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Abstract: The use of microbes to change the concentration of heavy metals in soil and improve the
ability of plants to deal with elevated metals concentrations has significant economic and ecological
benefits. This paper reviews the origins and toxic effects of heavy metal pollution in soil, and describes
the heavy metal accumulation mechanisms of microbes, and compares their different bioconcentration
abilities. Biosorption, which depends on the special structure of the cell wall, is found to be the
primary mechanism. Furthermore, Escherichia coli are found to adsorb more heavy metals than other
species. Factors influencing microbial treatment of wastewater and soil containing heavy metals
include temperature, pH, and different substrates. Finally, problems in the application of microbial
treatment of heavy metal contamination are considered, and possible directions for future research
are discussed.
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1. Introduction

Soil heavy metal pollution mainly refers to the deposition of heavy metals, such as mercury,
cadmium, lead, chromium, and other bio-toxic significant heavy elements in the soil [1], resulting in
concentrations that exceed background values. Metals are not biodegradable, and through biological
amplification, their concentrations can be increased thousands of times, with significant effects on
human health [2]. In recent years, discharges of large volumes of heavy metals from industrial activity
and mining, with final deposition in the soil, have led to increases in soil heavy metal concentrations.
Widespread use of pesticides and fertilizers may also have led to an increase in soil heavy metal
concentrations [3].

The management of heavy metal pollution in soil relies on two processes: (1) Traditional
chemical and chemical restoration methods based on curing and leaching and (2) ecological restoration
methods based on adsorption and transfer [4]. Traditional chemical methods usually involve direct
reactions between chemical reagents and heavy metal ions, without any other promotion method,
such as chelation and redox, while chemical restoration methods are often promoted by other
methods, such as electrochemical repair [5]. However, according to Gazso [6], traditional methods
are often expensive, complicated, frequently cause secondary pollution, and significantly alter the
soil structure, among other limitations and deficiencies. Recently, ecological restoration has become
more widely used because of its lower cost and measurable ecological, social, and economic benefits.
Traditional ecological restoration is generally phytoremediation, i.e., the use of hyperaccumulators to
absorb heavy metals from contaminated soils [7]. Ranieri et al. [8] found that, for two plant species,
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Phragmities australis and Ailanthus altissima, total removal of Cr3+ from water ranged from 55 to 61%.
However, the use of microbial remediation has become more common, and it is generally considered
promising owing to its many advantages [9], including retention of soil structure, and the fact that the
pollutants and microbes can be almost completely removed from the soils, and secondary pollution can
be avoided [10]. Microbial remediation presents new techniques for addressing the problem of heavy
metal pollution in soil, and it has become a focus of new research and development in bioremediation
technology. This paper reviews the sources and hazards of heavy metals in soil, and discusses the
techniques and influencing factors for microbial remediation, providing a useful reference for the
restoration of soil ecosystem health.

2. Sources and Hazards of Heavy Metal Pollution in Soil

According to Jä Rup [11], in the past several years, both the production of and emissions from
heavy metals have increased. Heavy metal compounds are often used in color pigments, batteries,
fertilizers, or other industrial products. Eventually, these metal elements enter the atmosphere through
evaporation or the soil as sediment, and valence transformation occurs. Then, these deposited elements
are bioabsorbed into the biosphere.

The impact of heavy metals in the soil manifests in several ways. First, the heavy metal content
affects the respiration and metabolism of microorganisms (metabolic entropy response) [12] and the
activity of microorganisms, thereby affecting soil respiration. The microbial metabolic entropy of
soil heavily polluted by metals is higher, and the organic carbon content converted to bio-carbon is
reduced. Finally, heavy metals can lead to physiological dysfunction and malnutrition in plants as
metal contamination can be transferred to plant seeds. Metals can also accumulate in the human body,
causing great and irreversible harm to human health. Introduction of Cd2+ into the body causes bone
pain and brittle bones, and Pb2+ pollution can seriously endanger fertility [13].

3. Remediation of Heavy Metal Contaminated Soil

Traditional methods of remediating heavy metal contamination in soils include engineering repair
and physical and chemical restoration [14]. These methods generally involve high energy consumption
and high cost. The cost of vegetative remediation is low, but this method requires a long repair cycle.
Besides, it is not always applicable for the toxicity of the heavy metals. The percentage of the extraction
could be changed from the concentration in the soil. For high concentration the plant can be dead.
Soil washing and soil flushing are available in the remediation process. Soil washing involves three main
methods: physical separation, chemical separation, and integrated processes. Among these processes,
both chemical and physical separation have limitations: Physical separation is primarily applicable to
particulate forms of metal, and the removal rates of chemical separation are highly dependent on soil
geochemistry [14]. Compared with other methods, soil washing is permanent and relatively thorough.
However, there are several disadvantages of soil washing, including a need to excavate contaminated
soil. In these cases, soil flushing can be an alternative method. Soil flushing involves the direct injection
of a leaching solution into the soil, which avoids the need for excavation [15]. Both soil washing
and soil flushing have their advantages, the metals obtained from soil can be recycled and reused
again [15,16]. Thus, we prefer this method. Both single chemical remediation and microbial remediation
have advantages and deficiencies (Table 1). Chemical remediation is not environmentally friendly but
is thorough and relatively easy to carry out, while microbial remediation is environmentally friendly
but complicated to implement. It is possible to use microbial remediation to improve the soil quality
after chemical treatment. Trellu et al. [17] found that soil washing and soil flushing processes using
biosurfactants showed promising results.
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4. Microbial Remediation of Heavy Metal-Contaminated Soil

4.1. Remediation Mechanisms

4.1.1. Biosorption

Microbes can accumulate heavy metals by either adsorption or absorption, which are two main
ways to increase metal ions in soil [18]. The process of adsorption differs from absorption, in that a fluid
(the absorbate) is dissolved by or permeates a liquid or solid (the absorbent) [19]. Thus, adsorption
is a surface phenomenon, while absorption involves the entire volume of material. Table 2 describes
the overall sorption mechanisms, including precipitation, chemical adsorption and ion exchange,
surface precipitation, the formation of stable complexes with organic ligands, and redox reaction.
However, due to the limitations of current analytical techniques and complexity of soil matrix, the exact
immobilization mechanisms have not been clarified [20]. Adsorption involves complexation of heavy
metals on the cell surface, from which they can be absorbed into the cell [21]. Because of the cell surface
structure—principally the cell wall and mucus layer—heavy metals can be adsorbed and absorbed
relatively easily. Many ions in the cell surface functional groups, such as nitrogen, oxygen, sulfur,
and phosphorus (Figure 1, [22]), can be complexed with metal ions as coordination atoms. In addition,
phosphoric acid anions and carboxyl anionic groups on the surface of the microbial cell wall are
negatively charged, and most heavy metal surfaces carry a cationic group that interacts with the cell
wall and allows the metal ions to bind or pass through the cell membrane (Figure 1, [23]).
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Wang et al. [24] showed that the primary mechanism by which microbes accumulate heavy
metal ions is adsorption, which normally does not depend on energy metabolism, rather than
absorption, which depends on energy metabolism and almost exclusively occurs in living cells.
Generally, microbes adsorb large amounts of heavy metal ions rapidly. It has been found that at pH 7.2,
Bacillus can adsorb 60% of its Cu2+ capacity within the first minute and reach adsorption equilibrium
within 10 min [25]. In contrast, absorption is time-consuming and relatively inefficient; although,
the removal rates can be improved by 26.3 to 31.5% through the addition of agents such as lemon oil or
ethylenediaminetetraacetic acid (EDTA), respectively [26]. However, the intake of essential nutrients
can reduce the ability of a cell to absorb heavy metal ions.
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Table 1. Advantages and disadvantages of different remediation methods.

Type Method Application Advantages (+) and Disadvantages (–)

Soil washing
Physical Separation
Chemical Extraction
Integrated process

Large area (a large volume of soil)

(+) Thorough and permanent [5]
(+) Both soil and metal can be recycled [5]
(+) Fine-grained soil may be treated [16]
(–) Inconvenient (need large equipment) [16]
(–) High cost (use of large equipment and chemical agents) [5]
(–) Treatment of soil or sludges rich in metal can be difficult [5]

Soil flushing Direct injection of a
leaching solution Large area (a large volume of soil)

(+) In situ [15]
(+) Less disruption to the environment [27]
(+) Reduces worker exposure to hazardous materials [27]
(–) Efficiencies depend on other factors (nature of soil contaminants) [27]

Engineering
management Change soil Small area (a small volume of soil) of heavily

polluted soil

(+) Thorough [28]
(+) Stable [28]
(–) Implementation requires substantial engineering [29]
(–) High investment cost [29]
(–) Destroys the soil structure, reducing soil fertility [29]
(–) Pollution in removed soil is still problematic [30]

Chemical repair Add chemical modifier Wide range of applications

(+) In situ [31]
(+) Easy [31]
(–) Temporary repair measure: The heavy metal remains in soil (i.e., elemental heavy
metals are chemically bonded) and is easily re-activated [28]

Phytoremediation Introduce plant life Wide range of applications (especially suitable
for mining reclamation)

(+) Low cost [32]
(+) Protects topsoil [32]
(+) Reduces soil erosion [30]
(+) Generates less waste [32]
(+) Recovers heavy metal [32]
(–) Long repair cycle [33]
(–) The percentage of the extraction could be changed from the concentration in the
soil [32]
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Table 1. Cont.

Type Method Application Advantages (+) and Disadvantages (–)

Physical chemistry
repair

Electro-chemical methods Low permeability clay and silt soil

(+) Economically feasible [28]
(+) Does not stir the soil [22]
(+) Shortens repair time [34]
(–) Poor conductivity of high permeability sandy soil reduces effectiveness [31]

Electro-thermal methods Volatile heavy metals (e.g., Hg)

(+) Efficient [30]
(+) Can fundamentally eliminate soil heavy metal pollution [31,34]
(–) Easy to destroy organic matter and water in soil [31]
(–) Consumes a large amount of energy [31]

Soil leaching Small area of severely polluted soil (–) Can cause some leaching and precipitation of some nutrients [31]
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Table 2. Comparison of overall mechanisms of sorption.

Type Condition Mechanism Example

Surface precipitation Edge charges on adsorbent
Reagent residue enhances metal ion
stability in soil solid phase components,
reduces migration and bioavailability

1. Pb precipitates in phosphogypsum and
red gypsum minerals to form stable lead
sulfate minerals [35].

2. Phosphate formed by phosphate
precipitated on the surface of soil plant
roots passivated Pb [36].

Ion exchange Other metal ions existing
The metal ions bound by the cell
material are combined by other metal
ions with stronger binding ability.

1. Inactive Agrobacterium rhizogenes adsorbs
Pb, Cu and releases Ca, Mg [37].

2. S. cerevisiae adsorbs Ag and releases H [37].

Ligand exchange There are organic functional groups,
such as R-COOH, R-SH

Metal ions and ligands are bonded to the
surface of the adsorbent by covalent or
ionic bonding

1. Cr is reduced by organic matter or iron
reducing substances [37].

2. Arbuscular mycorrhizal production of
polysaccharide substance ligands chelated
with heavy metals to form stable
complexes [38].

Diffusion and chemical
modification of adsorbent surfaces

Manganese oxide
Iron oxide
Zeolite

Reduction of toxicity of heavy metal ions
by chemical transfer between heavy
metal ions and chemical modification

1. Cr is reduced by organic matter or iron
reducing substances [35].

2. Sulfate bacteria reduce sulfate to sulfide
and combine with heavy metal elements to
form a precipitate [39].
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Heavy metal ions bind to the surface of the cell not only by electrostatic interaction and
complexation but also by ion exchange to the cell surface; for example, the non-living brown algae
(Ascophyllum nodosum) exchanges the original cell wall adsorption of K+, Ca2+ and Mg2+ to adsorb
Co2+ (Figure 1, [40]). Brady and Duncan [22] showed that yeast releases approximately 70% of K+

rapidly and 60% of Mg2+ slowly in the process of adsorbing Cu2+. Furthermore, studies have shown
that ion exchange can occur with complexation [41,42]. However, other studies have shown that ion
exchange is not the main mechanism of microbe remediation, because the amounts of released cations
(Ca2+ and Mg2+) are always less than those of heavy metal ions [22].

4.1.2. Bioleaching

Biomining is a general term that covers both bioleaching, which involves the mobilization
of positive heavy metal ions from insoluble ores often by biological dissolution or complexation
processes [41,43], and bio-oxidation [44]. Microbial metabolism can produce secretions, such as
low molecular weight organic acids, that can dissolve heavy metals and soil particles containing
heavy metal minerals (Figure 2). Chanmugathas et al. [45] showed that microbes can effectively use
nutrients and energy to secrete organic acids and promote the leaching of Cd in nutritious conditions.
For example, the leaching rate in the absence of nutrients was found to be 9%, and that with the
addition of glucose and other nutrients was 36% [45]. There have also been studies that showed
that some microbes, for example, Citrobacter, could generate free inorganic phosphate, leading to
the formation of an insoluble metal phosphate coat that can entrap a large volume of toxic metals
(Figure 2, [46]).
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Microorganisms, which are mostly prokaryotic, participate in redox reactions and change the
valence of heavy metals (Figure 2), thereby changing their activity, which can affect their mobility or
toxicity [47]. For example, Hg2+, once reduced by aerobic bacteria to Hg0, can evaporate, and tobacco
smoke can reduce Hg2+ to Hg0 [21]. Toxic and water-soluble Cr6+ can be reduced by Coryne bacterium
and other microbes into toxic and poorly water-soluble Cr3+, and dead Bacillus licheniformis R08 can
reduce Pb2+ to Pb0 [48].

4.1.3. Plant–Microbial Remediation

Many microorganisms, including mycorrhizal fungi and other organisms in the rhizosphere,
can enhance the ability of plants to absorb or adsorb heavy metals [34]. Joner and Leyval [49]
showed that when the concentration of Cd2+ in soil is 1, 10 and 100 mg/kg, the uptake of Cd by
mycorrhizal plants was 90%, 127% and 131% higher than that of non-mycorrhizal plants, respectively.
Mycorrhizal fungi, for example, have mycelia that extend into the soil and effectively increase the
surface area of plant roots [17]. Bissonnette et al. [50] showed that, after inoculation of mycorrhiza,
the ability to absorb Cu2+, Cd2+ and Zn2+ is improved. Endophytic mycorrhiza can help host plants
develop resistance to heavy metal ions. Plant-endophytic mycorrhiza synergize mainly through
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acidification, production of chelating agents, iron carriers, organic acids, and activation of metal
phosphates. When the content of heavy metals in the soil reaches toxic levels, the mucus secreted
by the fungal cell wall can combine with the polyphosphate and organic acid ions in the fungal
tissue to combine the heavy metal ions and reduce the mobility. Chen et al. [51] showed that the
adsorption capacity of arbuscular mycorrhizal fungi on Mn2+, Zn2+ and Cd2+ was equivalent to 1.6%,
2.8% and 13.3% of their dry weights, respectively. Moreover, the number and composition of root
exudates change after the fungi infect the plant roots, thereby affecting the oxidation of heavy metals
in the vicinity of the rhizosphere [52]. In addition, plant mycorrhizae have a protective mechanism
that binds heavy metals to cell walls and prevents them from transferring to the plants [53].

4.2. Comparison of Microbial Removal Ability

4.2.1. Microbial Remediation Potential

Microbial remediation of heavy metal pollution of the soil has definite advantages including low
cost and maintenance of the soil structure [19]. Numerous microbial species, including bacteria and
fungi from Bacillus [54], Pseudomonas [34,55], Streptomyces [56], Aspergillus [57,58], Rhizopus [1] and
Penicillium [23], have significant removal ability (Table 3). At present, we have found that a variety
of bacteria can absorb soil heavy metals. Among them, Escherichia coli K-12 can absorb the widest
variety of metal ions; the outer membrane of this stain can absorb more than 30 different kinds of metal
ions [16,59]. Rhizopus can absorb Zn, Cu, Cd, Pb, and other heavy metal ions [1], and Thiobacillus can
absorb heavy metal ions as well as inorganic ions, such as S, which combines with the metal ions to
form a precipitate that can be separated from the soil [60].

Table 3. Metals that can be removed by different microbes.

Microbe Metals Which Can Be Easily Removed

Escherichia coli K-12 Hg, Cd, Pb, Cu, Ni, Zn etc.
Rhizopus arrhizus Zn, Cu, Cd, Th
Aspergillus niger Zn, Cu, Cr, Pb, Th, Co, Mn, Ni

Saccharomyces cerevisiae Cu, Cd, Pb, Ag
Thiobacillus thiooxidans Cu, Pb, Zn, Cd

4.2.2. Adsorption Equilibria

Equilibrium sorption isotherms are used to describe the capacity of an adsorbent, where their
values express the affinity and surface properties of the adsorbent. Recently, the most widely applied
adsorption isotherm is the Langmuir isotherm, which assumes that adsorption occurs at specific
homogenous sites within the adsorbent [61]. The saturated monolayer isotherm can be represented as:

Qeq = (Qmax × bCeq)/(1 + bCeq),

where Qeq (mg/g biomass) indicates the quantity of metal ions adsorbed by the bacteria, b (L/mg)
is the adsorption constant, which is related to the affinity of the binding sites, and Ceq (mg/L) is the
concentration of metal ions remaining in the equilibrium solution [34,47].

Usually, the Langmuir isotherm is valid for the following simple cases: The adsorbing site
surface is a perfectly flat, homogenous plane with no corrugations, and all sites are equivalent [62].
The shortcoming of this isotherm is that it fails to account for the surface roughness of the adsorbent,
and, thus, deviates significantly in many cases. In addition, the model overlooks the interaction with
adsorbate, which affects the adsorption of other adsorbate molecules [63].
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Compared with Langmuir isotherm, the Freundlich isotherm is a multisite adsorption isotherm
for rough surfaces [61] that can be represented as:

Qeq = KFCeq1/N,

where the two parameters KF and N are the Freundlich constants related to the adsorption capacity
and adsorption intensity of the adsorbent, respectively. Because the Freundlich isotherm has two
parameters while the Langmuir isotherm only has one, it is more flexible and is able to fit data on
rough surfaces better than Langmuir’s equations [64].

4.2.3. Kinetics of Adsorption

Numerous sorption systems have been investigated during the past several years, and most have
been reported as pseudo-first-order. However, pertaining to the microbial adsorption of heavy metal
ions in contaminated soil, most fixed models are different, and whether a model is appropriate depends
on several factors, including the type of metal ions, the type of microbe, and whether other metal ions
exist. Rahman et al. compared four different models of metal ions biosorption by Kappaphycus sp.,
and found that most fixed models were second-order, while the kinetic data did not follow the Elovich
model [44]. Goyal et al. [48] also found similar results. However, Omorogie et al. [64] showed
that for Nauclea diderrichii, most fixed models were first-order, and Jiang et al. [31] showed that for
Bacillus Subtilius second-order effects were better fitted. Recent comparison of sorption mechanisms is
summarized in Table 4.

Table 4. Comparison of mechanisms of sorption.

Microbial Metal Best-Fitted Model Source

Bacillus Subtilius Hg2+ Second-order [31]
Nauclea diderrichii Cd2+ Hg2+ Second-order [65]

Rice husk Pb2+ Second-order [66]
Kappaphycus sp. Pb2+ Cu2+ Fe2+ Zn2+ Second-order [44]
Helix pomentia Fe2+ Cr3+ First-order [59]
Helix pomentia Cd2+ Pb2+ Second-order [59]

4.2.4. Methods for Microbial Remediation

A clear measurement methodology for microbial remediation of heavy metals in soil has not yet
been proposed. Generally, the microbial culture is established by injecting a specific microorganism
into heavily polluted soil. Bojórquez et al. adapted stains that were grown in metal free and metal
contaminated soil leachate [34]. After a period of time, the residual heavy metal concentration
is measured by a spectrophotometer and compared to pre-injection conditions to evaluate the
microbial restoration ability [22]. Sarada used an atomic absorption spectrophotometer to identify the
concentration of unadsorbed metal ions [14]. Today, Qmax is generally used to describe the microbial
adsorption capacity for heavy metal ions. Generally, this capacity varies significantly among species.
Thus, there is not a preferred microorganism. However, in meta-analyses of similar subjects, Qmax = 0,
indicating that metal ions cannot be adsorped; thus, this is viewed as a baseline. Thus, the higher the
Qmax, the better the adsorption ability [67]. Qmax is the maximum amount of metal ions adsorbed by
bacteria per unit of dry weight and is determined using the Langmuir model discussed above.

Qmax = (Qeq + bCeq2)/(bCeq)

We found that those organisms that have spores or genes that degrade heavy metals on the
plasmid such as Bacillus and Pseudomonas often perform better than others. However, for any given
organism, both the value of Qmax and the removal rate vary for different heavy metals (Table 5, [34]).
Mullen et al. [10] showed that the enrichment ability of Bacillus subtilius for Cu2+ is much greater than
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that of Escherichia coli, Bacillus cereus, and Pseudomonas aeruginosa. The amount of metal adsorbed
by Bacillus subtilius in µmol/g at an equilibrium concentration of 1 g was 4.150 µmol, whereas the
absorption capacities of the other three bacteria were only 2.188, 2.576 and 2.560 µmol/g, respectively.
However, the enrichment capacity of Bacillus subtilius for Cd is weak (only 0.147 µmol/g), while that
of Escherichia coli reached 1.067 µmol/g [57]. Zouboulis et al. [68] found that Bacillus licheniformis and
Bacillus laterosporus had a much better effect on the adsorption of Cd and Cr than other bacteria; thus,
the bacterial species showing the highest enrichment varies with heavy metal species.

Table 5. Qmax of different microbes.

Microbe
Qmax

Cd Cr Zn Pb

Bacillus subtilius 101 137
Pseudomonas

aeruginosa 57.37 13.7 79.5

Streptomyces noursei 3.4 1.6 99
Bacillus

licheniformis 142.7 62

Bacillus laterosporus 159.2 72.6
Rhizopus arrhizus 26.8 4.5 55.6

The contents of the table are derived from [6,16,41,56].

Current studies have shown that soil fungi, which form mycorrhizal plants through symbiotic
relationships, are effective at removing heavy metals from soil. The heavy metal removal ability of
the same fungi varies for different heavy metal elements, and for different fungi on the same element.
For example, inoculation of Glomus intraradices increased the accumulation of Cu in the subsurface part
of plants but had no significant effect on the accumulation of Zn [41]. Inoculation of ectomycorrhizal
fungi could reduce the contents of heavy metals in soils under Cu2+ and Cd2+ conditions by 2.64–11.79
and 1.49–7.56 times, respectively [69]. The effectiveness of Actinomycetes and other microorganisms on
the removal of heavy metals from soil is less studied.

5. Microbial Remediation of Heavy Metal Pollution in Soil and Water

5.1. Microbial Living Environments

5.1.1. pH

The pH plays a crucial role in microbial biosorption, and optimum pH is often different for
different microorganisms. An unsuitable pH presents many adverse effects on microbial growth for
several reasons [70]. First, the pH affects the activity of enzymes in microorganisms, thereby affecting
the rate of microbial metabolism of heavy metals [71]. Second, the pH affects the surface charge of the
microorganism, thereby affecting its adsorption of heavy metal ions [72]. Moreover, pH affects the
hydration and mobility of many metal ions in the soil [16]. Studies by both Rodríguez-Tirado et al. [73]
and Wierzba [54] showed that the removal rate of heavy metals by microorganisms increases with an
increase in the pH over a limited range, but the removal rate begins to decrease after the pH rises to
a certain limit. Precisely speaking, for Pb2+ and Zn2+ with pH values from 2.0–5.5, the removal rate
continued rising. The adsorption capacity (70 mg/g, 20 mg/g) at a pH of 5.5 is seven times higher
versus two times higher at a pH of 2.0 (10 mg/g), respectively. However, at pH values higher than 5.5,
the removal rate decreases to the same level as a pH of 2.0. Wang et al. [24] showed that the optimum
pH range for most bacteria is 5.5–6.5, but there are exceptions. For example, Rodríguez-Tirado et al. [73]
showed that the optimum pH for Bacillus jeotgali is 7. This may be the case because some metal ions
form hydroxide precipitates and are less susceptible to microbial adsorption when the pH is increased
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above a certain value [74]. In addition, the optimum pH for aerobic microorganisms may differ from
that for anaerobic microorganisms.

5.1.2. Ambient Temperature

Ambient temperature mainly affects the rate of heavy metal absorption by affecting the growth and
proliferation of microorganisms [75]. The optimum temperature for different microorganisms is often
different [76]; Thiobacillus ferrooxidans, Thiobacillus acidophilus and Thiobacillus tepidarius, are medium-
temperature bacteria; Sulfolobus solfa-tataricus and Acidianus brierleyi are highly thermophilic bacteria.
The absorption of Cd2+, Cr2+ and Zn2+ by Bacillus licheniformis and Bacillus jeotgali U3 were studied
by Zouboulis et al. [67] and Rodríguez-Tirado et al. [73], respectively, and their results showed that
the optimum temperature for the same microbes on different heavy metals is different (Table 6).
However, the most suitable temperatures generally range from 25 to 35 ◦C (i.e., the range is not
significant) [26,48,74]. The absorption of Cd2+ by Bacillus jeotgali U3 is highest when the temperature
is 35 ◦C; however, for Zn2+, the optimum temperature is 30 ◦C. Bacillus licheniformis shows similar
results, but the influence of temperature on it is less significant [45].

Table 6. Comparison of Qmax for different bacteria at different temperatures.

Bacteria Temperature
Qmax

Cd Zn Cr

Bacillus jeotgali U3
25 ◦C 37.3 105.22
30 ◦C 47.5 222.2
35 ◦C 57.9 128.2

Bacillus licheniformis 25 ◦C 142.73 62.02
37 ◦C 140.41 63.98

The contents of the table are derived from [49,68].

5.1.3. Substrate Species

There are three relevant factors to consider in understanding substrate species: soil type,
heavy metal ions, and soil additives. The adsorption characteristics of heavy metals on different
soils often vary significantly. Hu [51] showed that the soil adsorption capacity of beach tidal soil
(Freundlich adsorption constant K = 93.79) is higher than that of black soil (K = 16.41), which in turn
is higher than that of yellow mud (K = 1.17), and that the mean desorption rate of soil in ascending
order is Lithic Ochri-Aquic Cambosols (0.67%) < Endogleyic Fe-accumulic Stagnic Anthrosols (3.62%)
< Fe-accumulic Gleyic Stagnic Anthrosols (35.85%). Obviously, the adsorption rate of soil and its
retention of heavy metal ions (i.e., its low desorption rate) result in low heavy metal ion mobility and
render the removal of these ions by microbial adsorption difficult [74].

Heavy metal ion species affect the removal of heavy metals by influencing the generation time
of microorganisms. Thiobacillus ferrooxidans with sulfur as the substrate has a generation time of
approximately 10–25 h, far greater than the substrate generation time on Fe, which is approximately
6.5–15 h. The solubility of different heavy metals is often different; elements such as Zn, Ni, and Cu
are easily dissolved, whereas Pb2+ and Cr are less soluble. Furthermore, the presence of metal ions
in the soil or the presence of several metal ions also affect the enrichment of microorganisms [57].
Park et al. [77] showed that the individual bioavailability of Cd2+, Pb2+ and Zn2+ in the soil is often
greater than that of multiple metal ions. For Cd2+ alone, the adsorption is 11.2 mg/g. However, in the
presence of Zn2+ and Pb2+, its adsorption is reduced to 3.15 mg/g, with similar results observed
for Zn2+ and Pb2+, which is reduced from 19.5 and 2.25 mg/g to 8.08 and 0.915 mg/g, respectively.
Obviously, this effect is greatest for Cd and least for Zn [77].

Soil additives can significantly increase the removal of heavy metals by microorganisms, and
the concentration of additives can have varying effects on the leaching rate of heavy metal ions.
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Tyagi et al. [78] showed that the addition of 20 g/L FeSO4 · 7H2O increased the leaching rate of Zn and
Cu by factors of 2 and 1.9, respectively, but the leaching rate did not increase when the concentration
was greater than 20 g/L. With this same additive, Zn and Cu removal rates were increased to 85% and
93%, respectively, 6 and 3.2 times greater than the control. Research indicates that the use of more
than one additive, such as a combination of FeSO4 · 7H2O, results in a higher removal rate than that
achieved when these additives are used individually [5].

5.1.4. Substrate Concentration

The concentration of heavy metal ions also affects the adsorption rate of microorganisms.
Generally, a proper evaluation should be used to establish the quantification of the accumulative
features of a bio-sorbent [53]. The two most frequently used equations to describe the features are
the Langmuir model, whose parameters are interpretable and mainly describe the adsorption of
a single-layer surface [76], and the Freundlich model, which is mainly applied to the adsorption
equilibrium of the adsorption surface equation [61]. Even though the Freundlich model is much
simpler, it grows unbounded [53]; therefore, until now the Langmuir model is more widely used than
the Freundlich model. Brunetti et al. and Ehrlich [41,56] have used the Langmuir model to study
the effect of heavy metal concentration. They showed that the concentrations of heavy metal ions
with the highest adsorption rates vary according to the microorganisms and the heavy metal ions
studied. However, the trend, which is similar in all cases, indicates that the adsorption increases to
a certain value and then remains constant with the increase of the concentration of heavy metal ions
(i.e., the equilibrium concentration). In addition, Fenton processes are helpful in the removal of heavy
metals. Laurenti et al. [79] showed that the lowest amount of total organic carbon removal is 50%,
but removal can reach 100% under certain conditions. Karci et al. [80] showed that in soil and water
contaminated by Zn2+ and Ni3+, total organic carbon was completely removed for all runs tested in
the present study after pH adjustments.

5.2. Composite Reclamation System

The current proposed composite system uses microbial–plant combination and electric–microbial
combination technology. These two technologies are combined by using mycorrhizal fungi to
enhance metal removal at plant roots and a DC power plant in combination with bacteria to achieve
restoration [48,77,81]. In soil washing and soil flushing processes, a composite reclamation system is
also applied. Günther showed that microbial–plant remediation technology can enhance microbial
removal [82]; the combination of sulfuric acid (0.05 mol/L), Bacteroides, and ryegrass joints has shown
Cu removal of up to 30% [83]. Studies have shown that results with a composite repair system are
better than those using either pure plant or microbial reclamation. Soleimani et al. [84] showed that
the removal rate of mycorrhizal fungi and Festuca can be 64–72%, whereas the control group showed
only 31% of the plant removal rate. The removal rate of mycorrhizal fungi and Polygonum aviculare
L. was 54–88%, whereas the control groups with only plants or fungi showed removal rates of 24%
and 52–76%, respectively [85]. The removal rate with an electric field increased by more than 10%
compared to that without the field, and the removal rate increased to 85–88% by using a DC electric
field and adding the matrix and a stationary electrode [47,86]. This is mainly because the electric
effect can accelerate the movement of microorganisms and metal ions in the environment and the
electrode reaction can provide favorable conditions for microbial degradation. Soil washing and soil
flushing combine physical and chemical methods. For example, Dermont [16] presented a soil washing
method that involved screening, gravity, concentration, hydrocyclone, froth, and floatation technology.
Removal reached 50%, and the capacity reached 3 m3/h. Another experiment included vibrating,
screen, and magnetic separation technologies. The concentration of heavy metal ions was 52 µg/g
initially and only 14 µg/g in the end. However, this composite technology is often affected by a variety
of environmental conditions, such as soil moisture, temperature, nutrients, and high cost, preventing it
from being widely used [86].
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6. Conclusions

In this paper, the mechanisms of microbial degradation of heavy metals in soil are explored,
and the comparison of the different abilities of degradation and the reasons for the investigation,
as well as the factors that may affect adsorption capacity, are discussed. We conclude the following:

(1) The mechanisms of microbial degradation of heavy metals are mainly biosorption,
biomineralization, and co-metabolism, and biosorption is the main degradation mechanism.
Both biosorption and biomineralization can be divided into a variety of physiological processes.

(2) Microbes have different abilities to degrade heavy metal, and the degradation ability mainly
depends on degradative plasmids and spores. Usually, Escherichia coli K–12 adsorb the majority
of heavy metal ions, and the adsorption capacity of Pseudomonas and Bacillus are strong.

(3) The optimum pH ranges of microorganisms are various. Most microorganisms have suitable
pH values in 5.5–6.5, except for Bacillus jeotgali. Ambient temperature affects the ability of
microorganisms to adsorb heavy metals. Although the optimum temperature is related with
heavy metal and microbial species, the optimum temperature for most microorganisms is
generally between 25 ◦C and 35 ◦C.

(4) The difference in concentrations of six heavy metal ions, and the presence or absence of
competitive ions will affect the adsorption capacity of heavy metals for organisms.

(5) Composite repair systems, such as microbial plant joint repair systems and chemical microbial
joint repair systems, can often improve repair efficiency.
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