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Abstract: Silhouette-based gait representations are widely used in the current gait recognition
community due to their effectiveness and efficiency, but they are subject to changes in covariate
conditions such as clothing and carrying status. Therefore, we propose a gait energy response function
(GERF) that transforms a gait energy (i.e., an intensity value) of a silhouette-based gait feature into
a value more suitable for handling these covariate conditions. Additionally, since the discrimination
capability of gait energies, as well as the degree to which they are affected by the covariate conditions,
differs among body parts, we extend the GERF framework to spatially dependent GERF (SD-GERF)
which accounts for spatial dependence. Moreover, the proposed GERFs are represented as a vector
in the transformation lookup table and are optimized through an efficient generalized eigenvalue
problem in a closed form. Finally, two post-processing techniques, Gabor filtering and spatial metric
learning, are employed for the transformed gait features to boost the accuracy. Experimental results
with three publicly available datasets including clothing and carrying status variations show the
state-of-the-art performance of the proposed method compared with other state-of-the-art methods.

Keywords: gait recognition; gait energy response function; spatial dependence; Gabor filtering;
metric learning

1. Introduction

Gait, as a behavioral biometric, has its own superior property to other biometrics (e.g., iris, face,
finger veins) for person recognition, i.e., it can be used at a long distance by a camera with low image
resolution. Additionally, it can be regarded as an unconscious behavior because people usually never
conceal their gait deliberately. Therefore, gait recognition [1] is a promising key technology for many
real-world applications such as surveillance, forensics, and criminal investigation [2–4].

Approaches to gait recognition are mainly separated into two families: model-based [5–8]
and appearance-based [9–13]. The former one usually fits a human model to an input image at
first and then extracts both motion information (e.g., joint angle sequences) and static information
(e.g., body shapes) as gait features, while the latter directly extracts gait features from input images
(silhouette images in many cases) without model fitting. Thus, appearance-based approaches are more
feasible in real applications, which can still be applied to low-resolution videos, when model-based
approaches are difficult to fit the human model correctly.

In the literature, appearance-based gait representations mainly include motion-based features [14,15]
and silhouette-based features, where the latter one has often been used for gait recognition because of
their simple yet effective properties, such as gait energy image (GEI) [11], frequency-domain feature
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(FDF) [16], chrono-gait image [17], and Gabor GEI [18]. Among them, GEI, a.k.a. averaged silhouette [19]
(see Figure 1, top row, as an example) is the most frequently used gait feature because it can be generated
easily by averaging the silhouettes over a gait period, which makes it relatively robust to segmentation
errors. The GEI also effectively represents both static and dynamic components with a single template
(e.g., gait energies: intensity values 0 and 255 represent static components of background and foreground
respectively, while intermediate grayscale values such as 127 represent dynamic components). However,
these appearance-based gait representations of individuals are easily changed by various covariates
(e.g., clothing and carrying status), which induces a serious decline in recognition accuracy.

To maintain robustness of gait recognition against these covariates, existing appearance-based
methods fall into two main families. The first one is spatial metric learning-based approaches,
which concentrate on learning a more discriminant feature space from original appearance-based
features to achieve better performance against the covariates. The second one is intensity
transformation-based approaches, which more care about feature representation aspects. Specifically,
the intensity transformation-based approaches transform intensity values of an original gait feature
(e.g., gait energies in the case of GEI) into more discriminative values to increase the robustness against
change of the covariate conditions.
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Figure 1. Concept of the proposed gait energy response functions (GERFs) as well as other existing
intensity transformation-based approaches. In the fourth column, multiple profiles denote spatially
dependent response functions for individual vertical positions ranging from upper position (red line) to
lower position (blue line), and multiple images denote a set of spatially dependent response functions.

A gait entropy image (GEnI) [12] is a typical intensity transformation-based gait feature whose
intensities are transformed from the GEI. Because the gait energy of each pixel is regarded as
a foreground probability in the GEI representation, Shannon entropy for the foreground probability at
each pixel is computed as a transformed intensity at each pixel in the GEnI, to enhance the dynamic
components while attenuating the static components. For example, the intensities of the pixels with
small and large grayscale values (e.g., 0 and 255) in the GEI become small in the GEnI, while the
intensities of the pixels with middle grayscale values (e.g., 127) in the GEI become large (see Figure 1,
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first column). This means that the dynamic components are enhanced while the static components
are attenuated, regardless of whether they come from a static foreground or background in the GEnI
representation. Therefore, the GEnI is insensitive to the static component changes derived from
clothing and carrying status variations to some extent. However, the static components discarded in
the GEnI representation, still have some discrimination capability even under variations in clothing
and carrying status. Moreover, another negative aspect of the GEnI is that a pair of different gait
energies that are symmetrical with respect to the intermediate value (i.e., 127.5− x and 127.5 + x),
are transformed into the same intensity value in the GEnI (see Figure 1, first column); i.e., the dynamic
component is also sacrificed.

Masked GEI [13], as another intensity transformation-based gait feature, has been proposed to
address the latter problem. It is generated by masking out (i.e., setting to zero) those gait energies
with smaller gait entropy than a threshold, while the others are kept unchanged (see Figure 1,
second column). Masked GEI therefore keeps the dynamic components as they are, while discarding
useful static components. In addition, the threshold for masking out is a sensitive parameter and hence
requires careful treatment.

Based on the previously described observation that both GEnI and masked GEI are generated
from GEI, we employ a mapping function named gait energy response function (GERF) to describe
these gait energy transformation processes. Both use handcrafted GERFs, which more care about
the dynamic components. However, such simply handcrafted GERFs cannot well handle various
covariates, since different covariate conditions affect different components of the original gait features.
For example, clothing and carrying status variations affect static components such as torso and limb
shapes more than dynamic components such as leg and arm motion, while the speed variation exerts
a greater effect on dynamic components. Therefore, a key to the success of the gait energy response
function is their appropriate enhancement and/or attenuation of the static and dynamic components
in the original gait features by taking the covariate conditions into account.

We therefore proposed a more general and data-driven framework for designing the GERF to
transform the GEI into more discriminative features (see Figure 1, third column) in our previous
paper [20] and seek to show the effectiveness of the proposed method in gait recognition under
variations in clothing and carrying status.

Furthermore, we note that the importance (i.e., discrimination capability) of static and dynamic
components, as well as the degree to which they are affected by the covariate conditions, differs among
the body parts. For example, the head mainly contains static components and is seldom affected
by carried objects, and hence the static components may be more important than the dynamic ones.
In contrast, the leg contains more dynamic components and is often affected by clothing and carried
objects; therefore, the dynamic components may be more important than the static ones.

We therefore extend a spatially dependent version of GERF (called SD-GERF), and contrast it
with the previous spatially independent version, which we denote as Global GERF, to consider the
previously highlighted differences in the importance of static and dynamic components among the
body parts. More specifically, instead of designing a single common GERF over the whole gait feature,
we design multiple GERFs for individual vertical positions in the GEI (see the multiple profiles in
the last column of Figure 1), and since responses for each GERF often localize to a certain body part,
we further adopt a set of the spatially dependent GERFs (i.e., multiple SD-GERFs, corresponding to
multiple images in the last column of Figure 1) to cover the whole body information and fuse the
results of them for better accuracy. More explanations are given in Section 3.4. We summarize the
contributions of this paper as follows:
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(1) Data-driven approach to intensity transformation.

The proposed method learns the Global GERF in a data-driven way, unlike existing intensity
transformation-based methods such as GEnI and masked GEI use handcrafted designs. Specifically,
we use the training set including variation to train the Global GERF for the whole GEI to maximize
the discrimination capability. This enables us to realize a good tradeoff between static and dynamic
components, while existing methods only enhance the dynamic components.

(2) Extension of the Global GERF into a spatially dependent function.

We propose a spatially dependent framework for the Global GERF to consider the differences in
the importance of static and dynamic components among different body parts. Specifically, we prepare
individual GERFs for vertical positions of GEI as SD-GERF and train the SD-GERF simultaneously.
Moreover, we exploit multiple SD-GERFs as shown in Figure 1, 4th column, and integrate their scores
in a score-level fusion framework to improve accuracy.

(3) Closed-form solution for optimization.

We train to maximize the ratios of dissimilarity between different-subject pairs and same-subject
pairs, and consequently formulate this optimization process as a generalized eigenvalue problem both
for Global GERF and SD-GREF. We therefore obtain an analytic solution in a closed form without any
iteration, and hence avoid troublesome convergence problems, which are inseparable from a nonlinear
optimization framework.

(4) State-of-the-art accuracy for gait recognition under variations in clothing and carrying status.

We achieve the state-of-the-art accuracies of gait recognition under variations in clothing and
carrying status on three publicly available gait databases: the OU-ISIR Gait Database, the Treadmill
Dataset B [21] (OU-TD-B), the OU-ISIR Gait Database, Large Population dataset with bag β version [22]
(OU-LP-Bag β), and the CASIA Gait Database B [23] (CASIA-B).

This paper is an extended version of a conference paper [20]. More specifically, the extensions
include two main aspects: (1) we extend original Global GERF to SD-GERF considering the differences
in the importance of static and dynamic components among different body parts; (2) we evaluate
the proposed method on two other gait databases (OU-LP-Bag β and CASIA-B) containing another
variation (i.e., carrying status). Experimental results show the SD-GERF achieves the state-of-the-art
performance and outperforms Global GERF by a large margin in all databases.

2. Related Work

2.1. Spatial Metric Learning-Based Approaches to Gait Recognition

The spatial metric learning-based approaches concentrate on learning a more discriminant feature
space from original appearance-based features to achieve better performance against the covariates.
Additionally, there are two further categories within the spatial metric learning-based approaches:
whole-based [11–13,24–27] and part-based approaches [28–31]. For the whole-based approaches,
the holistic appearance-based features are projected into a discriminative space to make them more
robust against the covariate conditions. For example, Han et al. [11] applied linear discriminant analysis
(LDA) to real and synthesized templates of GEI to reduce intra-class variations (e.g., clothing variations)
to some extent. Xu et al. [25] proposed a matrix representation-based subspace learning algorithm by
performing a two-stage scheme composed of concurrent subspace analysis (CSA) to reduce dimension
and discriminant analysis with tensor representation (DATER) to obtain discriminant subspace.
A random subspace method (RSM) framework that combines multiple inductive biases also has
been proposed in [26,27].

While the previously described approaches rely on whole-based representation, some studies
decompose the holistic appearance-based features into multiple body part-dependent features and
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enhance the effective parts for recognition while attenuating the parts affected by the covariate
conditions. This is because variations such as clothing and carrying status usually affect not
the whole but certain parts, and a decline in accuracy is derived mainly from the affected parts.
Thus, the part-based approaches have possibilities for achieving better accuracy by appropriate
treatment of the affected body parts (e.g., reducing the weights of the affected body parts for
recognition). For example, Hossain et al. [28] divided the human body into eight sections based
on anatomical knowledge and mitigated the effect of clothing variations by adaptively assigning larger
and smaller weights to affected and unaffected sections, respectively. Iwashita et al. [31] divided
the human body into several areas equally and then estimated a comparison weight for each area.
Weights were based on the similarity between extracted features and those in the database for standard
clothing. Rokanujjaman et al. [29] defined more effective and less effective body parts by analyzing
cumulative row-wise recognition rates. The frequency domain-based gait entropy features (EnDFT) of
the more effective parts were used for recognition.

2.2. Intensity Transformation-Based Approaches to Gait Recognition

As mentioned in Section 1, the intensity transformation-based approaches transform intensity
values of an original gait feature into more discriminative values to increase the robustness against
change of the covariate conditions. For example, Bashir et al. [12] computed the GEnI by Shannon
entropy of the foreground probability at each pixel (i.e., gait energy in the GEI). The GEnI encodes
the randomness of pixel values in the silhouette images over a complete gait cycle, thereby capturing
more motion information (dynamic components) rather than static information, which improves
robustness against shape changes (e.g., clothing and carrying status). Masked GEI [13] is another
intensity transformation-based approach that keeps the dynamic components as their original values,
while it zero-pads the static components (i.e., both almost foreground and background parts), which
are decided by a certain threshold. In contrast to upper two approaches, recently Makihara et al. [22]
proposed a joint intensity transformation-based method, which focused on the joint intensity
transformation of a pair images instead of a single one. Specifically, a metric on joint intensities
between a pair of probe and gallery was learned to mitigate the large intra-subject differences as well as
leverage the subtle inter-subject differences. However, similarly to our previous work [20], it does not
consider the different effect of the joint intensity metric among different body parts (e.g., more leverage
on the motion difference in the legs than the torso part since clothing and carrying status less affect the legs).

2.3. CNN-Based Approaches to Gait Recognition

Recently, more studies on CNN-based gait recognition have been published [15,32–37].
For example, Wu et al. [32] used every raw silhouette from each gait sequence as an individual
input in their network. While Wolf et al. [33] regarded raw silhouettes from each gait sequence
as a spatiotemporal input and designed a 3D CNN model. Instead of using raw sequences,
Shiraga et al. [34] designed an eight-layered CNN network called GEINet using averaged silhouettes
(i.e., GEI). All the aforementioned networks regard gait recognition as person classification from the
same gait class. Besides, unlike the GEINet which uses only one input GEI, Zhang et al. [35] and
Wu et al. [36] designed their networks with two input GEIs (a pair of probe and gallery GEIs). Both of
their networks try to perform similarity learning between a probe GEI and a gallery GEI, then tell
whether these two GEIs come from the same person or not. In addition to silhouette-based feature
GEI, motion features (e.g., optical flow maps) are also used in some approaches [15,37]. All these
approaches achieved significant improvements compared with traditional methods. However, they all
require massive training set to ensure their best performance.

3. Gait Recognition Using GERF

The pipeline of our proposed method is shown in Figure 2. Given two raw sequences of
a gallery and probe, first extract gait silhouettes using a background subtraction-based graph-cut
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segmentation [38] and obtain registered and size-normalized silhouettes using the region center
information [16]. Second, average the silhouettes over a gait period to get a GEI. Third, transform the
GEI using learned GERF from the training set with covariates, e.g., clothing or carrying status variations.
Then, after two post-processing techniques, i.e., Gabor filtering and spatial metric learning, calculate
the L2 distance as a dissimilarity score between the gallery and probe. Finally, do the comparison by
comparing the score with an acceptance threshold for verification (one-to-one comparison) scenarios,
or by using the most commonly used nearest neighbor classifier for identification (one-to-many
comparison) scenarios.

Probe

Gallery

Post-process Comparison

Raw sequences Silhouettes GEI Global GERF

Training GEIs with various clothing or carrying status

Subject 1

Subject 2

…

…

… … … …

Learned Global GERF

Metric learning
projection matrix

Figure 2. Pipeline of the proposed method. The learned GERF from the training set can be replaced by
the extended spatially dependent GERF (SD-GERF). Here just take Global GERF as an example.

3.1. Representation of Global GERF

We apply the Global GERF for the most widely employed appearance-based gait representation,
i.e., GEI. Therefore, we first introduce the concept of GEI. The GEI [11] is a gait template generated by
averaging registered and size-normalized silhouettes within a complete gait period T as

I(x, y) =
1
T

T

∑
t=1

B(x, y, t), (1)

where B(x, y, t) is a registered and size-normalized binary silhouette value at the position (x, y) in
the t-th frame (with binary value 0 and Imax (Imax is usually 255 for an image with 8-bit depth.)
for background and foreground, respectively), and I(x, y) is a gait energy at the same position.
We approximate I(x, y) as an integer for simplicity, i.e., I(x, y) ∈ {0, 1, . . . , Imax}, since the domain of
gait energy is real numbers.
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The Global GERF f is defined as a transformation from an original gait energy I(x, y) to a
transformed one I′(x, y) as follows

I′(x, y) = f (I(x, y)) ∀(x, y). (2)

Because the original gait energy takes one of (Imax + 1) integers from 0 to Imax, the Global GERF
is represented as a lookup table f = [ f0, ..., f Imax ]

T ∈ RImax+1, where fi represents a transformed gait
energy from an original gait energy i.

We then define a dissimilarity measure between a pair of transformed GEIs from original GEIs I1

and I2. We simply adopt the Euclidean distance between them and define its squared distance d2
I1,I2

and further formulate it in the quadratic form of f as

d2
I1,I2

= ∑
x,y

( f I1(x,y) − f I2(x,y))
2 = f T AI1,I2 f , (3)

where AI1,I2 ∈ R(Imax+1)×(Imax+1) is a coefficient matrix for quadratic-form representation and its (l, m)

component can be calculated as

(AI1,I2)l,m =∑
x,y

(δI1(x,y),lδI1(x,y),m + δI2(x,y),lδI2(x,y),m

− δI1(x,y),lδI2(x,y),m − δI2(x,y),lδI1(x,y),m) ,
(4)

where δi,j is the Kronecker delta defined as

δi,j =

{
1 (i = j)

0 (i 6= j).
(5)

3.2. Representation of SD-GERF

Because the Global GERF trains a single common response function for the whole GEI, it cannot
consider differences in the importance of static and dynamic components among the body parts
(e.g., the static components are more important for the head, while the dynamic components are more
important for the leg). We therefore introduce spatial dependency into the GERF framework.

The most straightforward way to do this is to define different GERFs for individual spatial
positions, i.e., for every pixel, and to optimize an SD-GERF that is a concatenated vector of the multiple
GERFs. This strategy, however, significantly increases the number of variables (i.e., the dimension of
the SD-GREF vector in proportion to the image size) and hence suffers from generalization errors as
well as an increase in space and time complexity. We therefore consider reducing the dimension of the
SD-GERF vector.

First, as the body parts are divided by vertical positions in most part-based approaches to gait
recognition [28,29], we also consider only vertical spatial dependency while neglecting horizontal
spatial dependency. Second, because GERFs of adjacent vertical positions should be similar, in other
words, abrupt changes of the GERFs among adjacent vertical positions are unlikely to occur, we set
the SD-GERFs of a smaller number of vertical positions, using an interval coarser than a single pixel.
We then represent in-between GERFs by linear interpolation. Third, while the Global GERF is defined
by (Imax + 1) components, i.e., at every intensity level, we represent a GERF with a smaller number of
intensity levels at a coarser intensity interval, and then represent in-between response values by linear
interpolation as well.

In summary, we introduce a set of control points distributed over vertical positions and intensity
levels at certain intervals as shown in Figure 3 where response values are defined and estimate
intermediate response values by bilinear interpolation from the adjacent control points. Note that



Appl. Sci. 2018, 8, 1380 8 of 22

not only pixels on the control points but also those in-between control points are used for training
and testing.
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Figure 3. Representation of control points. For example, if Qy = 8, then 0th, 8th, ..., rows of a gait
energy image (GEI) image are chosen as vertical positions; if QI = 16, then intensities (gray values: 0,
16, ...) are chosen as intensity positions.

Next, we introduce a mathematical definition of the SD-GERF based on the previously described
concept. A control point for the i-th intensity Ii and the j-th row (vertical position) yj is defined as

ri,j =
[
Ii, yj

]T , (6)

where Ii = iQI , i ∈ {0, 1, ..., NI} and yj = jQy, j ∈ {0, 1, ..., Ny}, and QI and Qy are intervals for the
intensity and the row directions, respectively, and (NI + 1) and (Ny + 1) are the number of control
points for the intensity and row directions, respectively (see Figure 3).

We then denote a response value fi,j be the transformed gait energy at the corresponding control
point ri,j of the i-th intensity value Ii and the j-th row yj, where both the original value Ii and response
value fi,j mean intensities (gait energies). In other words, given an intensity value Ii on the j-th
row, it is transformed into the response value fi,j. Similarly to the Global GERF, we represent the
SD-GERF by concatenating the response values from all the control points to form a column vector

f =
[

f0,0, ..., fNI ,0, . . . , f0,Ny , ..., fNI ,Ny

]T
∈ RNd , Nd = (NI + 1)(Ny + 1).

We subsequently introduce the bilinear interpolation of response values for intermediate
intensities and rows from the adjacent control points. Given a pixel with intensity I at the position
(x, y), we compute an intensity index i = bI/QIc and row index j = by/Qyc of an adjacent control
point, where b·c is a floor function. We then compute a corresponding response value f (I, y) by
bilinear interpolation from four pairs of adjacent control points and the corresponding response values,
(ri,j, fi,j), (ri,j+1, fi,j+1), (ri+1,j, fi+1,j), (ri+1,j+1, fi+1,j+1) as

f (I, y) = wi,j fi,j + wi+1,j fi+1,j + wi,j+1 fi,j+1

+ wi+1,j+1 fi+1,j+1

= wT
I,yf .

(7)
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Here, wi,j = (1−wI)(1−wy), wi+1,j = wI(1−wy), wi,j+1 = (1−wI)wy, wi+1,j+1 = wIwy are weights
of individual adjacent control points, where wI = (I − iQI)/QI and wy = (y− jQy)/Qy. The vector
wI,y is a coefficient vector for the bilinear interpolation whose i + j(NI + 1)-th, (i + 1) + j(NI + 1)-th,
i + (j + 1)(NI + 1)-th, and (i + 1) + (j + 1)(NI + 1)-th components are wi,j, wi+1,j, wi,j+1, and wi+1,j+1 and
the other components are zero-padded.

Next, we measure a dissimilarity between a pair of transformed GEIs from original GEIs I1 and I2

via the SD-GERF f by a squared Euclidean distance as

d2
I1,I2

= ∑
x,y

( f (I1(x, y), y)− f (I2(x, y), y))2

= ∑
x,y

(
wT

I1(x,y),yf −wT
I2(x,y),yf

)2

= f T AI1,I2 f ,

(8)

and the coefficient matrix AI1,I2, ∈ RNd×Nd can be computed as AI1,I2 = ∑x,y CCT, where
C = wI1(x,y),y −wI2(x,y),y.

3.3. Training of GERF

We optimize Global GERF and SD-GERF on a training set that includes covariate variations to
make the transformed GEI discriminative under covariate variations. Suppose the whole training set
contains of two subsets S and D, where the subset S and D are the sets of GEI pairs of the same and
different subjects, respectively. To achieve better discrimination capability, it is preferable to decrease
the sum of squared distances DS for the same-subject pairs S while increasing the squared distances
DD for the different-subject pairs D. Here, DS and DD are calculated as

DS = ∑
(I1,I2)∈S

d2
I1,I2

=f TSS f

DD = ∑
(I1,I2)∈D

d2
I1,l2 =f TSDf ,

(9)

where SS and SD are computed as SS = ∑(I1,I2)∈S AI1,I2 and SD = ∑(I1,I2)∈D AI1,I2 , respectively.
In addition, a regularization term DR is introduced to make the GERF smoother using first-order

and second-order total variations [39], that is defined as

DR = wI
1

Imax

∑
i=1

( fi − fi−1)
2 + wI

2

Imax−1

∑
i=1

( fi+1 − 2 fi + fi−1)
2

= f T(wI
1SR1 + wI

2SR2)f

= f TSRf

(10)

for Global GERF, and defined as
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DR = wI
1

NI

∑
i=1

Ny

∑
j=0

( fi,j − fi−1,j)
2

+ wI
2

NI−1

∑
i=1

Ny

∑
j=0

( fi+1,j − 2 fi,j + fi−1,j)
2

+ wy
1

NI

∑
i=0

Ny

∑
j=1

( fi,j − fi,j−1)
2

+ wy
2

NI

∑
i=0

Ny−1

∑
j=1

( fi,j+1 − 2 fi,j + fi,j−1)
2

= f T(wI
1SI

R1
+ wI

2SI
R2

+ wy
1Sy

R1
+ wy

4Sy
R2
)f

= f TSRf

(11)

for SD-GERF, where wI
1, wI

2, wy
1 and wy

2 are weighting parameters for the first-order and second-order
smoothness terms for adjacent intensities and rows, respectively. The coefficient matrices SI

R1
, SI

R2
, Sy

R1
,

and Sy
R2

can be easily derived referring to the previous paper [20].
Finally, we optimize the GERF to maximize the Fisher ratio between the sum of squared distances

DD for the different-subject pairs and those DS for the same-subject pairs plus the regularization term
DR under an L2 norm constraint on f as

f ∗ = arg max
f

f TSDf
f T(SS + SR)f

s.t. ‖f‖ = 1. (12)

We then formulate this optimization problem as the following generalized eigenvalue problem
which is similar to the well-known LDA formulation,

SDf = λ(SS + SR)f s.t. ‖f‖ = 1, (13)

where λ and f are an eigenvalue and its corresponding eigenvector, respectively. We therefore
analytically obtain the optimal GERF f ∗ in a closed-form solution by assigning the eigenvector
corresponding to the largest eigenvalue without any iterations.

3.4. Score-Level Fusion of Multiple SD-GERFs

We considered only the largest eigenvector as a solution of the GERF in our previous paper [20].
However, we can exploit multiple largest eigenvectors to obtain multiple GERFs for better accuracy in
practice. Particularly, in the case of the SD-GERF, responses for each GERF often localize to a certain
part. For example, the single largest eigenvector is localized to the head, and the second-largest is
localized to the leg (refer to the feature examples in Section 4.4). Therefore, a single SD-GERF cannot
reflect information from the whole body and may result in low recognition accuracy. We therefore
adopt multiple SD-GERFs corresponding to the N largest eigenvalues to cover the whole body and
fuse results from the multiple SD-GERFs for better accuracy.

As for the fusion scheme, we first compute dissimilarity scores for each SD-GERF between
a probe and every subject in a gallery set and apply probe-dependent z-normalization [40] to the set
of dissimilarity scores, i.e., linearly normalize the scores so that their mean and variance are 0 and 1,
respectively. Once we obtain N z-normalized dissimilarity scores from N SD-GERFs, we fuse them by
either of two simple, yet effective, score-level fusion methods [41], i.e., sum and min rule.

3.5. Post-Processing

After transforming the GEI with the optimal GERF, we adopt two sequential processes for further
improvement. The first one is Gabor filtering, which has been demonstrated to be effective for
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gait recognition and Gabor functions-based image decomposition is biologically relevant to image
understanding and recognition as reported in [18,42]. Similar to [42], we use subsampled Gabor
features with Gabor functions from five scales and eight orientations. Because the silhouette gait feature
provided in the databases is 88× 128, the resolution of the Gabor feature is 320× 352. An example of
Global GERF after Gabor filtering is shown in Figure 4. The second one is a spatial metric learning,
that is, two-dimensional PCA (2DPCA) [43] and two-dimensional LDA (2DLDA). They are used not
only for reducing feature dimensions, but also for getting more discriminant features. Similar to [26,27],
they are applied in Gabor feature space for horizontal and vertical direction, respectively.

Orientation

Scale

1 2 𝑁𝑑…

1

2

𝑁𝑠
…

Figure 4. An example of Global GERF after Gabor filtering. The rows show different scales and the
columns show different orientations. In this figure, the number of scales is Ns = 5 and the number of
orientations is Nd = 8, respectively.

Next, the dissimilarity score between the gallery and probe elements of a pair is measured as
the Euclidean distance in the 2DPCA+2DLDA space. Finally, in verification scenarios, the score is
compared with an acceptance threshold to verify whether the pair belongs to the same subject or not.
While in identification scenarios, nearest neighbor classifier is used to assign the final identity of the
probe according to the dissimilarity scores between the probe and all the galleries.

4. Experiments

4.1. Datasets

We used three databases (OU-TD-B and OU-LP-Bag β databases are available at http://www.am.
sanken.osaka-u.ac.jp/BiometricDB/index.html, CASIA-B database is available at http://www.cbsr.ia.
ac.cn/english/Gait%20Databases.asp), i.e., the OU-ISIR Gait Database, the Treadmill Dataset B [21]
(OU-TD-B), the OU-ISIR Gait database, Large Population dataset with bag, β version [22] (OU-LP-Bag
β) and the CASIA Gait Database B (CASIA-B) [23] for the experiments.

The OU-TD-B has the largest number of clothing variations, at most 32. It is separated into three
subsets. The training set contains 446 sequences of 20 subjects with the range of 15 to 28 different
combinations of clothing. The gallery and probe sets constitute a testing set that comprises 48 subjects,
which are disjoint from the training set. Standard clothing type (i.e., regular pants and full shirt) is only
included in the gallery set, while other clothing types with 856 sequences are included in the probe set.

The OU-LP-Bag β includes various carrying statuses in the wild. There are 2070 subjects in the
dataset and each subject has two sequences, one with carried objects and the other without carried
objects. The whole dataset has three subsets: a training set, a gallery set, and a probe set. There are
2068 sequences of 1034 subjects in the training set, while the remaining 1036 subjects are included in

http://www.am.sanken.osaka-u.ac.jp/BiometricDB/index.html
http://www.am.sanken.osaka-u.ac.jp/BiometricDB/index.html
http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp
http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp
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the gallery and probe sets. The sequences in the gallery set have no carried objects, while the sequences
in the probe set have carried objects.

The CASIA-B contains 124 subjects from 11 views (from 0 to 180 degree with an interval of
18 degree). For each view, there are ten sequences per subject. Six of them are captured under normal
walking conditions (NM); two of them are captured when carrying a bag (BG); the rest two are captured
when wearing a coat (CL). Among the ten sequences, the first four sequences under normal walking
conditions are chosen as the gallery (NM #1-4). The other six sequences are kept as three probe sets
under different walking conditions: (1) Set-A contains two NM sequences (NM #5-6); (2) Set-B contains
two BG sequences (BG #1-2); (3) Set-C contains two CL sequences (CL #1-2).

4.2. Parameter Setting

The proposed method has several hyper-parameters, i.e., weighting coefficients of the
regularization terms both in intensity and spatial direction (wI

1, wI
2, wy

1 and wy
2), and the

2DLDA dimension d (corresponding to the chosen number of largest eigenvalues in 2DLDA).
We experimentally set wI

1 = wI
2, wy

1 = wy
2, and changed them in the range of

[
10, 102, . . . , 105].

We also changed 2DLDA dimension d in the range of [10, 20, . . . , 200]. All the hyper-parameters
were automatically selected by a grid search for each verification and identification scenarios; i.e.,
we adopted the hyper-parameters that achieved the best accuracy on the training set regarding
verification and identification criteria, respectively. In addition, we had two choices for the score-level
fusion methods, i.e., sum or min rule, and we adopted the better one, similarly to the previously
mentioned hyper-parameter selection process. Moreover, the SD-GERF still has some parameters,
namely, intervals for intensity QI , that for row Qy, and the number of multiple eigenvectors
(i.e., response functions) N. For these parameters, we experimentally set QI = 16, Qy = 8, and N = 10
and used them throughout all the experiments. Regarding the parameters in post-processing, we set
Gabor window size to 23× 23 (Note that we used a different Gabor window size from the previous
work [20] for the sake of balancing accuracy and computational time.) and keep 99% variance
for 2DPCA.

4.3. Evaluation Metrics

We evaluated the recognition accuracy of the proposed method both in verification and
identification scenarios. In verification scenarios, a detection error tradeoff (DET) curve is employed
that indicates a tradeoff between false non-match rate (FNMR) and false match rate (FMR) when
an acceptance threshold changes. Specifically, FNMR is the proportion of genuine attempts that are
falsely declared not to match a template of the same subject and FMR is the proportion of the imposter
attempts that are falsely declared to match a template of another subject. In addition, an equal error rate
(EER), where FNMR is equal to FMR, is also presented. In identification scenarios, a cumulative match
characteristic (CMC) curve is employed that shows identification rates of actual subjects included
within each of the ranks. In addition, the rank-1 identification rate is also shown. Obviously, the lower
EER value and higher rank-1 identification rate mean the higher recognition performance.

4.4. Comparison with Intensity Transformation-Based Methods

We conducted comparison experiments with a family of intensity transformation-based methods
including GEnI [12], Masked GEI [13] and GEI [11] as a baseline to show the effectiveness of the
proposed data-driven transformation methods Global GERF and SD-GERF.

We first show some feature examples for the five gait features, that is, GEI, GEnI, Masked GEI,
Global GERF and SD-GERF, along with profiles of three SD-GERFs corresponding to the three largest
eigenvalues in Figure 5. Note that the proposed SD-GERF uses 10 eigenvectors as multi-response
functions; here, we only list three of them as examples. As for the profile of Global GERF, it is drawn
as a red curve in the third column of Figure 1.
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Figure 5. Examples of features and profiles of the SD-GERF in OU-TD-B. (a) Features of five intensity
transformation-based methods. Three features corresponding to the three largest eigenvalues are listed
for the SD-GERF as examples. (b) Profiles of response functions of the SD-GERF corresponding to the
three largest eigenvalues. R1, R2, . . . , R17 indicate row indices from the top to the bottom, where the
control points are aligned. Note that some profiles of the SD-GERFs are not shown because they are
overlapped with those of similar SD-GERFs.

The profile reveals that on one hand the Global GERF compresses the intensity difference between
typical dynamic components (intensity values around 127) and the complete foreground (intensity
values around 255) to mitigate the effects of clothing variations, e.g., the leg is usually occupied
by the typical dynamic components in the case of standard clothing, while sometimes occupied by
the complete foreground in the case of long coats or skirts. On the other hand, it simultaneously
emphasizes the difference between the complete background (intensity values around 0) and the
typical dynamic components, because such differences are still useful under clothing variations.
In addition, it also keeps the difference between complete background and foreground as this still
contains meaningful information to discriminate subjects under conditions of clothing variations,
unlike GEnI or Masked GEI, which make no such distinction.

As for the SD-GERF, it exhibits similar trends in profile to those of the Global GERF, as shown in the
second column (localized to the leg) and third column (localized to the torso) of Figure 5b. This implies
that the SD-GERF highlights differences in dynamic components and retains static components such as
the Global GERF. However, the first column (localized to the head) in Figure 5b shows monotonically
increasing profiles unlike those for the leg and the torso (the second and third columns). This is
because the head is not often affected by clothing variations and hence the original GEI is sufficient for
discrimination. As such, the SD-GERF can consider the spatial dependency on the degree of effect of
clothing variations and thus set appropriate response functions for each body part.
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The DET curves with z-normalization and CMC curves of all the transformation-based methods
are shown in Figure 6. In addition, the detailed EER with z-normalization and rank-1 identification rate
are listed in Table 1. From the results, the proposed GERFs (Global GERF and SD-GERF) outperform
the other three transformation-based methods, in the case of both verification and identification.
Moreover, the SD-GERF achieves better accuracy than the Global GERF. For instance, the 4.27% lower
z-EER and 10.9% higher rank-1 rate in OU-TD-B indicate that addition of spatial dependency in the
GERF framework improves accuracy.
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Figure 6. Detection error tradeoff (DET) curves with z-normalization (left) and cumulative match
characteristic (CMC) curves (right) for intensity transformation-based methods in two datasets.

Table 1. Equal error rate (EER) with z-normalization (denoted as z-EER) [%] and rank-1 identification
rate (denoted as Rank-1) [%] for intensity transformation-based methods. Digits with bold and italic
bold fonts represent the best and the second-best results, separately. This convention is consistent
throughout the whole paper.

Dataset OU-TD-B OU-LP-Bag β

Methods z-EER Rank-1 z-EER Rank-1

GEI [11] 16.12 52.8 19.59 24.6
GEnI [12] 12.81 59.0 18.82 29.5
Masked GEI [13] 28.15 28.0 61.95 0.1
Global GERF [20] 11.68 60.6 16.22 33.5
SD-GERF (proposed) 7.41 71.5 12.99 36.1

4.5. Comparison on Clothing and Carrying Status Variations

In this subsection, we evaluated the proposed methods (combined with two post-processing
techniques, denoted as Gabor+Global GERF [20] and Gabor+SD-GERF) against clothing and carrying
status variations on OU-TD-B, OU-LP-Bag β and CASIA-B (in case of side-view). OU-TD-B and
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OU-LP-Bag β are more difficult compared with CASIA-B since they have more variations, thus they
are detailed analyzed both in identification and verification scenarios.

4.5.1. OU-TD-B and OU-LP-Bag β

The state-of-the-art methods for comparison contain SVB-frieze pattern [24], Component-based [44],
Whole-based [16], Part-based [28], Part-EnDFT [29], AESI + ZNK [45], GEI+RSM [26],
Gabor+RSM-HDF [27], Gabor GEI [18], two-point gait (TPG) + GEI [46], GEI w/LDA [47],
GEI w/2DLDA [48], GEI w/CSA [49], GEI w/DATER [25], GEI w/Ranking SVM [50] and JIS-ML [22].
Moreover, we evaluated a CNN-based method, i.e., GEINet [34] as one of the benchmarks to make
a comparison with deep learning-based methods. We trained the GEINet using the same dataset
protocol as our GERF model. All default hyper-parameters are chosen except for the number of units
on the fully connected layer fc4, which is equal to the number of subjects in the training set. Thus, we
changed it according to our datasets. Finally, the DET curves with z-normalization and CMC curves of
all the methods are shown in Figure 7 and EERs with z-normalization and rank-1 identification rates
are shown in Table 2.

Table 2. EER with z-normalization [%] and rank-1 identification rates [%] compared with the
state-of-the-art methods. N/A and “-” mean not applicable and not provided, respectively.

Dataset OU-TD-B OU-LP-Bag β

Methods z-EER Rank-1 z-EER Rank-1

SVB-frieze pattern [24] 19.81 - - -
Component-based [44] 18.25 - - -
Whole-based [16] 14.88 58.1 - -
Part-based [28] 10.26 66.3 - -
Part-EnDFT [29] - 72.8 - -
AESI+ZNK [45] - 72.7 - -
GEI+RSM [26] N/A 80.4 N/A N/A
Gabor+RSM-HDF [27] N/A 90.7 N/A N/A
Gabor GEI [18] 11.80 62.3 10.48 46.4
TPG+GEI [46] 7.10 - - -
GEI w/LDA [47] 15.63 54.3 8.10 54.6
GEI w/2DLDA [48] 8.91 70.7 11.47 43.3
GEI w/CSA [49] 16.00 - - -
GEI w/DATER [25] 8.72 - - -
GEI w/Ranking SVM [50] 10.75 58.4 10.81 28.3
JIS-ML [22] 6.66 74.5 5.45 57.4
GEINet [34] 8.38 60.2 9.75 40.7
Gabor+Global GERF [20] 5.14 82.7 6.67 58.3
Gabor+SD-GERF (proposed) 4.61 87.4 5.60 64.3

The proposed Gabor+SD-GERF method achieves the best or second-best performance for both
datasets, which shows that this method is effective and robust for gait recognition under variations in
clothing and carrying status. Although Gabor+RSM-HDF [27] got the best rank-1 identification rate in
OU-TD-B, we must point out that the RSM framework suffers from three weaknesses: (1) It can be only
applied to identification scenarios (not to verification scenarios) because it relies on majority voting in
all the galleries; (2) Because it requires multiple samples per gallery to compute a within-class scatter
from the gallery set, it cannot be applied to datasets with a single sample per gallery (e.g., OU-LP-Bag
β); and (3) It cannot guarantee reproducibility because it contains a random selection process at the
metric learning stage. Moreover, compared with the joint intensity transformation-based method
(JIS-ML [22]), the proposed method achieves higher performance in both datasets except for a slightly
lower z-EER (0.15%) in OU-LP Bag β.
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Figure 7. DET curves with z-normalization (left) and CMC curves (right) for comparison with
state-of-the-art methods in two datasets.

Even compared with GEINet, the proposed method achieves better performance. This is because
that the GEINet was firstly designed for cross-view gait recognition on the OU-ISIR large population
dataset (OULP) [51] which uses more than 15,000 samples. When compared with this large population
dataset, the clothing and carrying status datasets we used in our experiments (about 1300 samples for
OU-TD-B and 4000 samples for OU-LP-Bag β) are quite small although they have the largest clothing
and carrying status variations among publicly available gait datasets. Such small datasets cause the
overfitting problem and hence the GEINet suffers from large generalization errors. On the other
hand, the number of clothing and carrying status variations (e.g., 32 clothing types and unpredictable
carrying status including various location and size) is much larger than the number of view variations
(only 4 view angles in OULP), which increases the difficulty of recognition. Therefore, the GEINet
is inferior to the proposed method unless using a much larger training set, or even improving the
network architecture.

Considering the aforementioned aspects, we argue that the proposed method is superior to the
other benchmarks because of its wider application range and very competitive accuracies. Upon closer
examination of an extended part of the GERF framework, Gabor+SD-GERF gets better results than
Gabor+Global GERF (The z-EER and rank-1 are slightly different from those in the previous paper [20]
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because different hyper-parameters were automatically chosen based on the training set in this paper.)
and better than the case without post-processing in Section 4.4, from Table 2 0.53% lower z-EER and
4.7% higher rank-1 in OU-TD-B, and 1.07% lower z-EER and 6.0% higher rank-1 in OU-LP-Bag β.
All these results show the effectiveness of the proposed spatially dependent framework of the GERF.

4.5.2. CASIA-B

We used the side-view sequences in CASIA-B to keep the view angle unchanged for evaluation
under different walking conditions. For each probe set, we trained one GERF model using the first
24 subjects, while the rest 100 subjects are used for testing. Only the performance in identification
scenarios is shown for comparison since few works reported their results in verification scenarios.
Because we always got 100% rank-1 rate on the training set due to the small number of training
samples and variations of each walking condition, it is hard to choose the hyper-parameters based on
the training set. Thus, the hyper-parameters are set to be the same as those in OU-TD-B. Table 3
shows the rank-1 identification rates. The compared results were drawn from original papers,
except for GEINet [34] which was reported in [52]. From the results, the proposed method significantly
outperforms the other existing methods, especially for Set-B and Set-C which contain BG and CL,
which show the effectiveness of the proposed method tackling clothing and carrying status variations.
Two CNN-based methods, i.e., GEINet [34] and DCNN [53], fail to achieve higher performance
due to the small number of training samples. Also, when compared with the extended part of the
GERF framework, Gabor+SD-GERF gets better results than Gabor+Global GERF which shows the
effectiveness of the proposed spatially dependent framework of the GERF.

Table 3. Side-view rank-1 identification rates [%] compared with other state-of-the-arts on three probe
sets under different walking conditions of CASIA-B dataset.

Methods Set-A Set-B Set-C Average

GEI [11] 99 60 30 63.0
GEnI [12] 98.3 80.1 33.5 70.6
STIP+NN [54] 95.4 60.9 52 69.4
AESI+ZNK [45] 100 93.1 81.3 91.5
L-CRF [52] 98.6 90.2 85.8 91.5
GEINet [34] 97.5 84.5 71.8 84.6
DCNN [53] 95.6 88.3 76.2 86.7
Gabor+Global GERF [20] 99 91 92 94.0
Gabor+SD-GERF (proposed) 99 100 96 98.3

4.6. Discussion

4.6.1. Comparison on Speed Variation

We discussed the performance of proposed method on speed variation, which involves different
covariate conditions compared with clothing and carrying status. While the clothing and carrying
status variations tend to affect the static components (e.g., torso and limb shapes) more than the
dynamic ones (e.g., changes in stride and arm swing), speed variation displays the opposite pattern.
The OU-ISIR Gait Database, Treadmill Dataset A [21] (OU-TD-A) is used for this experiment, because
it has the largest speed variation among publicly available gait databases. We trained a common GERF
model for all speed cases. Table 4 shows the rank-1 identification rates. From the results, the proposed
method achieves the second-best performance. However, it is noted that SSGEI [55] which achieves
the best performance is specifically designed for solving the speed variation.

We also made some qualitative evaluation in Figure 8, which shows typical feature examples
and profile of Global GERF in OU-TD-A. We find that the obtained Global GERF (bottom row of
Figure 8a) is more insensitive to the difference between dynamic components of the legs and arms and
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the background, than the original GEI (top row of Figure 8a). This is also understandable from the
profile shown in Figure 8b. Intensity differences between background (intensity values around 0) and
typical dynamic components (intensity values around 127) are compressed (i.e., nearly flat), and hence
the dynamic components approach background intensity. In contrast, intensity differences between
the typical dynamic components and foreground (intensity values around 255) are emphasized.
This profile suggests a benefit of discriminating foreground from the others, regardless of whether
they are background or dynamic components. Hence, the proposed GERF can attenuate the
dynamic components, which are greatly affected by speed variation, and simultaneously highlight the
differences in static components.
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Figure 8. The Global GERF under speed variation: (a) feature examples of GEI and Global GERF under
different speed (from 2 km/h to 7 km/h); (b) profile of the Global GERF.

Table 4. Rank-1 identification rates [%] compared with other state-of-the-arts in case of small speed
change (3 vs. 4 km/h), large speed change (2 vs. 6 km/h) and average of all speed changes in OU-TD-A.

Methods Small Speed Large Speed Average (All Speed)

STM [56] 90 58 -
DCM [57] 98 82 92.44
RSM [58] 100 95 98.07
SSGEI [55] 100 98 99.33
Gabor+Global GERF [20] 100 92 96.89
Gabor+SD-GERF (proposed) 100 96 98.11

Through this discussion of speed variation, we confirm the flexibility of the proposed GERF
framework, in which the response functions are learned in a data-driven way, and show the potential
for wide application of robust gait recognition under various covariate conditions, including different
clothing, carrying status, and speed.

4.6.2. Consideration for Real-World Applications

Although we have achieved promising results under various covariate conditions, there still
exists some limitations of the proposed method to real-world applications (e.g., surveillance), that
is, the proposed method is based on the transformation of appearance-based features (i.e., GEI),
whose quality is largely subject to the extracted silhouettes of a gait period. In case of real scenes,
however, more difficult variations, such as complex background and occlusions, will greatly affect the
extraction of subjects’ silhouettes and may further drop the performance of gait recognition. Fortunately,
recent deep learning-based techniques (e.g., Mask R-CNN [59]) have brought great improvement in
the performance of human detection and segmentation in complex real scenes, which benefits for the
silhouette extraction to generate good appearance-based features. This implies a combination of these
methods for real scene applications.
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4.7. Evaluation of Computational Time

We ran the MATLAB code of the proposed method on a PC with an Intel Core i7 4.00 GHz
processor and 32 GB RAM to evaluate the computational time. For OU-TD-B dataset, we show the
training time of SD-GERF and spatial metric learning, together with the query time of each sequence
based on GEI templates in Table 5. One of the benchmarks, i.e., Gabor+RSM-HDF [27], is used for
comparison, which analyzed the computational time on USF dataset [9] including 122 subjects in the
gallery set. For fair comparison, we further estimate the proposed method under a comparable setting
by considering the computing power of the computer and the number of gallery sequences. Note that
the running time excludes the computation of Gabor features similarly to [27], which costs about 0.05 s
per GEI. As a result, the proposed method shows lower computational time than Gabor+RSM-HDF
and thus is more suitable for real applications.

Table 5. Running time (Seconds) comparison.

Method
Running Stage

Machine Specification Training Time
Query Time of Each Sequence

(#Gallery Sequences)

Gabor+RSM-HDF [27]
Intel Core i5 3.10 GHz

processor
320.090 0.600 (122)

Proposed method
Intel Core i7 4.00 GHz

processor
13.330 0.016 (48)

Proposed method (estimated) 75% computing power 17.773 0.054 (122)

5. Conclusions

In this paper, we described a data-driven framework to learn GERFs (i.e., Global GEI and
SD-GERF) for gait recognition against clothing and carrying status. Specifically, we first proposed the
Global GERF to transform an original gait energy into another value to make it more discriminative
under variations. In addition, since the discrimination capability of gait energies, as well as the degree
to which they are affected by the covariate conditions, differs among body parts, we then extended
the Global GERF to SD-GERF which accounts for spatial dependence. Moreover, the proposed GERFs
were represented as a lookup table vector and optimized through an efficient generalized eigenvalue
problem, which enables us to obtain an analytical solution in a closed form without any iterations.
To further improve accuracy, two post-processing techniques (i.e., Gabor filtering and 2DPCA+2DLDA)
were employed. Experimental results using three publicly available datasets showed the state-of-the-art
performance of the proposed GERF compared with other state-of-the-art methods.

Because the proposed framework can be regarded as a kind of feature learning method, we will
apply the method to other problems such as gait-based gender and age estimation or even more
dissimilar fields where intensity plays an important role in comparison, such as face recognition.
Moreover, considering the good performance of deep learning-based methods, integrating the GERF
model into a deep network architecture will remain as another future work.
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