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Abstract: In this paper, we study the demand response of the thermostatically controlled loads (TCLs)
to control their set-point temperatures by considering the tradeoff between the electricity payment
and TCL user’s comfort preference. Based upon the dynamics of the TCLs, we set up the relationship
between the set-point temperature and the energy demand. Then, we define a discomfort function
with respect to the associated energy demand which represents the discomfort level of the set-point
temperature. More specifically, the system is equipped with a coordinator named electric energy
control center (EECC) which can buy energy resources from the electricity market and sell them to
TCL users. Due to the interaction between EECC and TCL users, we formulate the specific energy
trading process as a one-leader multiple-follower Stackelberg game. As the main contributions of this
work, we show the existence and uniqueness of the equilibrium for the underlying Stackelberg games,
and develop a DR algorithm based on the so-called Backward Induction to achieve the equilibrium.
Several numerical simulations are presented to verify the developed results in this work.

Keywords: thermostatically controlled loads; Stackelberg game; set-point temperature; price response;
energy management

1. Introduction

Demand response (DR) can be defined as a program, which induces the end-users to adjust their
energy usage in response to changes in the electricity price over time [1,2]. Rapid growth of energy
demand has greatly increased the supply burden of the power system. In addition, reliable operation
of the system necessitates a perfect balance between supply and demand in real time, which is not
easy to achieve because both of them can change rapidly and unexpectedly. Based on the advanced
information technologies, DR has been considered as a promising way to resolve these emerging
challenges and achieve potential cost saving [1,3,4].

Thermostatically controlled loads (TCLs), as a large fraction of the flexible demand in power
grid, offer significant potential for DR [5,6]. They use local hysteresis control to maintain the internal
temperature within a dead-band around the set-point temperature. Real-time pricing (RTP) is one of
the most important DR programs, where the price rates vary continuously to reflect wholesale market
demand changes. Because of the high efficiency gains from a long-term perspective [7], many works
have applied the RTP program to manage the flexible electric demand in power grid, e.g., [8–11].
In this paper, we also specify a RTP based DR program to coordinate the set-point temperature of
TCLs to accomplish some objectives.

Appl. Sci. 2018, 8, 1370; doi:10.3390/app8081370 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-6639-5322
http://www.mdpi.com/2076-3417/8/8/1370?type=check_update&version=1
http://dx.doi.org/10.3390/app8081370
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 1370 2 of 17

In order to coordinate TCLs, model formulation of TCLs should be illustrated. Based upon
the dynamics of TCL [12,13], two different aggregated TCL models were proposed to mitigate the
imbalance of the power gird, say homogeneous model [14] and heterogeneous one [15]. In [5,16],
modeling and control of the aggregated TCLs were studied aiming at different goals. However,
the preference of each TCL user is not reflected in these works, which is an important indicator to
describe the comfort level of TCL users. As stated in [17–20], the discomfort functions can be defined
to reflect the discomfort level w.r.t the energy demand of TCL users. In this paper, we propose a
discomfort function with respect to the dynamics of each TCL user.

We study the coordination of TCLs in a typical office or residential building. An electric energy
control center (EECC), as a coordinator, is equipped to play the role of buying energy from the
wholesale market and selling it to TCL users. Then, an energy trading process occurs between EECC
and the TCL users, such that, EECC determines a selling price to maximize the utility benefits and
each TCL user adjusts its set-point temperature to maximize their own profits with respect to the
selling price from EECC. Considering the dynamics of TCLs, we build a relationship between the
set-point temperature of TCLs and the energy demand to reach this temperature. Based upon the
above relationship, the energy trading process between EECC and TCL users can be formulated
w.r.t the energy demand of TCLs. Moreover, since the decisions between EECC and the TCL users
are interacted, we apply a Stackelberg game which is an effective method in power systems [11,21].
Specifically, in this paper, a one-leader N-follower Stackelberg game is established such that EECC
serves as a leader and the TCL users are the N followers. We show that the Stackelberg equilibrium
exists and is unique, which can be achieved by a backward induction method [22].

Above all, the main contributions of this work can be summarized as below:

• We study the demand response of the TCLs to control their set-point temperatures by considering
the tradeoff between the electricity payment and TCL user’s comfort preference;

• According to the dynamics of TCLs, we set up the relationship between the energy demand
and set-point temperature. Besides, we formulate the dissatisfaction function to represent the
discomfort level of the set-point temperature;

• Based upon the interaction between EECC and TCL users, we formulate the specific energy
trading process as a one-leader N-follower Stackelberg game;

• We show the existence and uniqueness of the equilibrium for the underlying Stackelberg games,
and develop a DR algorithm based on the Backward Induction method to achieve the equilibrium.

The reminder of the paper is organized as follows. In Section 2, we specify the relationship
between the energy demand and the set-point temperature and formulate the energy trading process
as a DR problem under the RTP scheme. In Section 3, a one-leader N-follower Stackelberg game is
established and the existence and uniqueness of the Stackelberg equilibrium is observed. Section 4
presents numerical simulations for the proposed method. In Section 5, we provide a conclusion for the
developed work.

The key variables and parameters used in this paper are listed in Table 1.

Table 1. Variables and parameters.

i Index of the TCL, i = 1, 2, . . . , N
T Time interval
p Broadcast price from the EECC
θ̂i Set-point temperature of TCL user i
ui Energy demand of TCL i in T
P Value of RTP
θi Internal temperature of TCL user i

θa,i Ambient temperature of TCL user i
Ri Thermal resistance of TCL i
Ci Thermal capacitance of TCL i
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Table 1. Cont.

Pi Cooling thermal power of TCL i
Wi(t) Switch state of TCL i at instant t

δ Temperature deadband
T Length of the time interval T

Ton Length of the “on” state in T
β+i Maximum energy demand in T
θr

i Reference temperature of TCL user i
qi Reference energy demand of TCL user i in T
j Case of the switch state Wi(tk), j = 1, 2
bi Priority factor of the TCL user i

2. Problem Formulation

In this paper, we consider a typical office or residential building equipped with a coordinator
called EECC, whose role is to collect energy resources from the electricity market and allocate them to
a group of TCL users N ≡ {1, 2, . . . , N}. The buying price of EECC is the market price, denoted by
P, and the selling price is determined by itself, denoted by p. Each TCL user i (i ∈ N ) chooses its
set-point temperature, denoted by θ̂i, based on the broadcasted price p from EECC. Then, EECC will
provide the energy demand ui to TCL i to reach the set-point temperature θ̂i. The above energy trading
process is shown in Figure 1.

EECC

Market

Price

Energy demand

Energy

demand

Set-point

temperature

RTP

TCL1 TCL2 TCLN

1q̂ 2q̂
ˆ
N
q

p

P

p p
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N
u

Figure 1. The framework of the energy trading process.

In this paper, we suppose that each TCL user is a price-taker and its decision will not affect
the market price P. This is a universal assumption when the market involves a large population of
users [23,24]. Denote the time horizon by T with T ≡ [tk, tk+1], where tk is the start time of this
horizon, and T ≡ tk+1 − tk is the length of the time horizon.

Section 2.1 provides the model of the TCL dynamics, based on which the relationship between the
set-point temperature of a TCL and its energy demand is established in Section 2.2. Then, in Section 2.3,
the energy trading process is introduced together with the preferences of TCL users and EECC.

2.1. TCL Dynamics

As stated in [14,16,25], for each TCL i ∈ N at any time t ∈ T , the evolution of the temperature
can be expressed as a first-order differential equation, such that,

dθi(t)
dt

= − 1
CiRi

(PiRiWi(t) + θi(t)− θa,i(t)), (1)
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where the notations are specified as below:

• θi(t) and θa,i(t) represent respectively the internal temperature (◦C) and the ambient temperature
(◦C) of TCL i at time t.

• Ri, Ci and Pi are thermal parameters which express the thermal resistance (kWh/◦C),
thermal capacitance (◦C/kW) and cooling thermal power (kW) of TCL i, respectively.
For notational simplicity, we denote the thermal constant by τi, such that τi ≡ RiCi.

• The binary variable Wi(t) ∈ {0, 1} represents the switch state of TCL i at instant t.

Remark 1. In (1), we consider the TCLs in different houses or offices where the evolution of the internal
temperature is mainly effected by the heat exchange between inside and outside, hence there is no heat exchange
among the TCLs [26]. Besides, Equation (1) is formulated for cooling TCLs such as air conditioners. Then,
Pi in (1) is a positive constant.

To avoid TCL i switching frequently around its set-point temperature θ̂i, we adopt a temperature
dead-band δ ≡ |[θ−i , θ+i ]|, where θ−i and θ+i are the lower and upper limit of the dead-band respectively,
such that:

θ−i = θ̂i − δ/2, (2a)

θ+i = θ̂i + δ/2. (2b)

Then, the switch state function in (1) is defined as follows [27,28]:

Wi(t +4t) =


0 in case θi(t +4t) ≤ θ−i
1 in case θi(t +4t) ≥ θ+i
Wi(t) otherwise

(3)

where 4t is an arbitrarily small time interval. The temperature evolution procedure is shown in
Figure 2. Ton,i appeared in the figure is the time length that the “on” state of TCL i lasts during one
time horizon [tk, tk+1].
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Figure 2. Temperature evolution procedure of thermostatically controlled loads (TCLs).



Appl. Sci. 2018, 8, 1370 5 of 17

2.2. Energy Demand of TCLs

At the start time tk of any time horizon, each TCL user chooses a set-point temperature θ̂i according
to the broadcast price p. Then, each TCL needs to consume some energy to make its current internal
temperature θi(tk) reach the set-point temperature θ̂i. Denote this energy demand by ui ≡ fi(θ̂i) which
is a function of θ̂i. In this section, we derive the relationship between θ̂i and ui based on the dynamics
of TCLs.

Remark 2. In this paper, we consider a 15-minute time horizon (T = 15 min), which is small enough to neglect
the variation of θa,i(t) within T . That is, θa,i(t) ≡ θa,i(tk), for all t ∈ T [29].

As the cooling thermal power Pi is a preknown parameter of TCL i, the energy demand to reach
θ̂i from the current θi(tk) within T can be expressed as the following form:

ui = Ton,iPi, Ton,i ∈ [0, T]. (4)

Recall that Ton,i is the time length that the “on” state of TCL i lasts during one time horizon
[tk, tk+1], as shown in Figure 2.

Since the maximum value of Ton,i is T, the maximum energy demand is β+
i ≡ TPi. Then,

0 ≤ ui ≤ β+
i . (5)

The feasible set of ui is denoted by Ui such that,

Ui ,
[
0, β+

i
]

, ∀i ∈ N . (6)

By (3), Wi(t) remains unchanged over T if the internal temperature θi(t), t ∈ T always lies in the
dead-band. And Wi(t) changes only if θi(t) hits the limits of the dead-band θ−i or θ+i for some t ∈ T .
Then by (1), after the first change of Wi(t), θi(t) will need some certain time to reach the limit θ−i or θ+i .
Therefore, if given appropriate parameters in (1), θi(t) will not hit the boundary of dead-band twice
within T . Then, we have the following assumption in this paper.

Assumption 1. The switch state Wi(t) of each TCL i changes no more than once over T .

Based upon Assumption 1, the operation process of TCL i in T can be divided into two cases
w.r.t. Wi(tk).

• Case 1 (Wi(tk) = 1): By (1), we have the internal temperature at time tk + Ton,i, such that,

θi(tk + Ton,i) = (θa,i(tk)− PiRi)(1− e−Ton,i/τi ) + θi(tk)e−Ton,i/τi . (7)

Combining (2a) and (3), it gives

θi(tk + Ton,i) = θ̂i − δ/2. (8)

Then by (4), (7) and (8), the relationship between ui and θ̂i is

ui = τiPi ln
θi(tk) + PiRi − θa,i(tk)

θ̂i + PiRi − θa,i(tk)− δ/2
. (9)

• Case 2 (Wi(tk) = 0): Similar with Case 1, by (1)–(4), we have:

ui = TPi − τiPi ln
θa,i(tk)− θi(tk)

θa,i(tk)− θ̂i − δ/2
. (10)
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In summary, we obtain the relationship between the energy demand ui and the set-point
temperature θ̂i such that

ui = fi(θ̂i) =

τiPi ln θi(tk)+Pi Ri−θa,i(tk)

θ̂i+Pi Ri−θa,i(tk)−δ/2
, in case Wi(tk) = 1

TPi − τiPi ln θa,i(tk)−θi(tk)

θa,i(tk)−θ̂i−δ/2
, in case Wi(tk) = 0

(11)

2.3. Energy Trading Process

As shown in Figure 1, EECC first collects the energy from the wholesale market under the market
price P, and then sells the energy to TCL users at a broadcasted price p. Each TCL user adjusts its
set-point temperature based on the broadcasted price from EECC. Suppose that EECC and TCL users
are strategic players, and all of them make decisions by optimizing their individual objectives. Next we
will introduce the preference of EECC and TCL users.

For TCL user i ∈ N , determining θ̂i is equivalent to determining ui as we have a relationship
between them in (11). Hence, TCL user can optimize its energy demand by minimizing its individual
cost, which contains the electricity payment and the cost associated with its discomfort level.
The individual cost of the i-th TCL user with respect to ui is given in the following:

Ci(ui; p) , pui + ωdi(ui), (12)

wherein the first term represents the electricity payment and the second is the dissatisfaction cost,
and ω denotes a weighting coefficient concerning the importance of the TCL user’s discomfort during
T . For a rational TCL user, its discomfort level continuously decreases with the reduction of the
set-point temperature. By (11), the dissatisfaction cost is a function of ui, say di(ui).

At time tk, before choosing the set-point temperature θ̂i, each TCL user has a reference temperature,
denoted by θr

i , representing its comfortable temperature. Then, the corresponding reference demand,
denoted by qi, can be computed by (11) such that:

qi =


0, in case θr

i > θ̂+i,j

fi(θ
r
i ), in case θ̂−i,j ≤ θr

i ≤ θ̂+i,j

β+
i , in case θr

i < θ̂−i,j

(13)

where θ̂+i,j and θ̂−i,j represent the i-th TCL user’s maximum and minimum set-point temperature in Case
j respectively, with j = {1, 2}.

Remark 3. In (13), the reference temperature θ̂r
i is the threshold value of the comfortable temperature, which is

related to each TCL user’s preference and external environment. It can be recognized as a criterion of the comfort
level of TCL users.

Remark 4. By (11), the expression of fi(θ̂i) is distinct in different cases. Then, by the feasible set of energy
demand in (6), we have θ̂+i,j and θ̂−i,j are related to the case j for all i ∈ N .

As specified in [18–20], the dissatisfaction cost function di(ui) is continuous and has the
following properties:

di(ui)


> 0, in case ui < qi

= 0, in case ui = qi

< 0, in case ui > qi

d
′
i(ui) < 0, d

′′
i (ui) > 0
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For ui < qi, i.e., θ̂i > θr
i , the TCL user is dissatisfied with the current temperature and the

discomfort level will increase rapidly as θ̂i (demand ui) is away from the reference temperature
θr

i (demand qi). For ui > qi, i.e., θ̂i < θr
i , the TCL user is satisfied with the current temperature,

but the comfort level will not increase infinitely and change slowly as θ̂i is away from the reference
temperature θr

i .
Based on the above properties, we apply the dissatisfaction cost function di(ui) as the following

form [18]:
di(ui) , ebi(1−ui/qi) − 1, (14)

with bi > 0, where bi represents the priority factor of TCL user i.
For EECC, it can obtain benefits by buying energy from the market and selling it to TCL users.

Thus as a rational EECC, the selling price should be larger than the market price, i.e., p ≥ P. Define the
feasible set for the broadcast price p such that

P , {p|p ≥ P} . (15)

Besides, EECC should consider the discomfort of all the TCL users, otherwise EECC may set the
selling price very high to get more benefits. Hence, the utility function of EECC can be expressed as
the following form:

SE(p; u) , (p− P)
N

∑
i=1

ui −ω
N

∑
i=1

di(ui), (16)

where u = [u1, u2, ..., uN ] represents the energy demand of all the TCL users.

3. Stackelberg Game Coordination

As stated in the previous section, EECC buys the total energy that all the TCL users demand
from the wholesale market under the market price P and broadcasts a selling price p to each TCL user.
Then, based on the broadcast price p, each TCL user determines the energy demand ui i.e., setting its
set-point temperature θ̂i.

Note that the decisions between EECC and the TCL users are actually interdependent. We establish
a Stackelberg game to describe the interplay of TCL users and EECC in Section 3.1. Furthermore,
the existence and uniqueness of the Stackelberg equilibrium are specified in Section 3.2.

3.1. Stackelberg Game

Since there exists a hierarchy among players in Stackelberg games, leaders are in a position to
enforce their strategies on the followers. In this leader-follower competition, the followers find the best
response function first, i.e., getting to know how they will respond once they observe the strategies
of leaders. The leaders are aware of the fact that each follower will choose its best response with
respect to the leaders strategies. Hence, the leaders are able to maximize their payoffs anticipating the
predicted response of the followers. This is actually observed by the followers to adapt their expected
strategy accordingly as a response.

We introduce a one-leader, N-follower Stackelberg game to characterize the electricity transaction
process between EECC and TCL users, where EECC serves as the leader and TCL users act as followers.
Thus, the system proceeds by the following two stages:

• Stage I: Each TCL user i implements the best response function with respect to the broadcasted
price p from EECC.

• Stage II: EECC optimizes the broadcasted price p∗ considering TCL users’ best response u∗(p) at
Stage I.

Then observing EECC’s best strategy, each TCL user i determines its optimal energy demand u∗i
under the broadcast price p∗ from Stage II. Based on the above set-up, the optimization problem can
be formally formulated as the following:
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• Leader level:
p∗ = arg max

p∈P
SE(p; u∗(p)) (17)

• Follower level:
u∗i (p) = arg min

ui∈Ui

Ci(ui; p) (18)

The optimal strategies of the game take the form of the Stackelberg equilibrium [30,31]. At the
equilibrium, the leader’s strategy p∗ is a solution to the optimization problem specified in (17) based
on the best strategy trajectories u∗(p) of the followers. Each follower’s strategy is also a solution to (18)
when it is informed of the equilibrium strategy of the leader. The optimal strategies u∗i (p∗), i ∈ N
therefore constitute the equilibrium for all the followers.

Then, we have the following definition of the Stackelberg equilibrium [18,22].

Definition 1 (Stackelberg equilibrium). The strategy (p∗, u∗) is a Stackelberg equilibrium if it satisfies:

SE(p∗; u∗(p∗)) ≥ SE(p; u∗(p)), (19)

Ci(u∗i ; p∗) ≤ Ci(ui; p∗), for all i ∈ N . (20)

3.2. Existence and Uniqueness of Stackelberg Equilibrium

Based on the above analysis of the game process, we can deduce the Stackelberg equilibrium
by backward induction method [22]. Firstly, each follower determines its best strategy trajectory by
solving (18) with respect to a strategy p from the leader. Then, combining the best strategy trajectory
u∗(p) with (17), the leader obtains its best strategy p∗. Subsequently, each follower determines its best
strategy u∗i (p∗) when it is informed of the best strategy p∗ of the leader.

Lemma 1. Given a broadcast price p from EECC, each follower has a unique optimal strategy u∗i (p), such that:

u∗i (p) =


β+

i , in case p ≤ wbi
qi

ebi(1−β+i /qi)

qi −
qi
bi

ln pqi
ωbi

, in case wbi
qi

ebi(1−β+i /qi) < p < wbi
qi

ebi

0, in case p ≥ wbi
qi

ebi

Proof of Lemma 1. By (12) and (14), we obtain that each follower’s utility function Ci(ui; p) is
continuous and differentiable over a convex set Ui.

Then, by (12), we have

∂2Ci(ui; p)/∂u2
i =

ωb2
i

q2
i

ebi(1−ui/qi) > 0.

Hence, Ci(ui; p) is a strictly convex function w.r.t. ui.
By ∂Ci(ui; p)/∂ui = 0, we obtain the optimal trajectory w.r.t p as below:

ũi(p) = qi −
qi
bi

ln
pqi
ωbi

. (21)

Furthermore, because the feasible set Ui defined in (6) is a bounded set, the boundary conditions
of the optimal strategy in (21) is determined by (21).

Based on the best strategies u∗(p), EECC determines the best electricity prices p∗ by maximizing
its utility function (16).
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Lemma 2. The leader has a unique optimal strategy p∗, such that:

p∗ = arg max
p∈[P,pmax)

SE
(

p; u∗(p)
)
, (22)

where pmax ≡ maxi∈N
{

ωbi
qi

ebi
}

.

Proof of Lemma 2. The Proof of Lemma 2 is given in Appendix A.

Remark 5. From Lemma 2, there exists a unique optimal strategy (22) when p ∈ [P, pmax). Considering p ≥
pmax, we have u∗i (p) = 0 by (21), for all i ∈ N . In addition, by (16), we obtain that the utility function
SE(p; u∗i (p)) = −ω ∑N

i=1 di(0) is a constant for all p ≥ pmax. Therefore, there is no unique optimal strategy
in the given range of p.

Theorem 1. Considering pmax > P, there exists a unique Stackelberg equilibrium (p∗, u∗) for the
proposed game.

Proof of Theorem 1. By Lemma 1, we have Ci(u∗i ; p∗) ≤ Ci(ui; p∗) for all i ∈ N , then (20) holds.
Then, by Lemma 2, (19) is satisfied. Therefore, according to the Definition 1, (p∗, u∗) is the unique
equilibrium of the Stackelberg game.

Remark 6. If pmax ≤ P, then we have EECC’s utility function SE(p; u∗i (p)) = −ω ∑N
i=1 di(0). Thus,

considering pmax ≤ P, EECC cannot find a unique optimal strategy.

Based upon Theorem 1, we specify Algorithm 1 to achieve the Stackelberg equilibrium of the game.

Algorithm 1 DR algorithm by Backward Induction.

Require:
Initialize the time horizon T ≡ [tk, tk + T];
Initialize the switch state Wi(tk) of TCL user i;
Initialize the market price P;
Initialize the reference temperature θr

i of TCL user i;
Set the reference demand qi of TCL user i by (13) w.r.t θr

i .
Ensure:

EECC’s optimal broadcast price p∗;
Each TCL user’s adjusted set-point temperature θ̂∗i .

1: By (22), EECC determines the optimal broadcast price p∗ w.r.t the best strategy trajectory u∗i (p)
in (21);

2: Each TCL user i ∈ N determines the optimal strategy u∗i w.r.t. p∗ by (21);

3: Each TCL user i ∈ N computes their optimal set-point temperature θ̂∗i by θ̂∗i = f (−1)
i

(
u∗i
)
.

As stated in [18,19], compared with other methods which usually involve interactive iteration
processes between the leader and the followers, which are EECC and the TCL users respectively
in the underlying games, the DR algorithm based on Backward Induction proposed in our work
can significantly reduce the computational time in implementing the equilibrium of the underlying
Stackelberg games.

4. Simulation

In this part, some case studies are analyzed to demonstrate the price response coordination of
TCLs. The proposed Stackelberg game model and control scheme are validated by the simulations in
MATLAB 2014a. Besides, we use the interior-point method to solve the optimization problems and the
computational time of all cases are limited in 2.0 s.
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We adopt a typical 15-min based pricing by dividing 9-h into 36 equal time instants [19], as shown
in Figure 3. An ambient temperature profile from 11:00 to 20:00 in a typical summer day is shown in
Figure 4.
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Figure 3. Market price data.
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Figure 4. Ambient temperature and Reference temperature from 11:00 to 20:00 on a summer day.

4.1. Homogeneous Case

We first consider N = 100 homogeneous TCLs, and the parameters of the TCLs are specified
in Table 2 [32]. We set the weighting factor of the importance of the discomfort level as ω = 0.2.

Table 2. TCL parameters.

Parameter Homogeneous TCL Heterogeneous TCL

R 2 ◦C/kW 2 ◦C/kW
C 5 kWh/◦C 6 kWh/◦C
P 11 kW 14 kW

β+ 2.75 kWh 3.5 kWh
b 1.1 1.5

Without loss of generality, assume that Wi(tk) = 0 with tk = 11 : 00, for all i ∈ N , i.e., the switch
state of each TCL is “off” at 11:00. As specified in Section 2.2, the “off” state implies that j = 2.
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We also consider the internal temperature θi(tk) = 27 ◦C for all i ∈ N and the temperature
dead-band δ = 0.25 ◦C.

Then, according to the reference temperature θr
i of TCL user i shown in Figure 4, we obtain

the reference demand energy qi by (13), which is displayed by the blue dash-dot line in Figure 5.
More specifically, taking one time horizon [11:00, 11:15] as an example and given θa,i(tk) = 31.2 ◦C,

θi(tk) = 27 ◦C and θr
i (tk) = 26 ◦C, we calculate that θ̂−i = f (−1)

i (β+
i ) = 26.56 ◦C in Case 2. Then by (13),

we have qi(tk) = β+
i = 2.275 kWh.
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Figure 5. Optimal energy demand of the TCL.

By applying Algorithm 1, EECC implements the optimal price p∗ w.r.t u∗(p) by (22), which is
displayed by the red line in Figure 6.
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Figure 6. Broadcast price p∗ from electric energy control center (EECC).

The broadcast price p∗ satisfies p∗ ∈
(

ωbi
qi

e(1−β+i /qi), ωbi
qi

eb
i

)
. Then, by (21), the optimal energy

demand of each TCL user u∗i increases as p∗ decreases from 11:00 to 20:00, which is displayed
in Figure 5.

Subsequently, according to the relationship between the set-point temperature and the energy
demand specified in Section 2.2, each TCL user adjusts its set-point temperature by θ̂∗i = f (−1)

i
(
u∗i
)
,

which is displayed by the red line in Figure 7.
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Figure 7. Set-point temperature and Internal temperature of the TCLs.

Consider the time horizon [13:00, 13:15] as an example. Based upon the reference demand
qi = 0.691 kWh, the market price P = 0.12 $/kWh and the optimal reaction curve u∗i (p) = qi −

qi
bi

ln pqi
ωbi

given in Lemma 1, we obtain the optimal broadcast price p∗ = 0.219 $/kWh by (22). Afterwards,
TCL users observe the best strategy of EECC and compute their best strategies u∗i (p∗) by (21).
The corresponding set-point temperature is θ̂∗i = 25.98 ◦C. Because of the existence of the dead-band
δ, the internal temperature varies by (1) in [13:00, 13:15], and the switch state will change when the
internal temperature hits the upper limit θ̂∗i + δ/2 = 26.11 ◦C.

Moreover, after 13:00, for keeping the internal temperature around the reference temperature 26 ◦C,
the switch state changes one time within each time horizon and the optimal set-point temperature
stays around 26 ◦C, as illustrated in Figure 7. However, given the same ambient temperature θ̂a,i,
by (9) and (10), the associate reference energy demand qi are distinct in different cases. This causes the
fluctuation of the energy demand trajectory as displayed in Figure 5.

4.2. Heterogeneous Case

In general, the aggregated TCLs’ switch state are different [14]. For the purpose of demonstration,
we suppose that the total 100 TCLs are partitioned into two categories, say 50 TCLs are with
Wi(tk) = 1 and another 50 TCLs with Wi(tk) = 0. As a sequence, the profile of the aggregated
energy demand of the 100 TCLs is displayed by the black line in Figure 8.

As observed in Figure 8, the fluctuations of individual TCLs are alleviated by the aggregated
TCLs with different Wi(tk). Thus, we may induce the TCL users to adjust its set-point temperature,
to mitigate the fluctuation of the power grid by broadcasting different prices to the groups of TCL1
and TCL2 respectively.

Furthermore, because of the different characteristics of the TCL users, the reference temperature
will change with respect to the variational external environment, such as the ambient temperature and
the human actions in the room. Therefore, in Figure 9, we consider a scenario with variational reference
temperature. EECC broadcasts price p∗ (displayed by the red line) and TCL user i implements the
set-point temperature θ̂∗i accordingly (displayed by the purple line) at each instant to maximize the
utility benefit and minimize the individual cost of each TCL user.

In reality, the TCLs’ properties vary according to the different preferences of TCL users.
Thus, besides the above study for homogeneous TCLs, here we also apply Algorithm 1 for the
heterogeneous cases.

We first consider different priority factors of TCL users. By (14), we obtain that the TCL user with
higher b will have more discomfort when the set-point temperature exceeds the reference temperature.
Therefore, the set-point temperature of TCL2 with b2 = 1.2 decreases faster than TCL1 with b1 = 1.1,
which is displayed in Figure 10.
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Figure 8. One hundred TCLs with the same W(tk) vs. 100 TCLs with different W(tk).
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Figure 9. Variational reference temperature.
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Furthermore, we consider the heterogeneous case with variational reference temperature
and different properties of TCLs. The parameters of heterogeneous TCLs are shown in Table 2.
Figures 11 and 12 display the best broadcast price from EECC and the set-point temperature of
different TCLs respectively.
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Figure 11. Heterogeneous TCLs: set-point temperature of TCL1.
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Figure 12. Heterogeneous TCLs: set-point temperature of TCL2.

5. Conclusions and Ongoing Reasearch

We have studied the coordination of TCLs under a Stackelberg game based price response
scheme. Based upon the dynamics of the TCLs, we first establish the relationship between the set-point
temperature and the energy consumed to reach the set-point temperature. Then, a discomfort function
is defined to represent the discomfort level of the set-point temperature. Based upon the interplay of
TCL users and EECC during the electricity trading process, a one-leader N-follower Stackelberg game
is established. EECC optimizes its selling price considering the tradeoff of its electricity gross benefit
and the dissatisfaction cost of TCL users, while TCL users make decisions by minimizing the electricity
payments and the dissatisfaction cost. Compared with other iteration methods in the literature, a more
effective DR algorithm by backward induction method is proposed to achieve the unique Stackelberg
equilibrium. At the equilibrium, EECC maximizes its utility function and each TCL user adjusts its
set-point temperature to minimize its cost.
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In the future, unlike the model considered in the current work, we will extend our work by
considering the heat exchanges among the TCLs which are interactive with each other. Besides, we
would like to design a different electricity price scheme to satisfy different users’ preferences and
maximize the utility benefits.
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Appendix A. Proof of Lemma 2

According to the value of market price P, we have the following two cases.

Case 1: P ≤ mini∈N
{

ωbi
qi

ebi(1−β+i /qi)
}

Based on the boundary conditions in (21), the value of the leader’s strategy p in Case 1 can be
divided into two subcases.

Case (1A): P ≤ p ≤ mini∈N
{

ωbi
qi

ebi(1−β+i /qi)
}

By (21), we have u∗i (p) = β+
i , ∀i ∈ N . Then by (17), we obtain the leader’s optimal strategy p∗ in

the following:

p∗ = arg max
p∈P1

(p− P)
N

∑
i=1

β+
i −ω

N

∑
i=1

di(β+
i ), (A1)

where P1 ≡
{

p|P ≤ p ≤ mini∈N
{

ωbi
qi

ebi(1−β+i /qi)
}}

.

Case (1B): mini∈N
{

ωbi
qi

ebi(1−β+i /qi)
}
< p < pmax

We denote the feasible set of p in Case (1B) by P2, such that,

P2 ,

{
p|min

i∈N

{
ωbi
qi,j

ebi(1−β+i /qi)

}
< p < pmax

}
. (A2)

In addition, we specify three sets N1, N2 and N3, such that,

N1 ,
{

m|u∗m(p) = β+
m, m ∈ N

}
, (A3)

N2 ,
{

n|u∗n(p) = qn −
qn

bn
ln

pqn

ωbn
, n ∈ N

}
, (A4)

N3 , {l|u∗l (p) = 0, l ∈ N} . (A5)

By Lemma 1 and (A2), we have N = N1 ∪N2 ∪N3 and N2 6= ∅.
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Then, together with (17), we obtain that,

max
p∈P2

SE(p; u∗(p)) = max
p∈P2

{
(p− P)

(
∑

m∈N1

β+
m + ∑

n∈N2

(
qn −

qn

bn
ln

pqn

ωbn

))

−ω

(
∑

m∈N1

dm(β+
m) + ∑

n∈N2

(
pqn

ωbn
− 1
)
+ ∑

l∈N3

dl(0)

)} (A6)

Take the second derivative of the utility function SE(p; u∗(p)) with respect to p, we have,

∂2

∂p2 SE(p; u∗(p)) = ∑
n∈N2

(
− qn

pbn
− P

p2bn

)
< 0.

Hence, the optimization problem (A6) has a unique optimal strategy p∗.

Case 2: mini∈N
{

ωbi
qi

ebi(1−β+i /qi)
}
< P < pmax

By (15), we have p ∈ [P, pmax). In addition, by Lemma 1, TCL users will have different optimal
strategies β+

i , qi −
qi
bi

ln qi p
ωbi

, 0. Similar with Case (1B), there exists a unique strategy of the optimization
problem (A6) .

In sum, consider p ∈ [P, pmax), there exists a unique optimal strategy p∗ in (22).
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