
applied  
sciences

Article

Health Monitoring for Balancing Tail Ropes of
a Hoisting System Using a Convolutional
Neural Network

Ping Zhou 1,2, Gongbo Zhou 1,2,* ID , Zhencai Zhu 1,2, Chaoquan Tang 1, Zhenzhi He 3, Wei Li 1,2

and Fan Jiang 1,2

1 School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China;
zhoup@cumt.edu.cn (P.Z.); zhuzhencai@cumt.edu.cn (Z.Z.); tangchaoquan@cumt.edu.cn (C.T.);
liwei_cmee@163.com (W.L.); jiangfan25709@163.com (F.J.)

2 Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, China University of Mining and
Technology, Xuzhou 221116, China

3 School of Mechanical and Electrical Engineering, Jiangsu Normal University, Xuzhou 221116, China;
hezz82@163.com

* Correspondence: gbzhou@cumt.edu.cn; Tel.: +86-182-0520-7100

Received: 17 July 2018; Accepted: 8 August 2018; Published: 10 August 2018
����������
�������

Abstract: With the arrival of the big data era, it has become possible to apply deep learning to the
health monitoring of mine production. In this paper, a convolutional neural network (CNN)-based
method is proposed to monitor the health condition of the balancing tail ropes (BTRs) of the hoisting
system, in which the feature of the BTR image is adaptively extracted using a CNN. This method
can automatically detect various BTR faults in real-time, including disproportional spacing, twisted
rope, broken strand and broken rope faults. Firstly, a CNN structure is proposed, and regularization
technology is adopted to prevent overfitting. Then, a method of image dataset description and
establishment that can cover the entire feature space of overhanging BTRs is put forward. Finally, the
CNN and two traditional data mining algorithms, namely, k-nearest neighbor (KNN) and an artificial
neural network with back propagation (ANN-BP), are adopted to train and test the established
dataset, and the influence of hyperparameters on the network diagnostic accuracy is investigated
experimentally. The experimental results showed that the CNN could effectively avoid complex
steps such as manual feature extraction, that the learning rate and batch-size strongly affected the
accuracy and training efficiency, and that the fault diagnosis accuracy of CNN was 100%, which was
higher than that of KNN and ANN-BP. Therefore, the proposed CNN with high accuracy, real-time
functioning and generalization performance is suitable for application in the health monitoring of
hoisting system BTRs.

Keywords: health monitoring; hoisting system; balancing tail ropes; convolutional neural network;
image processing; ANN-BP

1. Introduction

A mine’s hoisting system is the only way to connect the underground with the ground and is
known as the “throat” of the mine [1,2]. It is a mechatronics-hydraulics-integrated system (comprising a
driving friction pulley, hoisting ropes, head sheaves, containers, balancing tail ropes, etc.) [3], including
complex dynamic characteristics like inertia, flexibility, and damping in its operation. The tail rope is
an important component of the hoisting system. It is set up to balance the gravity of the hoisting rope
and to obtain equal moments in the mine hoisting system [3]. Hence, the working state and mechanical
properties of the tail rope directly affect the safety of mine production [4].
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The balancing tail ropes (BTRs) are located at the bottom of the hoisting container, which is in the
dark shaft all (or most) the time [5]. Research and production experience show that the causes of the
BTR faults (disproportional spacing, twisted rope, broken strand, broken rope, etc.) include operational
vibration, the impact of the falling ore, wind in the shaft, corrosion, etc. Faults and accidents give rise
to many problems, such as influencing the system stability, breaking shaft equipment, threatening
the lives of mine workers and causing production to stop. However, the traditional maintenance of
BTRs only depends on workers with handheld flashlights, which is difficult, inefficient, and unsafe.
The frequent fault occurrences of BTRs pose a serious threat to the safe operation of the hoisting system.
For example, in the main shaft hoisting system of the Tong-ting Coal Mine Enterprise, tail ropes were
broken or damaged five times during 1989–1998. Its tail ropes have been replaced ten times because of
faults, resulting in a serious loss of manpower, material resources, and financial resources. The tail
ropes in the main shaft of the Bei-ming-he Iron Mine Enterprise broke and fell on 14 February 2011,
causing shaft damage, and resulting in substantial economic losses. Therefore, health monitoring for
identifying faults in BTRs and taking appropriate measures to eliminate the faults would be beneficial
to the safety and efficiency of hoisting systems.

A variety of research focusing on health monitoring and fault diagnosis methods in hoisting
systems has already been conducted. For instance, Jiang et al. [6] proposed a condition-monitoring
method based on variational mode decomposition and support vector machine via vibration
signal analysis to facilitate accurate fault monitoring of the abnormal lifting load of a mine hoist.
Chang et al. [7] also proposed a mine hoist fault diagnosis method using a support vector machine.
Henao et al. [8] theoretically and experimentally analyzed the stator current and load torque of a
three-phase induction machine in a hoisting winch system and realized the fault detection of the
wire rope. In addition, an application of a probabilistic causal-effect model based on the artificial
fish-swarm algorithm for fault diagnosis in mine hoists was proposed by Wang [9]. However, there are
few studies on the health monitoring and fault diagnosis of hoisting system BTRs. Chang [5] designed
an online monitoring and early warning system for the hoist balance tail ropes based on machine vision.
The system extracts the image feature parameters with integral projection and Hu invariant moment,
and the pattern recognition is ultimately used to identify the fault information. The method used by
Chang needs complex image processing and manual feature extraction in the early stage, which has the
disadvantages of low efficiency and poor accuracy when handling big data, and is difficult to meet the
requirements of real time and accuracy. At the same time, it is unable to cover the entire feature space
because there are so few samples in the dataset, meaning that the model’s generalization performance
is poor. Hence, with the growing security requirements of hoisting systems, the traditional methods
will be difficult to achieve high accuracy, real time and generalization performance.

Since 2006, deep learning (DL) [10] has become a rapidly growing research direction [11]. As an
important DL algorithm, the convolutional neural network (CNN), has recently become a research
hotspot in the field of pattern recognition [12], and is widely used in speech recognition [13], image
recognition [14–16], behavior detection [17,18], text classification [19] and more. In the field of image
recognition, the original image can be put into the CNN directly without complicated pretreatment.
Additionally, owing to CNNs’ local receptive field, weight sharing, and down sampling, it is highly
invariant to image information in the deformation of translation, inclination, scaling, and so on. CNNs
have been widely applied because of the aforementioned advantages [20].

Considering the capability of DL to address big data and learn high-level representation, it can be
a powerful and effective method for machine health monitoring systems (MHMS) [11]. At present, in
the field of MHMS, the CNN-based health monitoring and fault diagnosis of mechanical systems are
still in the initial stage of exploration. Chen et al. [21] used a CNN to realize gearbox fault detection and
classification. Janssens et al. [22] used a CNN to realize fault detection and recognition in the rotating
machinery without expert experience. Weimer et al. [23] did a comprehensive study of different CNN
configurations for automated feature extraction in industrial inspection. Ince et al. [24] successfully
developed a one-dimensional (1D) CNN on raw time series data for real-time motor fault detection.
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Ding et al. [25] proposed a deep convolutional network for spindle bearing fault diagnosis, and they
used wavelet packet energy images as the input. Abdeljaber et al. [26] also proposed a 1D CNN,
which can execute damage detection and structural damage localization in real-time via normalized
vibration signals. Fault diagnosis methods based on CNN have only been under development for
approximately four years (2015–2018) [11], the CNN-based method is also under great demand to
address these challenges. However, although DL technology has great potential, there are still few
applications emerging from the research into the health monitoring and fault diagnosis of mechanical
systems [27], especially in terms of hoisting systems.

Due to the important role of the hoisting system, it is rarely shutdown. Thus, the real-time
monitoring of BTRs via machine vision will involve massive images (i.e., big image data).
The traditional methods find it difficult to process big data, so it is very suitable to apply CNNs
for the diagnosis of BTR faults. Additionally, the research in this paper has great significance because
CNNs have not yet been applied in the field of health monitoring and fault diagnosis for hoisting
systems’ BTRs. This paper presents the design of an online BTR monitoring system based on machine
vision and a CNN, that can provide reliable fault warning information, realize the automation of BTR’
fault monitoring, and improve the safety of the mine hoisting system. The main contributions of
this paper are as follows: (1) The deep learning method is introduced to the health monitoring and
fault diagnosis of hoisting systems for the first time, and a CNN method is proposed that diagnoses
BTR faults more accurately than k-nearest neighbor (KNN) and artificial neural network with back
propagation (ANN-BP) algorithms; (2) A method of establishing a BTR image dataset that can cover the
entire feature space is put forward; (3) The same framework can be applied to other health monitoring
and fault diagnosis applications where machine vision and CNN are demanded.

This paper is organized as follows: the image data-driven monitoring system framework is
proposed in Section 2. In Section 3, the principles are introduced and the design of the CNN structure
is presented. Section 4 describes how the tail ropes monitoring dataset is built. In Section 5, the
experimental design and results analysis are presented and discussed, and a comparison with other
methods is made. The industrial implementation plan is proposed in Section 6, and the paper is
concluded in Section 7.

2. Image Data-Driven Monitoring System Framework

A schematic diagram of the proposed image data-driven monitoring system framework is
presented in Figure 1.

The monitoring system framework is composed of three parts, including the image acquisition
system, the vertical shaft movable sensor network [28] and the upper computer. The image acquisition
system includes a light source, CCD (charge coupled device) cameras, an acquisition card and memory,
and can realize the real-time collection of the BTRs image data. The movable sensor network transfers
the collected image data to the upper computer. The upper computer is made up of one or more
high-performance deep learning workstations, allowing it to achieve the deep mining of big image
data features, analyze the data, and give BTR fault warnings. If the tail rope is found to be twisted,
broken, or unevenly distributed, the diagnosis information will be sent out immediately so as to avoid
the enlargement of the fault. Our work mainly focuses on the study of health monitoring methods.
Other aspects of the system, such as the design of the hardware and software of the image acquisition
system and the design of the movable sensor network, are not discussed in this paper.

As shown in Figure 1, the proposed image data-driven framework for monitoring BTRs is
developed by the following steps:

Step 1. Generate the training and testing dataset: collect the BTR image data, clean the data, and
divide the processed BTR image data into training and testing datasets [29].

Step 2. Develop the model: based on the dataset, apply data-driven algorithms to develop models
for predicting the BTRs’ condition [29]. To adjust and optimize the parameter settings of algorithms,
the trial-and-error method [20,30] is employed.
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Step 3. Model selection: compute the prediction accuracy based on the developed models, and
select the most accurate one for monitoring the BTRs’ condition.

Step 4. Online monitoring: design the hardware and software of the monitoring system, and
apply them to online monitoring.
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Figure 1. The monitoring system framework based on image data. 
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Figure 1. The monitoring system framework based on image data.

3. Convolutional Neural Network

A CNN consists of an input layer, a hidden layer, a fully connected layer and an output layer,
in which the hidden layer is composed of several alternating convolution layers and pooling layers.
The alternating convolution and pooling layers form a sub-convolution-pooling neural network as
shown in Figure 2 and the CNN comprises multiple sub-convolution-pooling neural networks [20].
The feature map of the input layer is convoluted by specific convolution kernels in the convolution
layer, a bias is added, and then an output feature is obtained by an activation function, in which the
commonly used activation functions are sigmoid, tanh(x), rectified linear unit (ReLU), leaky ReLU, etc.
The pooling layer is a feature selection for the output feature map of the convolution layer. The fully
connected layer and the output layer constitute the classifier which can be Softmax, support vector
machine (SVM), etc. [31,32].

Appl. Sci. 2018, 8, 1346 5 of 25 

commonly used activation functions are sigmoid, tanh(x), rectified linear unit (ReLU), leaky ReLU, 

etc. The pooling layer is a feature selection for the output feature map of the convolution layer. The 

fully connected layer and the output layer constitute the classifier which can be Softmax, support 

vector machine (SVM), etc. [31,32]. 

Convolution

Convolution layer

Pooling layer

Input

10×10
3×8×8

3×4×4 

Pooling

kernel_size=3×3

stride=1
pool_ size=2×2

stride=2

 

Figure 2. The sub-convolution-pooling neural network. 

3.1. Principle and Proposed Structure 

3.1.1. Principle 

(1) Convolution 

In the convolution layer, the feature map from the upper layer is convoluted by the convolution 

kernel, and then the output feature map is obtained via the activation function [33]: 

( )j jx f u=
, (1) 

1

j

j i ij j

i M

u x k b−



=  +
, 

(2) 

where ju  is the net activation of the j channel in the convolution layer, which is obtained by 

summing the convolution and bias of the output feature map 
1

ix −
 of the upper layer. jx  is the 

output of the j channel of the convolution layer. f (·) is called the activation function, and it is a ReLU 

function in this paper. Mj represents a subset of input feature maps for computing, ijk  is a 

convolution kernel, and
 jb  is the bias item of the feature map after convoluting. For an output 

feature map jx , the convolution kernel ijk  corresponding to each input feature map 1

ix −  may be 

different. 

(2) Pooling 

The output feature map is obtained by the down sampling layer by sampling every input feature 

map by the following formula: 

1( down( ) )j j j jx f x b −= + , (3) 

where j  is the weight coefficient of the down sampling layer, and jb  is the bias of the down 

sampling layer. The symbol down(·) represents the down sampling function, which calculates the 

sum, mean or maximum value of the pixel in the n × n region of the input feature map so that the 

output map is reduced by n times in two dimensions. 

(3) Full connection 

Figure 2. The sub-convolution-pooling neural network.



Appl. Sci. 2018, 8, 1346 5 of 24

3.1. Principle and Proposed Structure

3.1.1. Principle

(1) Convolution

In the convolution layer, the feature map from the upper layer is convoluted by the convolution
kernel, and then the output feature map is obtained via the activation function [33]:

x`j = f (u`
j ), (1)

u`
j = ∑

i∈Mj

x`−1
i ∗ k`ij + b`j , (2)

where u`
j is the net activation of the j channel in the convolution layer, which is obtained by summing

the convolution and bias of the output feature map x`−1
i of the upper layer. x`j is the output of the j

channel of the convolution layer. f (·) is called the activation function, and it is a ReLU function in this
paper. Mj represents a subset of input feature maps for computing, k`ij is a convolution kernel, and b`j
is the bias item of the feature map after convoluting. For an output feature map x`j , the convolution

kernel k`ij corresponding to each input feature map x`−1
i may be different.

(2) Pooling

The output feature map is obtained by the down sampling layer by sampling every input feature
map by the following formula:

x`j = f (β`
j down(x`−1

j ) + b`j ), (3)

where β`
j is the weight coefficient of the down sampling layer, and b`j is the bias of the down sampling

layer. The symbol down(·) represents the down sampling function, which calculates the sum, mean or
maximum value of the pixel in the n × n region of the input feature map so that the output map is
reduced by n times in two dimensions.

(3) Full connection

In the fully connected network, all two-dimensional image features are stitched into
one-dimensional features as inputs to the fully connected network. The output of the full connection
layer can be obtained by weighting and by the activation function:

x` = f (u`), (4)

u` = w`x`−1 + b`, (5)

where w` is the weight coefficient of the fully connected network, and b` is the bias item of the fully
connected layer.

(4) Classification

To solve the multi-classification problem, the Softmax [34] function, which is located in the last
layer, is usually used. It is expressed as the probabilistic expression p(y = j/x), where x is the input
sample and the corresponding label is y, p is the probability of sample j. Therefore, the output will be
an n-dimensional vector for a classifier with n classes and the sum of the elements in a vector is 1, as
shown by Equation (6) [20,35]:
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p(y(i) = n
∣∣∣x(i); w ) =


p(y(i) = 1

∣∣∣x(i) ; w)

p(y(i) = 2
∣∣∣x(i) ; w)

...

p(y(i) = n
∣∣∣x(i) ; w)

 =
1

∑n
j=1 ewT

j x(i)


ewT

1 x(i)

ewT
2 x(i)

...
ewT

n x(i)

, (6)

where w is the weight, and wT
n x(i) are the inputs of the Softmax layer. The term 1/∑n

j=1 ewT
j x(i)

normalizes the distribution, so that it sums to 1 [20]. In the training process, the optimization algorithm
is used to minimize the loss function to complete the network training. The loss function J(θ) is
defined by Equation (7) [35]:

J(θ) = − 1
m

 m

∑
i=1

n

∑
j=1

1
{

y(i) = j
}

log
ewT

j x(i)

∑n
l=1 ewT

l x(i)

, (7)

where 1
{

y(i) = j
}

is an indicator function that always returns 1 or 0, which means that when a
predicted class of the ith input is true for class j, the result is 1; otherwise, the result is 0.

(5) Regularization

The research [36,37] shows that if the network model performs excellently in the training dataset
but has difficulty in obtaining a satisfactory accuracy on the testing dataset, the overfitting phenomenon
appears in the model. This phenomenon can be avoided by using regularization technology to restrain
the complexity of the model. The commonly used regularization technologies are L2 regularization,
L1 regularization and dropout. In this paper, we add the L2 regularization term to the fully connected
layer. The L2 regularization term is in the form of:

L2 =
1
2

λ‖ω‖2
2, (8)

where ω is the network layer parameter to be regularized, and λ controls the size of the regularization
item. Larger values of λ will constrain the model complexity to a large extent.

3.1.2. Structural Design

The CNN structure designed for the health monitoring of BTRs is shown in Figure 3, and the
configurations of the convolution, pooling, and fully connected layers are listed in Table 1.Appl. Sci. 2018, 8, 1346 7 of 25 
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Figure 3. The structure of a convolutional neural network (CNN).

The input feature map is grayscale with a size of 28 × 28. The hidden layer is composed of two
convolution layers and two pooling layers, in an alternating arrangement. The number of convolution
kernels of the first and second convolution layers is 64 and 128, respectively (with a size of 3 × 3).
Before convoluting, with the “same” padding operation, the convolution results at the boundary are
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preserved so that the output shape is the same as the input shape. The pooling layer uses maximum
sampling, (i.e., finding the maximum value in the 2 × 2 region of the feature map). The fully connected
layer is set to three layers, with each layer having 200, 64 and 32 neurons, respectively. The ReLU
function is chosen as the activation function of the convolution layers and fully connected layers.
The output layer selects the Softmax classifier. To prevent overfitting, we use L2 regularization to
process the fully connected layer F1.

Table 1. The configurations of the convolution, pooling, and fully connected (FC) layers.

Layer Parameters Information Variables Input Data
Dimension

Output Data
Dimension

Conv1 64 convolution kernels with 3 × 3, stride is 1 640 28 × 28 × 1 28 × 28 × 64
Pool1 Pooling size 2 × 2, stride is 2 0 28 × 28 × 64 14 × 14 × 64
Conv2 128 convolution kernels with 3 × 3, stride is 1 73,856 14 × 14 ×64 14 × 14 × 128
Pool2 Pooling size 2 × 2, stride is 2 0 14 × 14 × 128 7 × 7 × 128
FC1 200 nodes 1,254,600 1 × 6272 1 ×200
FC2 64 nodes 12,864 1 × 200 1 × 64
FC3 32 nodes 2080 1 × 64 1 × 32

3.2. Algorithm Flow and Experimental Environment

Before the convolutional neural network is trained and tested, the image data are collected
(through the CCD camera), preprocessed (e.g., scaling, graying, etc.), and divided (via the hold-out
method). The algorithm flow chart is shown in Figure 4, it involves two parts, including the forward
propagation of the data and the reverse propagation of the error [32]. Firstly, the training parameters
of the network are set, the weight and bias of the network are initialized, and then the input feature
map processed by the convolution layer, the pooling layer and the fully connected layer is transmitted
to the output layer. During this process, the output of each layer is the input of the next layer. Then,
the error between the actual output and the expected output is reversely transmitted using the back
propagation (BP) algorithm, layer by layer. Next, this error is allocated to each layer, and the weight
and bias of the network are adjusted until the convergence condition is satisfied, thus realizing the
effective supervised training of the network.Appl. Sci. 2018, 8, 1346 8 of 25 
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The experimental environment is described in Table 2.

Table 2. The experimental environment.

Hardware Environment Software Environment

CPU: Intel Core i5-6200U 2.40 GHz
Memory: 8.00 GB

System: Windows 10, ×64
Development tool: Keras (Theano)

4. Dataset Description and Establishment

The establishment of the dataset is complex, and the richness and accuracy of the dataset have
a direct influence on the recognition ability and generalization performance of the network. In this
section, we first describe the data (i.e., the tail rope failure categories, forming reasons, and expression
forms). Then, based on the data description, we establish a dataset that covers all the features.

4.1. Data Description

In the hoisting system, the states of BTRs basically include normal, disproportional spacing,
twisted rope, defect, and broken rope. The disproportional spacing is caused by unstable factors in the
hoisting system, such as mechanical vibration, wind-induced vibration, etc., which is the precondition
of twisted rope. The twisted rope fault occurs when the hoisting system is very unstable. In this
paper, the collision contact of the two ropes is also classified as a twisted rope-type fault. The twisted
rope-type fault is a serious fault that causes the instability in the hoisting system and produces broken
rope or downtime, so it should be avoided. Defects include wear, broken wire, broken strand, and rust,
among which, a broken strand, the precondition of a broken rope, is the most serious defect. Because
the broken rope directly leads to the instability of the hoisting system or even accidents, we should try
to avoid it.

The measure of setting separate woods (using wood to separate each tail rope) has been adopted
in order to prevent the collision of the BTRs, but the separate woods tend to damage the BTRs by
scratching or pulling, which aggravates the wear and failure of the BTRs. The tail rope is in a state of
free overhanging in the shaft, is subjected to random vibrations and external excitation, and its attitude
is difficult to estimate. Therefore, according to the actual production situation, we use the empirical
method to build up the BTRs’ state dataset with the whole feature space as far as possible. The image
dataset in this paper is made up of five typical feature states, namely, normal (a), disproportional
spacing (b), twisted rope (c), broken strand (d) and broken rope (e), as shown in Figure 5.

It should be noted that the distance of normal (a) here is defined as being greater than 3/4 of the
normal distance (the distance between the tail ropes under stationary state). Disproportional spacing
(b) is defined as a distance less than 1/2 of the normal distance between the two ropes. Twisted rope
(c) is defined as a variety of forms in which two ropes get entangled. Broken strand (d) is divided into
three categories, including broken strand of the left rope (d1), the right rope (d2), and double ropes
(d3). Broken rope (e) is classified into three categories, including left broken rope (e1), right broken
rope (e2), and double broken ropes (e3). As shown in Figure 5, we assume the normal distance between
the tail ropes is D, and the view of the image taken by the camera is L long and W wide, such that the
following can be obtained: L > d1 > 3/4D, 0 < d2 < 1/2D, d3 = 0, 0 < h1 ≤W, and 0 < h2 ≤W.

Therefore, the dataset has nine characteristics (i.e., a, b, c, d1, d2, d3, e1, e2, e3). When different
faults are diagnosed, an early warning is carried out according to the different levels (Level 1: normal
state is not warned; Level 2: when the distance is not uniform, a reminder is given regarding the
deceleration operation but no warning is given; Level 3: overhaul warning when there is a broken
strand; Level 4: a brake signal is immediately sent out when there is a twisted or broken rope). It is
important to note that in order to distinguish the two characteristic states of normal and disproportional
spacing, we define these spacings as being greater than 3/4 and less than 1/2 of the normal distance,
respectively, and it needs to be observed when the spacing is between 1/2 and 3/4 of the normal
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spacing (because the identification results may be normal or disproportional spacing). Identification
results of normal or disproportional spacing do not affect the fault diagnosis results, because there is
no need to take any action (Levels 1–2 are the healthy state, which will not have warnings; Level 3 is a
mild malfunction; and Level 4 is a serious fault state). The above method can also be used to describe
the data of a hoisting system containing more than two tail ropes.
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rope; (d) broken strand ((d1) refers to broken strand of the left rope, (d2) of the right rope, and (d3) of
double ropes); and (e) broken rope ((e1) refers to the left broken rope, (e2) refers to the right broken
rope, (e3) refers to the double broken ropes).

4.2. Dataset Establishment

Because of the difficulty associated with collecting samples containing the whole feature space
in the field and estimating all kinds of poses with theoretical formulae, in this paper, we set up an
experimental image dataset containing nine features with production experience and use techniques
to generate more examples by deforming the existing ones [32]. The process of setting up the dataset is
as follows: first, typical images of the nine features are set up; then, ten seed images of each type are
set up, with each seed image of the same type being different, as depicted in Figure 6 (using the same
blue and smooth background plate without texture). Then, the images are expanded to a scale of 4500
by zoom, translation, rotation, and other means to enhance the generalization ability of the network
model [38]. The data extension method [39] is as follows:

Step 1: The seed images are rotated from −5 degrees to 4 degrees with the increment of 1 degree;
Step 2: The images obtained by Step 1 are scaled by a factor ranging from 0.8 to 1.2 with an

increment of 0.1;
Step 3: All images are uniformly scaled to 28 × 28 by the bilinear interpolation method;
Step 4: All images are grayed and converted into line vectors;
Step 5: The labels are added and the dataset is established.
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Figure 6. The seed images. (a) Normal; (b) disproportional spacing; (c) twisted rope; (d1) broken
strand of the left rope; (d2) broken strand of the right rope; (d3) broken strand of double rope; (e1) left
broken rope; (e2) right broken rope; (e3) double broken ropes.

In data expansion process, the rotation is designed to simulate the inaccuracy of the camera
installation angle in the actual shooting or the swing of the tail rope in the field of vision. Scaling is
used to simulate different image sizes. The bilinear interpolation method is used to scale the images to
a uniform size to facilitate the standardization of the data (the size of the image in this paper is 28 × 28,
and common sizes are 32 × 32, 64 × 64, etc.). Gray processing is used to remove the influence of color
and illumination so that the input data contain only the position and the defect feature information of
the tail ropes. After converting the grayscale images into vectors and adding labels, data mining can
begin, using the constructed algorithm model.

It is known that the images collected by CCD cameras under actual working conditions are of
two wire ropes in different states, with the position of the wire ropes and the state of the broken strand
on the ropes being the main image characteristics. The recognition results should not be influenced
by the image background, oil pollution on the wire rope surface, obvious light changes, and so on.
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After image preprocessing, the experimental dataset is essentially consistent with the actual scene
dataset, which is a 28 × 28 gray pixel matrix that can directly reflect the position of the wire rope and
the shape of the broken strand. In order to further illustrate the feature information of the position and
defect of the tail rope after scaling and grayscale processing, we display bilinear interpolation scale
images and grayscale images in Figure 7. We randomly selected some images in Figure 6 (e.g., the
eighth image of the twisted rope (c-8) and the first image of the broken strand of the left rope (d1-1)),
then we used the following image processing method: first, the bilinear interpolation method was
used to scale the size to 28 × 28. Then, graying was done. The information of the position and defect
features of the tail ropes are clearly visible in the scaling and graying images. Because the CNN is not
sensitive to the scale and rotation of the input image data, it can automatically mine and learn the
potential feature information of the dataset.

The nine kinds of tail rope states are given in Table 3.
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Table 3. The nine kinds of tail rope states.

Tail Rope States CNN Sample Number Label One Hot Coding

Normal (NM) 500 1 100000000
Disproportional spacing (DS) 500 2 010000000

Twisted rope (TR) 500 3 001000000
Broken strand of the left rope (BS-LR) 500 4 000100000

Broken strand of the right rope (BS-RR) 500 5 000010000
Broken strand of double ropes (BS-DR) 500 6 000001000

Left broken rope (L-BR) 500 7 000000100
Right broken rope (R-BR) 500 8 000000010

Double broken ropes (D-BR) 500 9 000000001

5. Experiment and Analysis

This section describes our experiment and presents the analysis of the obtained results. Firstly,
we propose the evaluation methodology and metrics for the performance measure. Secondly, we
describe the data mining of the tail rope dataset using the CNN. Then, we provide a comparison with
other traditional intelligent methods (e.g., KNN and ANN-BP) that we used to carry out the BTR fault
diagnosis. Finally, the results of each algorithm are compared and analyzed. During the study of
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the different algorithms, the related parameters are adjusted to achieve better accuracy, the hold-out
method is used to verify its generalization performance, and the diagnosis results are analyzed using
the confusion matrix.

5.1. Evaluation Methodology and Performance Measure

In general, in the actual task, we need to evaluate the generalization error of the model, and
then choose the model with the smallest generalization error. Therefore, it is necessary to use the
testing set to test the discriminant ability of the model, and then take the test error of the testing set
as an approximation of the generalization error. The testing set and training set are usually mutually
exclusive, (i.e., the test samples do not appear in the training set and are not used in the training
process). Therefore, this paper uses the hold-out method [40] to evaluate the model. The hold-out
method directly divides the data set D into two mutually exclusive sets, namely the training set A and
the testing set B (D = A∪B, A∩B = Ø) [41]. After the model is trained using training set A, testing set B
is used to evaluate the test error as an estimate of the generalization error.

After evaluating the generalization performance of the model, it is necessary to measure the
performance of the model with evaluation metrics. In this paper, four evaluation metrics are calculated,
namely accuracy, precision, recall and f1-score. Their formulas can be seen in Equations (9)–(12) [22]:

accuracy =
TP + TN

TP + FP + FN + TN
, (9)

precision =
TP

TP + FP
, (10)

recall =
TP

TP + FN
, (11)

f 1− score == 2
precision× recall
precision + recall

, (12)

where TP means true positive, FP means false positive, TN represents true negative, and FN represents
false negative. All of them are classified according to the combination of the real category and model
prediction category [42]. Taking the binary classification as an example, the confusion matrix of the
classification results is shown in Table 4. It is clear that the total number of samples equals the result of
the formula TP + FP + TN + FN.

Table 4. The confusion matrix of the binary classification results.

Real Situation
Predicted Results

Positive Negative

Positive TP FN

Negative FP TN

Different metrics directly reflect the impact of health monitoring tasks. For example, accuracy
can directly reflect the number of correct and erroneous prediction results for all of the test samples.
Precision can reflect a certain category of test samples, how many predictions are correct, and how
many predictions are incorrect. For example, if in a testing set containing 100 samples of twisted rope,
90 are predicted to be twisted rope faults and 10 are classified as other faults, the precision for the
twisted rope fault is 90%. Recall and precision are a pair of contradictory measurements. Recall shows
how many predictions are correct in a certain class of prediction results. For example, if 100 prediction
results are twisted rope faults, of which 90 test samples are actually twisted rope faults and 10 test
samples are other faults, then the recall of the twisted rope fault is 90%. A good classifier maximizes
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both precision and recall to make fewer incorrect prediction results, which is expressed in the f1-score.
The f1-score is the harmonic average of precision and recall.

The tail rope health monitoring in this paper is a multi-classification task. According to Section 4,
different kinds of features, including normal (a), disproportional spacing (b), twisted rope (c), broken
strand (d), and broken rope (e), should not normally be predicted incorrectly because their features are
quite different. It may be difficult for classifiers to classify similar categories, for example, classifying
between subcategories of broken strand (d): broken strand of the left rope (d1), broken strand of the
right rope (d2), and broken strand of double ropes (d3). If the defects on the left or right were to change
in size, shape, or height, it is possible that broken strand of double ropes (d3) would be predicted as
broken strand of the left rope (d1) or broken strand of the right rope (d2), or vice versa. In addition, for
the faults left broken rope (e1), right broken rope (e2), and double broken ropes (e3) in the category
broken rope (e), when the position or height of the broken rope change, it is easy to predict double
broken ropes (e3) as left broken rope (e1) or right broken rope (e2), or vice versa.

In the following, the performance of the classifiers is measured with the metrics given by
Equations (9)–(12), and the prediction results are visualized by the confusion matrix.

5.2. Computation and Results Analysis

5.2.1. The Convolutional Neural Network

(1) CNN parameters selection

Concerning the CNN configuration, it is still an open question what hyper-parameters (e.g.,
number of layers, learning rate, size of the filters, batch-size, etc.) are useful to a greater or lesser extent
for this task [42]. The hyper-parameters are adjusted in order to study the performance of the built
CNN. The choice of learning rate and batch-size severely affects the training and testing results, so we
adjust and study the learning rate and batch-size in this paper [20]. The structure of CNN is shown in
Figure 3, and the configurations of each layer are listed in Table 1. In addition, before each round of
training, the dataset is randomly disturbed, the network parameters are randomly initialized, the L2

regularization term is added to the fully connected layer F1, and a stochastic gradient descent (SGD)
algorithm is used to train the network [35]. Before the training and testing of the BTRs dataset, 70% of
the total sample is selected randomly as the training sample, and the remaining 30% is used as the
testing sample (i.e., 3150 samples are selected as the training dataset and 1350 samples are used as
the testing dataset). After training and testing, we mainly use Equation (9) (accuracy) to evaluate the
performance of the CNN.

(a) Learning rate

An ideal learning rate will accelerate the convergence of the model, while an undesirable learning
rate will even directly cause the loss of the objective function to explode and fail to complete the
training [43]. In this section, the network iteration is set to 40 epochs, and the initial batch-size is set to
5. The training loss, training accuracy, testing loss and testing accuracy under different learning rates
are shown in Table 5.

From the data in Table 5, the training and testing curves are made as shown in Figure 8. Table 5
and Figure 8 show that both the training accuracy and testing accuracy are 100% around the learning
rate of 0.01, and that the accuracy is highest and stable at this rate. During training and testing, the
accuracy and loss of testing are basically consistent with the training accuracy and loss, indicating that
there is no significant noise in the dataset, and the network performance is good. With the increase in
the learning rate, the training accuracy and the test accuracy first increase, then remain stable, and
finally reduce quickly (training loss and testing loss decrease at first, then keep stable, finally increase
and keep stable), indicating that smaller and larger learning rates reduce the accuracy of the network.
Therefore, in this experiment, the optimized learning rate is set to 0.01.
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Table 5. The loss and accuracy (Acc) under different learning rates.

Learning Rate Train-Loss Train-Acc Test-Loss Test-Acc

0.0001 2.1880 0.1114 2.1890 0.1104
0.0005 1.5374 0.4343 1.5445 0.4407
0.001 0.5529 0.5286 0.6247 0.7474
0.002 0.0870 0.9737 0.0535 0.9844
0.003 0.0257 0.9933 0.0095 0.9932
0.005 0.0030 1 0.0028 1
0.007 0.00086 1 0.00086 1
0.009 0.00041 1 0.00045 1
0.01 0.00033 1 0.00037 1
0.02 0.000085 1 0.000094 1

0.025 0.000048 1 0.000054 1
0.03 0.000051 1 0.000056 1

0.035 0.000033 1 0.000035 1
0.037 0.000033 1 0.000036 1
0.039 2.1990 0.1016 2.1989 0.1163
0.04 2.1991 0.1022 2.1990 0.1163
0.05 2.1990 0.0978 2.1981 0.1056
0.1 2.2005 0.0978 2.1990 0.1022
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(b) Batch-size

When the SGD method is adopted, the batch-size has a great influence on network performance.
In this section, we set the network iteration to 40 epochs, and the learning rate to 0.01. The training
loss, training accuracy, testing loss, testing accuracy, and time cost of different batch-sizes are shown in
Table 6.

The training and testing curves are made as shown in Figure 9, according to the data in Table 6.
From Table 6 and Figure 9, it is known that when the batch-sizes are 1, 3, and 5, the training accuracy
and testing accuracy are both 100%, and that the accuracy is the highest and stable. With the increase
in the batch-size, the training accuracy and testing accuracy remain stable at first, then reduce quickly
(training loss and testing loss keep stable at first, then increase fast), indicating that larger batch-sizes
reduce the accuracy of the network. It is also found that larger batch-sizes led to less time being
consumed for each iteration. If we use graphics processing units (GPUs) to accelerate the computation
process via parallel computation, we can significantly reduce the iteration time. Therefore, in this
experiment, when the learning rate of the CNN model is set to 0.01 and the batch-size is set to 5, the
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training and testing accuracies are high, and the time consumption of each iteration is less, meeting
the requirements of accuracy and real time.

Table 6. The loss, accuracy, and time cost under different batch-sizes.

Batch-Size Train-Loss Train-Acc Test-Loss Test-Acc Time Cost (s/epoch)

1 0.000021 1 0.000019 1 50
3 0.00012 1 0.00014 1 32
5 0.00033 1 0.00037 1 23
10 0.0084 0.9997 0.0052 1 23
20 0.0500 0.9860 0.0299 0.9911 22
30 0.1350 0.9711 0.1030 0.9711 22
40 0.4711 0.8346 0.4853 0.8119 22
50 0.7783 0.6870 0.9526 0.5578 21

100 1.6900 0.3394 1.8885 0.2519 18
150 2.1296 0.1460 2.1309 0.1615 18
200 2.1587 0.1156 2.1601 0.1230 18
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(2) Detailed Results

(a) Hold-out method

The hold-out method [40] is used to evaluate the generalization error of the model. First,
4500 samples are randomly disturbed and then a certain proportion of these samples are chosen
for training and testing using the hold-out method. Each training lasts for 40 epochs and the evaluation
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metrics of the test data set are calculated according to Equations (9)–(12). After training and testing
five times and calculating the mean value, the results are shown in Table 7.

Table 7. The different dividing ways of the hold-out method.

Dividing Ways
(Train (%)-Test

(%))
Train-Loss Test-Loss Accuracy Precision Recall f1-Score

Approximate
Time Cost
(s/epoch)

60–40 0.00049 0.00047 1 1 1 1 21
65–35 0.00064 0.00065 1 1 1 1 26
70–30 0.00033 0.00037 1 1 1 1 27
75–25 0.00037 0.00039 1 1 1 1 32
80–20 0.00024 0.00026 1 1 1 1 35

According to Table 7, we find that the method of dividing the dataset between training and testing
has little effect on the experimental results, and that the four metrics under each division are all 1,
with only a small difference in the loss and time consumption. These results demonstrate that the
established CNN network model has a good performance.

In similar applications of machine learning and CNNs for image classification, approximately
2/3~4/5 samples are generally used for training and the rest are used for testing [44]. Therefore, we
use 75% of the data for training and 25% of the data for testing in the next part.

(b) Iterative process

Through all of the above studies, we adopt the CNN structure proposed in Section 3, combined
with the Table 1, to determine the following network settings:

• The dataset is randomly divided using the hold-out method, 75% is divided into the testing set,
and 25% is divided into the training set;

• The learning rate is set to 0.01, the batch size is set to 5, and the iteration is set to 40;
• The fully connected layer F1 is processed using L2 regularization;
• The network is trained using an SGD algorithm.
• The iterative process of training and testing for 40 epochs is shown in Figure 10.
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From Figure 10, it can be seen that during the 40-epoch iterative process: the training accuracy and
testing accuracy increase rapidly and approach 100%, reaching 90% in approximately 10 rounds, and
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reaching 99% in around 17 rounds. The training loss and testing loss converge quickly and eventually
close to 0.0002. The training accuracy is consistent with the testing accuracy in the iterative process, as
well as the training loss and testing loss. The testing results are as good as the training results, which
shows that due to the regularization processing of the network, there is no overfitting phenomenon
and the generalization performance is good. After 20 rounds, the training and test curves are relatively
smooth, indicating that there is no need to iterate for 40 rounds to achieve a better effect. Meanwhile,
the time consumption of each iteration is less (32 s/epoch, 10 ms/step).

(c) Confusion matrix

A confusion matrix is used to present the performance and the result of the CNN, as shown in
Table 8 and Figure 11. The accuracy, precision, recall, and f1-score are all 1 for the 1125 prediction
samples, and the prediction results of each category are exactly the same as the actual results (labels),
indicating the good performance of the CNN algorithm. The CNN has a good prediction ability
for the tail rope faults, can completely separate the nine kinds of tail rope states, and can accurately
predict them.

Table 8. The confusion matrix of the CNN.

Matrix Precision Recall f1-Score Support

NM 1 1 1 125
DS 1 1 1 122
TR 1 1 1 127

BS-LR 1 1 1 127
BS-RR 1 1 1 131
BS-DR 1 1 1 120
L-BR 1 1 1 129
R-BR 1 1 1 120
D-BR 1 1 1 124

Average/total 1 1 1 1125

Appl. Sci. 2018, 8, 1346 18 of 25 

Table 8. The confusion matrix of the CNN. 

Matrix  Precision Recall f1-Score Support 

NM 1 1 1 125 

DS 1 1 1 122 

TR 1 1 1 127 

BS-LR 1 1 1 127 

BS-RR 1 1 1 131 

BS-DR 1 1 1 120 

L-BR 1 1 1 129 

R-BR 1 1 1 120 

D-BR 1 1 1 124 

Average/total 1 1 1 1125 

Confusion matrix,  without normalization Normalized confusion matrix 

T
ru

e
 l

a
b

e
l

Predicted labelPredicted label

T
ru

e
 l

a
b

e
l

(a) (b)

 

Figure 11. CNN confusion matrices. (a) Without normalization; (b) normalized. 

Therefore, the convolutional neural network for the health monitoring and fault diagnosis of 

hoisting system BTRs proposed in this paper presented a good performance, meeting the 

requirements of accuracy, real-time functioning, and generalization performance. 

5.2.2. The k-Nearest Neighbor and Artificial Neural Network with Back Propagation  

(1) KNN 

The KNN [45] is a classification method based on statistics. It was first proposed by Cover and 

Hart in 1968. As the simplest machine learning method, the algorithm is relatively theoretically 

mature and is widely used in classification tasks [46]. This algorithm performs the following 

operations on each unknown category in the dataset:  

Step 1. The distance between the point of the dataset with a known class and the current point 

is calculated;  

Step 2. The distances are sorted according to increasing order of distance; 

Step 3. k points with the minimum distance are selected from the current point;  

Step 4. The occurrence frequency of the category of the previous k points is determined; 

Step 5. The class with the highest frequency of the previous k points is selected as the pre-

classification of the current point. 

In Step 1, computing the distance includes the Euclidean distance, Manhattan distance, etc. (the 

latter one is utilized in this paper). The eigenspace   is an n dimensional real vector space Rn, where

,i jx x  , (1) (2) ( ) T( , , , )n

i i i ix x x x=  , (1) (2) ( ) T( , , , )n

j j j jx x x x=  . The Manhattan distance of ,i jx x  is: 

Figure 11. CNN confusion matrices. (a) Without normalization; (b) normalized.

Therefore, the convolutional neural network for the health monitoring and fault diagnosis of
hoisting system BTRs proposed in this paper presented a good performance, meeting the requirements
of accuracy, real-time functioning, and generalization performance.
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5.2.2. The k-Nearest Neighbor and Artificial Neural Network with Back Propagation

(1) KNN

The KNN [45] is a classification method based on statistics. It was first proposed by Cover and
Hart in 1968. As the simplest machine learning method, the algorithm is relatively theoretically mature
and is widely used in classification tasks [46]. This algorithm performs the following operations on
each unknown category in the dataset:

Step 1. The distance between the point of the dataset with a known class and the current point
is calculated;

Step 2. The distances are sorted according to increasing order of distance;
Step 3. k points with the minimum distance are selected from the current point;
Step 4. The occurrence frequency of the category of the previous k points is determined;
Step 5. The class with the highest frequency of the previous k points is selected as the

pre-classification of the current point.
In Step 1, computing the distance includes the Euclidean distance, Manhattan distance, etc. (the

latter one is utilized in this paper). The eigenspace χ is an n dimensional real vector space Rn, where

xi, xj ∈ χ, xi = (xi
(1), xi

(2), · · ·, xi
(n))

T
, xj = (xj

(1), xj
(2), · · ·, xj

(n))
T

. The Manhattan distance of xi, xj is:

L1(xi, xj) =
n

∑
l=1

∣∣∣x(l)i − x(l)j

∣∣∣ (13)

In practical applications, the choice of the k value should not be too small or too large, because
the prediction results are very sensitive to the value of k [47]. For example, we choose a few k values,
such as 7, 10, 13, 15, and 20, and the accuracy results are 85.24%, 88.44%, 86.67%, 85.42%, and 81.33%,
respectively, which illustrates that the accuracy of each prediction with different k values is quite
different. To find the k nearest neighbor points quickly, we use the ball-tree [48]. The ball-tree is
suitable for high-dimensional problems, generally when the feature dimension is greater than 20 [49].
In this paper, the dimension of the dataset is 784. After adopting the ball-tree in KNN, the prediction
accuracy is 94.04% and the time consumption is 50 s. The confusion matrix of the prediction result is
shown in Figure 12.
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As depicted in Figure 12, the precision of the normal (NM) and disproportional spacing (DS)
states is 1, which is the highest. The precision of the broken strand of the left rope (BS-LR) is 0.83,
which is the lowest yielded result. The prediction results show that the main prediction errors occur
among similar fault types. For example, for the 127 BS-LR faults, 17 are predicted as the broken
strand of the right rope (BS-RR) type; for 131 BS-RR faults, 10 are predicted as the BS-LR type; and for
124 double broken rope (D-BR) faults, 9 are predicted as the right broken rope (R-BR) type. The results
demonstrate that KNN has some shortcomings in distinguishing similar fault types (consistent with
the hypothesis analysis in Section 5.1), and the accuracy is lower than that of the CNN algorithm.

(2) ANN-BP

The ANN-BP is a typical model that uses an error back-propagation algorithm to train the weights
and biases of each neuron, and it contains several layers (i.e., input layer, output layer, and hidden
layers) [50]. The ANN-BP has a relatively simple structure, and thus it has been widely used in fitting
nonlinear continuous functions and pattern recognition [51].

The training and testing processes are shown in Figure 13 using the same structure as the CNN’s
fully connected layer (784–200–64–32–9) and the same network settings proposed in this paper (i.e.,
using the hold-out method; the learning rate is set to 0.01; the batch size is set to 5; the iteration is
set to 40 epochs; the SGD algorithm is used, etc.). According to Figure 13, the testing accuracy is
96.44%, lower than the diagnostic accuracy of the CNN, showing the importance of the convolutional
operation of CNN in feature extraction. Compared with Figure 10, it can be seen that the iterative
process of the designed CNN model is more stable than that of the ANN-BP.Appl. Sci. 2018, 8, 1346 20 of 25 
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Figure 13. The training and testing process of the artificial neural network with back propagation
(ANN-BP) with the structure 784–200–64–32–9.

To study the influence of the number of hidden layers and the number of nodes per layer on
the performance of ANN-BP, we attempt to fine-tune the structure of the network in order to study
its prediction performance. The three hidden layers of ANN-BP are denoted as HL1, HL2, and HL3,
respectively. Firstly, the number of hidden layers is changed, including HL1, HL2, HL3, HL1HL2,
HL2HL3, and HL1HL3, and the prediction accuracy results are shown in Figure 14. Then, the number
of nodes in each layer is changed, (i.e., HL1 is varied from 180 to 220, HL2 from 44 to 84, and HL3 from
12 to 52), and the prediction accuracy results are shown in Figure 15.

Through analysis, we find that ANN-BP is sensitive to the number of network layers and the
number of nodes in each layer, and the prediction accuracy does not reach 100%, meaning that the
prediction accuracy of ANN-BP is less than that of the CNN proposed in this paper. To visualize the
prediction results, we display the confusion matrix of ANN-BP in Figure 16. According to Figure 16,
the precision of NM, DS, twisted rope (TR), BS-LR, BS-DR, and D-BR is 1, which is the highest.
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The precision of the left broken rope (L-BR) is 0.77, which is the lowest value attained. The prediction
results show that the main prediction errors occur among similar fault types. For example, among
the 134 L-BR faults, 19 are predicted as the R-BR type and 12 are predicted as the D-BR type; among
the 121 R-BR fault types, 6 are predicted as the D-BR type. The results show that ANN-BP and KNN
have some deficiencies in distinguishing similar fault types, which is consistent with the hypothesis
analysis in Section 5.1.
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5.2.3. Comparative Analysis of Results

The results of the different algorithms evaluated in this paper are listed in Table 9. In summary,
through the training and testing of the BTR dataset, the CNN model achieved a diagnostic accuracy
of 100% (it could accurately identify and predict all tail rope statuses), which was higher than the
94.04% of KNN and the 96.44% of ANN-BP. The time consumption of each iteration was 32 s, with
each step being 10 ms, which meets the requirements of system accuracy and real-time functioning.
Additionally, the L2 regularization process of the fully connected layer F1 could prevent overfitting,
which allowed the network to achieve a good generalization performance. Although ANN-BP had
less time consumption, its accuracy and stability were worse than those of CNN. At the same time,
KNN was worse than CNN in terms of accuracy and time consumption. Therefore, we can clearly
conclude that the performance of CNN was better than that of KNN and ANN-BP for the health
monitoring of tail ropes. Therefore, the CNN model is more suitable for the actual health monitoring
of hoisting systems.

Table 9. The different algorithm results.

Algorithm Description Accuracy Time Cost

KNN Using ball-tree structure 94.04% 50 s
ANN-BP Structure is 784–200–64–32–9 96.40% 1 s/epoch, 385 µs/step
Proposed

CNN
Structure is Input (28 × 28)–64C(3 × 3)–64P(2 × 2)–128C(3

× 3)–128P(2 × 2)–FC(200–64–32)–Output(9) 100% 32 s/epoch, 10 ms/step

6. Industrial Application Plan

This paper describes a method for the health monitoring and fault diagnosis of balancing tail
ropes. The object of this research was a hoisting system with two balancing tail ropes, but the same
approach used in this paper can be used to construct a dataset for hoisting systems with three or more
tail ropes. The industrial application plan is: first, configure the related hardware and software shown
in Figure 1, and conduct explosion protection for the related devices; after the system is debugged,
a large number of tail rope images are collected at the scene and the image dataset of the actual working
conditions is set up; then, these data are used as the input to train the CNN or fine-tune the trained
CNN. Deep learning can also be introduced into the safety monitoring of the whole hoisting system in
order to realize the data mining and fault diagnosis for other key components (e.g., the drive motor,
reducer, brake system, hoisting wire rope, etc.), expanding the system’s applicability beyond just the
tail ropes.

In our experimental environment, it took less than 10 ms to complete the prediction of one
sample, and the prediction accuracy was 100%. The use of a graphics processing unit will reduce
the time cost. A larger dataset will improve the generalization performance of the network, and
the network prediction accuracy will also be higher and stable. Therefore, the CNN can be used in
industrial applications.

7. Conclusions and Future Work

Aiming at the problems of high difficulty, high risk, and low recognition efficiency in the existing
artificial detection methods for fault detection in BTRs, a health monitoring method for the balancing
tail ropes of a hoisting system based on a convolutional neural network is proposed in this paper.
In this method, the real-time tail rope images are first captured through CCD cameras and the data
transmission is realized using a movable sensor network in the vertical shaft. Then, the preprocessed
images are input to train the convolutional neural network in order to realize the automatic recognition
of the BTR faults. Finally, fault warnings are made based on the identification results. The research can
be summarized and concluded as follows:
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(1) A CNN including two convolution layers, two pooling layers, and three fully connected layers
is proposed. The structure of the CNN is denoted as Input(28 × 28)–64C(3 × 3)–64P(2 × 2)–128C(3
× 3)–128P(2 × 2)–FC(200–64–32)–Output(9), meaning that the dimensions of the input 2D data are
28 × 28; the CNN first applies 1 convolutional layer with 64 filters and the filter size is 3 × 3. Then,
one maximum-pooling layer with pooling size 2 × 2 is used. One convolutional layer with 128 filters
(filter size is 3 × 3) is applied next, after which one pooling layer whose pooling size is 2 × 2 is applied.
Finally, three fully connected layers whose hidden neuron numbers are 200, 64, and 32, respectively,
are applied. The size of the output layer is 9, which is equal to the number of fault types.

(2) A method for the description and establishment of an image dataset that can cover the entire
feature space of overhanging BTRs is proposed. The BTRs image dataset covering the 9 features in
the state space is set up and further expanded to a scale of 4500 by scale and rotation to enhance the
generalization ability of the network model. The same method can be used to describe data from
hoisting systems containing more than two tail ropes.

(3) The CNN, KNN, and ANN-BP algorithms were used to train and test the established tail
rope image dataset, and the effects of the hyper-parameters of the network diagnostic accuracies
were investigated experimentally. The experimental results showed that the feature of the BTR image
was adaptively extracted by the CNN’s convolutional and pooling operations, which means that a
great deal of manpower can be saved and online updates can be realized, so as to meet real-time
requirements. The learning rate and batch size seriously affected the accuracy and training efficiency,
with the better values of the learning rate and batch size being 0.01 and 5, respectively. The L2

regularization process of the fully connected layer F1 could prevent overfitting. The fault diagnosis
accuracy of CNN was 100%, while that of KNN was 94.04% and that of ANN-BP was 96.40%, so
the diagnosis accuracy of CNN was much higher than that of the KNN and ANN-BP algorithms.
Additionally, CNN could accurately identify and predict all kinds of BTR states, while ANN-BP and
KNN had some deficiencies in distinguishing similar fault types.

Therefore, the CNN had high accuracy, real-time functioning, and a good generalization
performance, which are more suitable for application in the health monitoring of hoisting system
BTRs. For industrial applications, future work will be to build the monitoring system’s software and
hardware architecture. Meanwhile, although the method proposed in this paper obtained a good
performance, it also has shortcomings (i.e., if two or more fault features appear in a feature map, it
may influence the recognition result). Therefore, in order to solve the problem of multi-fault coupling,
the target detection of a BTR feature map based on R-CNN (regions with CNN features) will be the
next research direction.
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