 2018, 8, 1252 15 of 15

26. Kulander, K.C. Time-dependent Hartree-Fock theory of multiphoton ionization: Helium. Phys. Rev. A
1987, 36, 2726. [CrossRef]

27. Shalashilin, D.V.; Child, M.S. The phase space CCS approach to quantum and semiclassical molecular
dynamics for high-dimensional systems. Chem. Phys. 2004, 304, 103–120. [CrossRef]

28. Shalashilin, D.V.; Child, M.S.; Kirrander, A. Mechanisms of double ionisation in strong laser field from
simulation with Coupled Coherent States: Beyond reduced dimensionality models. J. Chem. Phys. 2007,
347, 257. [CrossRef]

29. Kirrander, A.; Shalashilin, D.V. Quantum dynamics with fermion coupled coherent states: Theory and
application to electron dynamics in laser fields. Phys. Rev. A 2011, 84, 033406. [CrossRef]

30. Zhou, Z.; Chu, S.I. Photoionization dynamics and angular squeezing phenomenon in intense
long-wavelength laser fields. Phys. Rev. A At. Mol. Opt. Phys. 2011, 83, 33406. [CrossRef]

31. Eidi, M.; Vafaee, M.; Niknam, A.R.; Morshedian, N. A new version of fermion coupled coherent states
method: Theory and applications in simulation of two-electron systems. Chem. Phys. Lett. 2016, 653, 60–66.
[CrossRef]

32. Eidi, M.; Vafaee, M.; Rooein, M. Complementary version of fermion coupled coherent states method and
gram–schmidt algorithm: Theory and applications for electronic states of H2 and H2

+. J. Comput. Chem.
2018, 39, 679–684. [CrossRef] [PubMed]

33. Huber, D.; Heller, E.J. Generalized Gaussian wave packet dynamics. J. Chem. Phys. 1987, 87, 5302–5311.
[CrossRef]

34. Huber, D.; Heller, E.J. Hybrid mechanics: A combination of classical and quantum mechanics. J. Chem. Phys.
1988, 89, 4752–4760. [CrossRef]

35. Huber, D.; Ling, S.; Imre, D.G.; Heller, E.J. Hybrid mechanics. II. J. Chem. Phys. 1989, 90, 7317–7329.
[CrossRef]

36. Mauritz Andersson, L. Quantum dynamics using a discretized coherent state representation: An adaptive
phase space method. J. Chem. Phys. 2001, 115, 1158–1165. [CrossRef]

37. Shalashilin, D.V.; Child, M.S. Electronic energy levels with the help of trajectory-guided random grid of
coupled wave packets. I. Six-dimensional simulation of H2. J. Chem. Phys. 2005, 122, 224108. [CrossRef]
[PubMed]

38. Shalashilin, D.V.; Child, M.S. A version of diffusion Monte Carlo method based on random grids of
coherent states. II. Six-dimensional simulation of electronic states of H2. J. Chem. Phys. 2005, 122, 224109.
[CrossRef] [PubMed]

39. Madsen, M.M.; Peek, J.M. Eigenparameters for the lowest twenty electronic states of the hydrogen molecule
ion. At. Data Nucl. Data Tables 1970, 2, 171–204. [CrossRef]

40. Wörner, H.J.; Arrell, C.A.; Banerji, N.; Cannizzo, A.; Chergui, M.; Das, A.K.; Hamm, P.; Keller, U.;
Kraus, P.M.; Liberatore, E.; et al. Charge migration and charge transfer in molecular systems. Struct. Dyn.
2017, 4, 061508. [CrossRef] [PubMed]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevA.36.2726
http://dx.doi.org/10.1016/j.chemphys.2004.06.013
http://dx.doi.org/http://dx.doi.org/10.1016/j.chemphys.2007.11.006
http://dx.doi.org/10.1103/PhysRevA.84.033406
http://dx.doi.org/10.1103/PhysRevA.83.033406
http://dx.doi.org/10.1016/j.cplett.2016.04.054
http://dx.doi.org/10.1002/jcc.25133
http://www.ncbi.nlm.nih.gov/pubmed/29250810
http://dx.doi.org/10.1063/1.453647
http://dx.doi.org/10.1063/1.455669
http://dx.doi.org/10.1063/1.456211
http://dx.doi.org/10.1063/1.1380204
http://dx.doi.org/10.1063/1.1926268
http://www.ncbi.nlm.nih.gov/pubmed/15974652
http://dx.doi.org/10.1063/1.1926269
http://www.ncbi.nlm.nih.gov/pubmed/15974653
http://dx.doi.org/10.1016/S0092-640X(70)80008-0
http://dx.doi.org/10.1063/1.4996505
http://www.ncbi.nlm.nih.gov/pubmed/29333473
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theory
	Calculations and Results
	Conclusions
	References

