
applied
sciences

Article

Highly Reliable and Efficient Three-Layer Cloud
Dispatching Architecture in the Heterogeneous Cloud
Computing Environment †

Mao-Lun Chiang 1, Yung-Fa Huang 1,*, Hui-Ching Hsieh 2 and Wen-Chung Tsai 1

1 Department of Information and Communication Engineering, Chaoyang University of Technology,
Taichung City 41349, Taiwan; mlchiang@cyut.edu.tw (M.-L.C.); azongtsai@cyut.edu.tw (W.-C.T.)

2 Department of Information Communication, Hsing Wu University, New Taipei City 24452, Taiwan;
luckyeva.hsieh@gmail.com

* Correspondence: yfahuang@cyut.edu.tw; Tel.: +886-4-2332-3000 (ext. 4419)
† This paper is an extended version of our paper published in 2017 IEEE 8th International Conference on

Awareness Science and Technology (iCAST2017), Taichung, Taiwan, 8–10 November 2017.

Received: 21 July 2018; Accepted: 13 August 2018; Published: 16 August 2018
����������
�������

Abstract: Due to the rapid development and popularity of the Internet, cloud computing has become
an indispensable application service. However, how to assign various tasks to the appropriate
service nodes is an important issue. Based on the reason above, an efficient scheduling algorithm is
necessary to enhance the performance of the system. Therefore, a Three-Layer Cloud Dispatching
(TLCD) architecture is proposed to enhance the performance of task scheduling. In the first layer,
the tasks need to be distinguished into different types by their characters. Subsequently, the Cluster
Selection Algorithm is proposed to dispatch the tasks to appropriate service clusters in the second
layer. Besides this, a new scheduling algorithm is proposed in the third layer to dispatch the task
to a suitable server in a server cluster to enhance the scheduling efficiency. Basically, the best
task completion time can be obtained in our TLCD architecture. Furthermore, load balancing and
reliability can be achieved under a cloud computing network environment.

Keywords: cloud computing; reliability; load balancing; Sufferage; task dispatching

1. Introduction

Due to the rapid development and popularity of the Internet, cloud computing has become
an indispensable and highly demanded application service [1]. In order to meet the greater
storage requirements of Big Data, the system will continue to upgrade and expand its capabilities,
resulting in a large number of heterogeneous servers, storage, and related equipment in a cloud
computing environment.

The server type of cloud computing can be classified into three service types: Software as a Service
(SaaS), Platforms as a Service (PaaS), and Infrastructure as a Service (IaaS) [2–4]. In SaaS, the frequently
used software and programs are provided by the Internet vendor, such as Gmail and Google Maps [5].
In PaaS, a platform for users is provided for programs, such as the Google APP Engine, one kind
of PaaS platform. In the last type of service, the IaaS, the user can rent the hardware resources to
build their own framework, such as a Cloud server [2–4,6]. No matter what kind of cloud service is
applied to the cloud computing network, there is a common character: each cloud server has different
capabilities and computing abilities. According to the reason above, there is a need for an efficient
scheduling algorithm that can dispatch tasks to the appropriate cloud server, which is an important
challenge in current cloud computing environments.

Appl. Sci. 2018, 8, 1385; doi:10.3390/app8081385 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app8081385
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/8/8/1385?type=check_update&version=4

Appl. Sci. 2018, 8, 1385 2 of 15

Basically, in the traditional cloud clustering architecture, the system only considers the
heterogeneity of tasks while executing scheduling procedures and ignores the heterogeneity of
tasks which come from different platforms, and its categories are not distinguishable by nodes.
Therefore, heterogeneous tasks have become major flaws in traditional cloud architectures. In addition,
cloud service types are very diverse. As a result, the cloud computing environment becomes
complicated and the reliability is greatly reduced. So, the scheduling of cloud environments is
more difficult.

Therefore, the Three-Layer Cloud Dispatching (TLCD) architecture is proposed to handle the
scheduling problem while heterogeneous nodes and tasks exist in the cloud system at the same time.
For the first layer, a Category Assignment Cluster (CAC) [7,8] layer was proposed to reduce the task
delay and the overloading by classifying the heterogeneous tasks. In the CAC layer, the various
tasks can be classified into three types according to the IaaS, SaaS, and PaaS categories. Subsequently,
the homogeneous tasks can be dispatched to the corresponding service category clusters in the
following layer.

In the second layer, called the Cluster Selection (CS) layer, the homogenous tasks can be assigned
to appropriate clusters by the Cluster Scheduling Algorithm (CSA) to enhance the reliability of the
system. Besides this, the cost and completion time of task scheduling can be reduced in this layer.
Finally, tasks can be dispatched to service nodes by the scheduling algorithm in the third layer,
the Server Nodes Selection (SNS) layer. In this layer, an Advanced Cluster Sufferage Scheduling
(ACSS) algorithm is proposed to enhance resource utilization and to achieve load balancing [2,3,9–11].

The rest of this paper is organized as follows. Section 2 illustrates the previous works on
scheduling algorithms. Subsequently, the details of the TLCD architecture are shown in Section 3 and
examples are given in Section 4. Finally, Section 5 gives the conclusions of this paper.

2. Materials and Methods

So far, many scheduling algorithms been proposed for various application scenarios [12–14].
For example, in [12], the authors propose an energy-efficient adaptive resource scheduler architecture
for providing real-time cloud services to Vehicular Clients. The main contribution of the
proposed protocol is maximizing the overall communication-plus-computing energy efficiency
while meeting the application-induced hard Quality of Service (QoS) [14] requirements on the
minimum transmission rates, maximum delays, and delay jitters. In [14], the authors propose a
joint computing-plus-communication optimization framework exploiting virtualization technologies
to ensure users the QoS, to achieve maximum energy savings, and to attain green cloud computing
goals in a fully distributed fashion. Basically, these proposed algorithms and architectures can help
with rethinking the design of scheduling algorithms in depth.

Generally, there are two types of scheduling algorithm can be provided based on the time of
scheduling, namely, the real-time type and the batch type. Basically, the received tasks are immediately
assigned to cloud server nodes in the real-time type. Conversely, in the batch type, the received tasks
are accumulated for a period of time and subsequently dispatched to cloud server nodes. A scheduling
algorithm of the batch type can obtain better performance than one of the real-time type. This is because
the assignment results of all tasks can be considered in a batch-based scheduling algorithm [11,15,16].

So far, many scheduling algorithms [2,3,9–11,15,17] have been proposed to dispatch the task to cloud
server nodes in the cloud computing network, such as the Min-Min [9,10,15,17], Max-Min [9,15,17],
Sufferage [2,9,11,17], and MaxSufferage algorithms [2,3,9,15]. However, these algorithms only consider
the factor of the expected completion time (ECT) without considering the load status of the server node.
Therefore, the performance is not as good as expected, and the minimum completion time cannot
be obtained.

For example, in the Min-Min algorithm, the task i with the minimum ECT of the unassigned tasks
T is called min_ECT. Subsequently, the task which has minimum ECT can be elected and dispatched to
corresponding server node. Then, the task which is newly matched is eliminated from a set T and the

Appl. Sci. 2018, 8, 1385 3 of 15

procedure is repeated until all tasks are dispatched. Under this circumstance, the workload will easy
to unbalance while there are too many tasks waiting to be scheduled.

In the Max-Min algorithm, the ECT is also to be used for dispatching tasks. Conversely, the task
with overall maximum ECT in Max-Min algorithm is always to be selected to assign; thus,
the overall ECT will be increased significantly [9,15,17]. Besides this, both of above algorithms
easily cause higher-capacity server nodes to be assigned more tasks than lower-capacity server nodes.
The workloads of cloud server nodes are unbalanced and inefficient. Therefore, an improvement
algorithm, the Sufferage algorithm [1,17–19], was proposed to reduce the workloads of the cloud
server nodes. In the Sufferage algorithm, the Sufferage Value (SV), which is calculated by the second
earliest ECT minus the earliest ECT, is used as an estimated factor to dispatch the task. Then, the task
which has largest SV value can be selected and dispatched to the corresponding cloud server node
which has minimum ECT. However, the Sufferage algorithm cannot obtain efficient performance when
the number of waiting tasks is very large.

Therefore, the MaxSufferage algorithm [3], which is improved from the Sufferage algorithm,
has three phases to solve the above problem. At first, the SV values of all tasks need to be calculated in
the SVi calculation phase. Subsequently, in the MSVi calculation phase, the second earliest ECT of task
i which has the maximum SV value will be elected as the MaxSufferage Value (MSV) value. In the final
phase, the task dispatch phase, task i which has maximum SV can be dispatched to corresponding
server node j when the ECTij of server node j is less than MSVi. Conversely, task i with maximum
ECTij value can be dispatched to server node j. However, in this algorithm, the large tasks are easily
dispatched to low-capability server nodes under the heterogeneous environments.

For solving the problem above, the Advanced MaxSufferage (AMS) algorithm [20] is proposed to
improve this drawback of the MaxSufferage algorithm. However, the AMS only considers the task
scheduling of service nodes, regardless of the cluster and type of service. As a result, an incremental
algorithm is proposed to solve the scheduling service types, clusters, and service nodes simultaneously.
In addition, all tasks can be dispatched to the appropriate server nodes in the cloud computing network
even if the server nodes are in a heterogeneous environment.

Subsequently, our algorithm is described and explained as follows.

3. Three-Layer Cloud Dispatching Architecture

The traditional dispatch algorithm of cluster architecture does not dispatch tasks by the capacity of
clusters, which may cause the drawbacks of task delay, low reliability, and high makespan. Therefore, a
Three-Layer Cloud Dispatching (TLCD) architecture and related scheduling algorithm are proposed for
application to cluster-based cloud environments, as shown in Figure 1. Before introducing the detail of the
proposed protocol, all notation and their descriptions as used in the algorithm are organized in Table 1.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 3 of 15

In the Max-Min algorithm, the ECT is also to be used for dispatching tasks. Conversely, the task
with overall maximum ECT in Max-Min algorithm is always to be selected to assign; thus, the overall
ECT will be increased significantly [9,15,17]. Besides this, both of above algorithms easily cause
higher-capacity server nodes to be assigned more tasks than lower-capacity server nodes. The
workloads of cloud server nodes are unbalanced and inefficient. Therefore, an improvement
algorithm, the Sufferage algorithm [1,17–19], was proposed to reduce the workloads of the cloud
server nodes. In the Sufferage algorithm, the Sufferage Value (SV), which is calculated by the second
earliest ECT minus the earliest ECT, is used as an estimated factor to dispatch the task. Then, the task
which has largest SV value can be selected and dispatched to the corresponding cloud server node
which has minimum ECT. However, the Sufferage algorithm cannot obtain efficient performance
when the number of waiting tasks is very large.

Therefore, the MaxSufferage algorithm [3], which is improved from the Sufferage algorithm, has
three phases to solve the above problem. At first, the SV values of all tasks need to be calculated in
the SVi calculation phase. Subsequently, in the MSVi calculation phase, the second earliest ECT of task
i which has the maximum SV value will be elected as the MaxSufferage Value (MSV) value. In the
final phase, the task dispatch phase, task i which has maximum SV can be dispatched to
corresponding server node j when the ECTij of server node j is less than MSVi. Conversely, task i with
maximum ECTij value can be dispatched to server node j. However, in this algorithm, the large tasks
are easily dispatched to low-capability server nodes under the heterogeneous environments.

For solving the problem above, the Advanced MaxSufferage (AMS) algorithm [20] is proposed
to improve this drawback of the MaxSufferage algorithm. However, the AMS only considers the task
scheduling of service nodes, regardless of the cluster and type of service. As a result, an incremental
algorithm is proposed to solve the scheduling service types, clusters, and service nodes
simultaneously. In addition, all tasks can be dispatched to the appropriate server nodes in the cloud
computing network even if the server nodes are in a heterogeneous environment.

Subsequently, our algorithm is described and explained as follows.

3. Three-Layer Cloud Dispatching Architecture

The traditional dispatch algorithm of cluster architecture does not dispatch tasks by the capacity
of clusters, which may cause the drawbacks of task delay, low reliability, and high makespan.
Therefore, a Three-Layer Cloud Dispatching (TLCD) architecture and related scheduling algorithm
are proposed for application to cluster-based cloud environments, as shown in Figure 1. Before
introducing the detail of the proposed protocol, all notation and their descriptions as used in the
algorithm are organized in Table 1.

Figure 1. Three-Layer Cloud Dispatching Architecture.

Figure 1. Three-Layer Cloud Dispatching Architecture.

Appl. Sci. 2018, 8, 1385 4 of 15

Table 1. The descriptions of notation in the cluster selection layer.

Notations Description

N The total number of tasks
L The total number of clusters
k The cluster k

nk The number of tasks assigned to the k cluster
Tr The threshold value of the overall reliability
Tc The threshold value of the overall cost
Ai The assignment i
Rk The reliability of the cluster k.
Mk The makespan of the cluster k
Ck The cost of the cluster k

In the cloud computing environment, improving the accuracy of cloud service search is
challenging [7]. Thus, to improve the overall performance, the first thing in the proposed protocol is
identifying cloud service categories. Based on [7], the system will randomly select a cloud service task
as the core task of the first cluster. After that, the similarities between this randomly selected cloud
service task and other cloud service tasks will be calculated. Here, all cloud service tasks which have
larger similarity scores than the predefined threshold will be added to the first cluster. Then these tasks
will be removed from the candidate set of cloud service tasks. At this time, the system will continue to
select another core task randomly from the remaining cloud service tasks to generate a second cloud
cluster. Again, the system will apply a similar selection process to add similar cloud service tasks to
this cluster. The selection process will repeat until all cloud service tasks are categorized into a cluster.
After identifying and categorizing the tasks, all classified tasks will continuously be executed in the
proposed TLCD architecture. The details of TLCD are shown as follows.

3.1. Category Assignment Cluster Layer

The traditional cluster architecture collects and distributes tasks to the cluster by way of cloud
resource managers. However, the allocation process may be affected by cluster heterogeneity,
causing the task to be insignificant in terms of scheduling. This is because that the tasks are allocated
to an idle cluster by cloud resource managers. Therefore, the scheduling result is not ideal. This will
increase the complexity of the cloud computing system.

Besides this, the diversity of tasks increases the delay in processing time. To reduce the delay
and the complexity of scheduling, the heterogeneity task can be classified into different categories
according to demand defined in the Category Assignment Cluster (CAC) layer [7,8]. The category
cloud clusters can be divided into three types: SaaS, PaaS, and IaaS. Through these three categories of
classification, the difficulty of scheduling heterogeneous tasks and scheduling delays can be reduced.

3.2. Cluster Selection Layer

After completing the classification of the category assignment cluster layer, the classified tasks
can be dispatched to the corresponding category cluster. Subsequently, a Cluster Selection Algorithm
(CSA) is proposed to assign the tasks to appropriate clusters by using the factors of Reliability (Ri),
Cost (Ci), and MakeSpan (Mi) [3,21], as shown in Equations (1)–(3). MakeSpan is the length of time
to complete a task. Basically, when the MakeSpan value increases, the system will need longer
operation time. Due to the similarity of the fault tolerance of clusters, the computing power will
increase as the Reliability gets higher. Therefore, we need to focus on clusters’ computing power [3,21].
Finally, the cost factor is defined as the cost needed for a task to be sent and responded to. When taking
these three factors into account, tasks can be assigned to suitable clusters and the system efficiency can
be enhanced. In addition, users and service providers can customize those three factors based on their
own requirements. According to the above description, in the following example, we customize the

Appl. Sci. 2018, 8, 1385 5 of 15

Reliability (Ri) and Cost (Ci), and arrange the tasks to the suitable clusters. The reliability and the cost
of assignment i are expressed by

Ri = (∑C
k=1 Rknk)/N (1)

and

Ci =

(
L

∑
k=1

Cknk

)
(2)

respectively. Moreover, the makespan of assignment i is expressed by

Mi = (∑C
k=1 Mknk)/N (3)

Subsequently, we propose an example to explain Algorithm 1. In Line (4) of Algorithm 1,
we arrange the combination of tasks in all clusters. The cluster will choose an appropriate task
combination and then help the node to adjust these tasks. Furthermore, Lines (5) to (8) are proposed
to check if the Ri and Ci of each assignment i agree with Ri ≥ Tr && Ci ≥ Tc. Then, among those
assignments, the one with the smallest Mi is scheduled. If there are more than two eligible groups, we
compare Ri and Mi and choose Ai as the combination of the highest reliability and the least time.

In CSA, users can customize the quality of services by reliability, cost, and MakeSpan factors.
Thus, algorithms can meet the requirements of various users and can enhance the efficiency of
job scheduling. Subsequently, an example is shown to explain the CSA algorithm and the related
assumptions are shown in Table 2.

Algorithm 1. Cluster Selection Algorithm

1: for total tasks N
2: for total clusters L
3: get Rk, Mk, and Ck of each cluster k
4: Arrange all tasks in the cluster and assign the number of Ai
5: for calculating the Ri, Ci, and Mi of the assignment Ai
6: if Ri ≥ Tr && Ci < Tc in assignment Ai then Ai is candidate assignment
7: end for
8: choose the smallest Mi in candidate assignment Ai
9: end for
10: end for
11:End

Table 2. Example of Cluster Selection Algorithm.

Cluster 1 Cluster 2 Cluster 3

(Ri, Ci, Mi)Rk Ck Mk Rk Ck Mk Rk Ck Mk
(22,25,30) (24,28,36) (25,32,15)

A1 5 2 3 (23.3, 242, 26.7)
A2 8 2 0 (22.4, 256, 31.2)
A3 4 4 2 (23.4, 276, 29.4)
A4 3 6 1 (23.5, 275, 32.1)
A5 5 1 4 (23.4, 281, 24.6)
A6 10 0 0 (22, 250, 30)

We assumed that there are 10 tasks need to be sent to 3 cloud clusters; the process is the following:
Step 1: Tr and Tc are set by the user. In this example, Tr and Tc are 22 and 260, respectively.
Step 2: Calculate Ri, Ci, and Mi of each allocation combination.

Appl. Sci. 2018, 8, 1385 6 of 15

According to Table 2, assignment A1 assigns five tasks to Cluster 1, two tasks to Cluster 2 and three
tasks to Cluster 3. We used Equations (1)–(3) to calculate the average of Ri, Ci, and Mi, and the results
are R1 = 22×5+24×2+25×3

10 = 23.3; C1 = 25× 5 + 28× 2 + 32× 3 = 242; M1 = 30×5+36×2+15×3
10 = 26.7.

The same procedure is followed for the other assignments, too.
Step 3: Select the schedule that meets the condition of Ri ≥ 22 and Ci < 260; Here, A1, A2, and A6

are selected.
Step 4: According to the conditions of Step 3, we choose A1 with the highest reliability and

smallest MakeSpan. Since the result of assignment A1 is better than others, assignment A1 is elected as
the combination to dispatch in this example.

The above procedure is the most suitable solution when the MakeSpan is the main concern.
However, when the reliability is the main concern, the MakeSpan and Cost become the masking
factors to filter out the schedule with the best reliability. After finished the CSA layer, the tasks
can be dispatched to the corresponding clusters in the cloud cluster section layer. Subsequently,
the appropriate server nodes need to be elected to complete the task in the next layer.

3.3. Server Nodes Selection Layer

After finishing the first two layers, the homogeneous tasks can be dispatched to homogeneous
cloud clusters. However, the cloud workload can be unbalanced when a large number of tasks exits due
to inappropriate task assignment. Based on the reasons above, this paper proposed a novel algorithm,
the Advanced Cluster Sufferage Scheduling (ACSS), to solve the drawback of the MaxSufferage
algorithm [12,17,18], especially in the heterogeneous environment. In ACSS, each task can be assigned
to the appropriate server nodes by Sj which is calculated from the average ECT of the server node to
reduce the influence of inappropriate assignment. The notation and details of the ACSS algorithm are
shown in Table 3 and Algorithm 2.

In general, there are three phases in the ACSS algorithm. At first, the EECTi (the earliest expected
completion time) and SEECTi (the second earliest expect completion time) of the Sj are found in order
to calculate the SV value in the SVj calculation phase; the detailed process is shown in Lines (8) and (9)
in the ACSS algorithm. Then, the MSV value will be set to the second earliest ECT value of task i in the
second phase, which is called the MSVi calculation phase, while task i has the maximum SV value
among all SV values.

In the final phase, the task dispatching phase, task i will be dispatched to Sj while MSVi > ECTij
and EECTi > AECTj of Sj. Conversely, when EECTi < AECTj, task i can be dispatched to server node
j where the ECTi is approximate to AECTj and the ECTi needs to be larger than AECTj. As a result,
the main concept is different from those of previous algorithms; the detail of the algorithm is shown in
Line (11) and (12) of Algorithm 2.

Table 3. The notations of ACSS algorithm in the server nodes selection layer.

TCTij The task completion time of the task i in the server node Sj
ECTij The expected completion time of task i in the server node Sj

rj The expected time server node Sj will become ready to execute for next task
AECTj The average expected completion time in the server node Sj
EECTi The earliest expected completion time of task i

SEECTi The second earliest expected completion time of task i
SVi The Sufferage Value of task i

MSVi The MaxSufferage Value of task i

Appl. Sci. 2018, 8, 1385 7 of 15

Algorithm 2. Advanced Cluster Sufferage Scheduling

1: for all unassigned tasks i
2: for all server nodes Sj
3: TCTij = ECTij + rj
4: do scheduling for all job assignments
5: mark all server nodes as unassigned;
6: for each task i in Sj
7: find server node Sj that gives the earliest completion time;
8: calculate the Sufferage Value (SV = EECTi − SEECTi);
9: If the maximum value of SVi has two or even more the same

then choose the assignment SEECTi to MSV with maximum;
else the assignment i with maximum SECTi can be compared to other EECTi;

10: end if ;
11: If (MSVi < ECTij of Sj)

then the task i with maximum ECT can be dispatched to server nodes Sj;
12: else if (MSVi > ECTij) && (EECTi > AECTj of Sj)

then the task i can be dispatched to server nodes Sj;
13: else if (MSVi > ECTij) && (EECTi < AECTj of Sj)

then assignment task i > AECTj_AVG of Sj && task i ≈ AECTj of Sj can be
dispatched to server nodes Sj;

14: end if;
15: end for
16: end do
17: end for
18: rj = rj + ECTij
19: update TCTij = ECTij + rj
20: end for
21:End

Based on the procedure above, the completion time and load balancing of the workload can be
reduced efficiently in the heterogeneous cloud computing network. For the security issue, we can
employ a Message Authentication Code (MAC) algorithm [18,22] with a session key to confirm that
the message truly comes from the sender and has not been modified. Subsequently, the example is
provided to help understanding of the ACSS algorithm in the server node selection layer.

4. Example and Comparison Results

In this section, there are four heterogeneous environments that can be discussed, such as HiHi
(High heterogeneity task, High heterogeneity server node), LoLo, HiLo, and LoHi [8,19]. In general,
HiHi is the most complex case among all of environments. As a result, an example of task assignment
including four server nodes and twelve tasks is discussed under the HiHi heterogeneous environment.
At first, the SV value and the MSV value can be calculated in the SVj calculation phase and the MSVi
calculation phase separately. Subsequently, the AECTj of Sj is calculated in the task dispatching phase.
In addition, the related parameters of the HiHi environment are shown in Table 4.

Appl. Sci. 2018, 8, 1385 8 of 15

Table 4. Illustration of the expected execution times of tasks.

Node A Node B Node C Node D

Task a 22345 23526 24323 25328
Task b 16667 17930 18696 20187
Task c 31083 31897 32034 34678
Task d 24712 25156 25774 26330
Task e 17018 18069 18664 20348
Task f 12050 13289 14911 15918
Task g 19035 21486 22371 24031
Task h 13911 14602 15655 17678
Task i 8016 8536 8948 9685
Task j 13618 14596 15331 16558
Task k 27861 28156 28655 29791
Task l 43336 44731 46777 49659

4.1. The SVi Calculation Phase

Step 1. List the expected execution times for all tasks i on Sj, as shown in Table 3.
Step 2. Calculate the SV value for each task. For example, the SV value of Task a is equal to

SEECTi minus EECTi, which is 23526 − 22345 = 1181, and the same procedures will be executed for
tasks b to l to calculate the SV values. The calculation results are shown in Table 5.

Table 5. Calculation of the SV values of tasks.

Node A Node B SV

Task a 22345 23526 1181
Task b 16667 17930 1263
Task c 31083 31897 814
Task d 24712 25156 444
Task e 17018 18069 1051
Task f 12050 13289 1239
Task g 19035 21486 2451
Task h 13911 14602 691
Task i 8016 8536 520
Task j 13618 14596 978
Task k 27861 28156 295
Task l 43336 44731 1395

4.2. The MSVi Calculation Phase

Step 1. The second earliest ECT value of task i can be selected as the MSV value while task i has
the maximum SVi value among all SV values. As shown in Table 6, the task with the largest SVi value
is task g; thus, the second earliest ECT (here, it is 21486) of ECTaB is selected as the MSV value.

Table 6. Calculation of the MSV values of tasks.

Node A Node B SV MSV

Task a 22345 23526 1181 -
Task b 16667 17930 1263 -
Task c 31083 31897 814 -
Task d 24712 25156 444 -
Task e 17018 18069 1051 -
Task f 12050 13289 1239 -
Task g 19035 21486 2451 21486
Task h 13911 14602 691 -
Task i 8016 8536 520 -
Task j 13618 14596 978 -
Task k 27861 28156 295 -
Task l 43336 44731 1395 -

Appl. Sci. 2018, 8, 1385 9 of 15

4.3. The Task Dispatching Phase

Basically, there are three cases that need to be discussed in different heterogeneous environments,
and the cases are illustrated and discussed as follows, step by step.

Case 1. MSVi > ECTij of Sj and EECTi > AECTj of Sj

Compare the MSV value found in the MSVi calculation phase with the earliest expected
completion time of other tasks. Task i can be dispatched to the appropriate server node j while
MSVi > ECTij of Sj and EECTi > AECTj of S. Therefore, task d is dispatched to Node D while
MSVi > ECTdD and ECTdD > AECTj in Tables 7 and 8.

Table 7. Comparison of the MSV values of tasks.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 9 of 15

Case 1. MSVi > ECTij of Sj and EECTi > AECTj of Sj

Compare the MSV value found in the MSVi calculation phase with the earliest expected
completion time of other tasks. Task i can be dispatched to the appropriate server node j while MSVi
> ECTij of Sj and EECTi > AECTj of S. Therefore, task d is dispatched to Node D while MSVi >ECTdD
and ECTdD > AECTj in Tables 7 and 8.

Table 7. Comparison of the MSV values of tasks.

 Node C Node D SV MSV
Task a 52978 25328 27650 -
Task b 47351 20187 27164 -
Task d 54429 26330 28099 54429
Task e 47319 20348 26971 -
Task f 43566 15918 27648 -
Task g 51026 24031 26995 -
Task h 44310 17678 26632 -
Task j 37603 9685 27918 -
Task l 43986 16558 27428 -

Average - 19562 - -

Table 8. Comparison of the average ECT values of tasks in Node D under Case 1.

 Node C Node D SV MSV
Task a 52978 25328 27650 -
Task b 47351 20187 27164 -
Task d 54429 26330 28099 54429
Task e 47319 20348 26971 -
Task f 43566 15918 27648 -
Task g 51026 24031 26995 -
Task h 44310 17678 26632 -
Task j 37603 9685 27918 -
Task l 43986 16558 27428 -

Average - 19562 - -

Case 2. MSVi < ECTij of Sj

Compare the MSV value found in the MSVi calculation phase with the earliest expected
completion time of other tasks. Task i with maximum ECT can be dispatched to appropriate server
node j when MSVi < ECTij of server node j. Therefore, task l is assigned to Node A in Table 9 because
its ECTlA is greater than the MSV value (43336 > 21486).

Table 8. Comparison of the average ECT values of tasks in Node D under Case 1.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 9 of 15

Case 1. MSVi > ECTij of Sj and EECTi > AECTj of Sj

Compare the MSV value found in the MSVi calculation phase with the earliest expected
completion time of other tasks. Task i can be dispatched to the appropriate server node j while MSVi
> ECTij of Sj and EECTi > AECTj of S. Therefore, task d is dispatched to Node D while MSVi >ECTdD
and ECTdD > AECTj in Tables 7 and 8.

Table 7. Comparison of the MSV values of tasks.

 Node C Node D SV MSV
Task a 52978 25328 27650 -
Task b 47351 20187 27164 -
Task d 54429 26330 28099 54429
Task e 47319 20348 26971 -
Task f 43566 15918 27648 -
Task g 51026 24031 26995 -
Task h 44310 17678 26632 -
Task j 37603 9685 27918 -
Task l 43986 16558 27428 -

Average - 19562 - -

Table 8. Comparison of the average ECT values of tasks in Node D under Case 1.

 Node C Node D SV MSV
Task a 52978 25328 27650 -
Task b 47351 20187 27164 -
Task d 54429 26330 28099 54429
Task e 47319 20348 26971 -
Task f 43566 15918 27648 -
Task g 51026 24031 26995 -
Task h 44310 17678 26632 -
Task j 37603 9685 27918 -
Task l 43986 16558 27428 -

Average - 19562 - -

Case 2. MSVi < ECTij of Sj

Compare the MSV value found in the MSVi calculation phase with the earliest expected
completion time of other tasks. Task i with maximum ECT can be dispatched to appropriate server
node j when MSVi < ECTij of server node j. Therefore, task l is assigned to Node A in Table 9 because
its ECTlA is greater than the MSV value (43336 > 21486).

Case 2. MSVi < ECTij of Sj

Compare the MSV value found in the MSVi calculation phase with the earliest expected completion
time of other tasks. Task i with maximum ECT can be dispatched to appropriate server node j when
MSVi < ECTij of server node j. Therefore, task l is assigned to Node A in Table 9 because its ECTlA is
greater than the MSV value (43336 > 21486).

Appl. Sci. 2018, 8, 1385 10 of 15

Table 9. Comparison of the average ECT values of tasks in Node A under Case 2.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 10 of 15

Table 9. Comparison of the average ECT values of tasks in Node A under Case 2.

 Node A Node B SV MSV
Task a 22345 23526 1181 -
Task b 16667 17930 1263 -
Task c 31083 31897 814 -
Task d 24712 25156 444 -
Task e 17018 18069 1051 -
Task f 12050 13289 1239 -
Task g 19035 21486 2451 21486
Task h 13911 14602 691 -
Task i 8016 8536 520 -
Task j 13618 14596 978 -
Task k 27861 28156 295 -
Task l 43336 44731 1395 -

Case 3. MSVi > ECTij of Sj and EECTi < AECTj of Sj

Compare the MSV value found in the MSVi calculation phase with the earliest expected
completion time of other tasks. Task i in Table 10 will be dispatched to server node j where the ECTi
is approximate to AECTj and the ECTi is larger than AECTj under the conditions that MSVi > ECTij
and EECTi < AECTj of Sj. Therefore, task j is assigned to Node B in Table 11 because ECTjB is bigger
than and closer to AECTB.

Table 10. Comparison of the average ECT values of tasks in Node D under Case 3.

 Node A Node B SV MSV

Task b 60023 49827 10196 -

Task e 60374 49966 10408 -

Task f 55406 45186 10220 -

Task h 57267 46499 10768 -

Task i 51372 40433 10939 51372

Task j 56974 46493 10481 -

Average - 46400 - -

Table 11. Assigning tasks to the server nodes.

 Node A Node B SV MSV
Task b 60023 49827 10196 -
Task e 60374 49966 10408 -
Task f 55406 45186 10220 -
Task h 57267 46499 10768 -
Task i 51372 40433 10939 51372
Task j 56974 46493 10481 -

Average - 46400 - -

Subsequently, the above examples can be simulated in our experiment. At first, the number of
tasks is set to 50 to 100 and the computing ability of the 5 cloud server nodes is set to {500~1000} units
to adapt to the high-heterogeneity environment. Besides this, the comparisons of MakeSpan and load
balancing among the Sufferage, MaxSufferage, and ACSS algorithms are simulated 50 times and the
average value of makespan is taken, as shown in Figures 2-5. In Figure 2, the proposed algorithm has
a better MakeSpan than the others, especially in the large tasks environment. In addition, the load

Case 3. MSVi > ECTij of Sj and EECTi < AECTj of Sj

Compare the MSV value found in the MSVi calculation phase with the earliest expected completion
time of other tasks. Task i in Table 10 will be dispatched to server node j where the ECTi is approximate
to AECTj and the ECTi is larger than AECTj under the conditions that MSVi > ECTij and EECTi < AECTj
of Sj. Therefore, task j is assigned to Node B in Table 11 because ECTjB is bigger than and closer to
AECTB.

Table 10. Comparison of the average ECT values of tasks in Node D under Case 3.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 10 of 15

Table 9. Comparison of the average ECT values of tasks in Node A under Case 2.

 Node A Node B SV MSV
Task a 22345 23526 1181 -
Task b 16667 17930 1263 -
Task c 31083 31897 814 -
Task d 24712 25156 444 -
Task e 17018 18069 1051 -
Task f 12050 13289 1239 -
Task g 19035 21486 2451 21486
Task h 13911 14602 691 -
Task i 8016 8536 520 -
Task j 13618 14596 978 -
Task k 27861 28156 295 -
Task l 43336 44731 1395 -

Case 3. MSVi > ECTij of Sj and EECTi < AECTj of Sj

Compare the MSV value found in the MSVi calculation phase with the earliest expected
completion time of other tasks. Task i in Table 10 will be dispatched to server node j where the ECTi
is approximate to AECTj and the ECTi is larger than AECTj under the conditions that MSVi > ECTij
and EECTi < AECTj of Sj. Therefore, task j is assigned to Node B in Table 11 because ECTjB is bigger
than and closer to AECTB.

Table 10. Comparison of the average ECT values of tasks in Node D under Case 3.

 Node A Node B SV MSV

Task b 60023 49827 10196 -

Task e 60374 49966 10408 -

Task f 55406 45186 10220 -

Task h 57267 46499 10768 -

Task i 51372 40433 10939 51372

Task j 56974 46493 10481 -

Average - 46400 - -

Table 11. Assigning tasks to the server nodes.

 Node A Node B SV MSV
Task b 60023 49827 10196 -
Task e 60374 49966 10408 -
Task f 55406 45186 10220 -
Task h 57267 46499 10768 -
Task i 51372 40433 10939 51372
Task j 56974 46493 10481 -

Average - 46400 - -

Subsequently, the above examples can be simulated in our experiment. At first, the number of
tasks is set to 50 to 100 and the computing ability of the 5 cloud server nodes is set to {500~1000} units
to adapt to the high-heterogeneity environment. Besides this, the comparisons of MakeSpan and load
balancing among the Sufferage, MaxSufferage, and ACSS algorithms are simulated 50 times and the
average value of makespan is taken, as shown in Figures 2-5. In Figure 2, the proposed algorithm has
a better MakeSpan than the others, especially in the large tasks environment. In addition, the load

Table 11. Assigning tasks to the server nodes.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 10 of 15

Table 9. Comparison of the average ECT values of tasks in Node A under Case 2.

 Node A Node B SV MSV
Task a 22345 23526 1181 -
Task b 16667 17930 1263 -
Task c 31083 31897 814 -
Task d 24712 25156 444 -
Task e 17018 18069 1051 -
Task f 12050 13289 1239 -
Task g 19035 21486 2451 21486
Task h 13911 14602 691 -
Task i 8016 8536 520 -
Task j 13618 14596 978 -
Task k 27861 28156 295 -
Task l 43336 44731 1395 -

Case 3. MSVi > ECTij of Sj and EECTi < AECTj of Sj

Compare the MSV value found in the MSVi calculation phase with the earliest expected
completion time of other tasks. Task i in Table 10 will be dispatched to server node j where the ECTi
is approximate to AECTj and the ECTi is larger than AECTj under the conditions that MSVi > ECTij
and EECTi < AECTj of Sj. Therefore, task j is assigned to Node B in Table 11 because ECTjB is bigger
than and closer to AECTB.

Table 10. Comparison of the average ECT values of tasks in Node D under Case 3.

 Node A Node B SV MSV

Task b 60023 49827 10196 -

Task e 60374 49966 10408 -

Task f 55406 45186 10220 -

Task h 57267 46499 10768 -

Task i 51372 40433 10939 51372

Task j 56974 46493 10481 -

Average - 46400 - -

Table 11. Assigning tasks to the server nodes.

 Node A Node B SV MSV
Task b 60023 49827 10196 -
Task e 60374 49966 10408 -
Task f 55406 45186 10220 -
Task h 57267 46499 10768 -
Task i 51372 40433 10939 51372
Task j 56974 46493 10481 -

Average - 46400 - -

Subsequently, the above examples can be simulated in our experiment. At first, the number of
tasks is set to 50 to 100 and the computing ability of the 5 cloud server nodes is set to {500~1000} units
to adapt to the high-heterogeneity environment. Besides this, the comparisons of MakeSpan and load
balancing among the Sufferage, MaxSufferage, and ACSS algorithms are simulated 50 times and the
average value of makespan is taken, as shown in Figures 2-5. In Figure 2, the proposed algorithm has
a better MakeSpan than the others, especially in the large tasks environment. In addition, the load

Subsequently, the above examples can be simulated in our experiment. At first, the number of
tasks is set to 50 to 100 and the computing ability of the 5 cloud server nodes is set to {500~1000} units
to adapt to the high-heterogeneity environment. Besides this, the comparisons of MakeSpan and load
balancing among the Sufferage, MaxSufferage, and ACSS algorithms are simulated 50 times and the

Appl. Sci. 2018, 8, 1385 11 of 15

average value of makespan is taken, as shown in Figures 2–5. In Figure 2, the proposed algorithm has
a better MakeSpan than the others, especially in the large tasks environment. In addition, the load
balancing index can be defined by rmin/rmax, where rmin is the shortest completed task time of all tasks
and rmax is the longest completed task time of all tasks [1,15].

Appl. Sci. 2018, 8, x FOR PEER REVIEW 11 of 15

balancing index can be defined by rmin/rmax, where rmin is the shortest completed task time of all tasks
and rmax is the longest completed task time of all tasks [1,15].

(a) (b)

Figure 2. The comparison results of MakeSpan among Sufferage, MaxSufferage, and ACSS algorithms
for (a) n = 4 and number of tasks = 50 and (b) n = 4 and number of tasks = 100.

In general, the value of the load balancing index is a number between 0 and 1, with 0 being the
worst load balance and 1 being the optimal load balance.

As shown in Figures 3–5, the ACSS algorithm can obtain the best load balancing index (0.88)
over Sufferage (0.87) and MaxSufferage (0.83). Because the ACSS algorithm uses the distribution of
the average value, the MakeSpan of each node can achieve similar results. However, MaxSufferage
completed time is better than that of Sufferage, but the load balancing results are similar. This is
because MaxSufferage did not consider the load status of the node during the selection of tasks. As a
result, the proposed ACSS algorithm can obtain the best results of complete time and load balance
among these algorithms even if the heterogeneous cloud computing network is complex.

(a) (b)

Figure 3. The results of load balancing index in the Sufferage scheduling algorithm for (a) n = 4 and
number of task = 50 and (b) n = 4 and number of tasks = 100.

Figure 2. The comparison results of MakeSpan among Sufferage, MaxSufferage, and ACSS algorithms
for (a) n = 4 and number of tasks = 50 and (b) n = 4 and number of tasks = 100.

In general, the value of the load balancing index is a number between 0 and 1, with 0 being the
worst load balance and 1 being the optimal load balance.

As shown in Figures 3–5, the ACSS algorithm can obtain the best load balancing index (0.88)
over Sufferage (0.87) and MaxSufferage (0.83). Because the ACSS algorithm uses the distribution of
the average value, the MakeSpan of each node can achieve similar results. However, MaxSufferage
completed time is better than that of Sufferage, but the load balancing results are similar. This is
because MaxSufferage did not consider the load status of the node during the selection of tasks. As a
result, the proposed ACSS algorithm can obtain the best results of complete time and load balance
among these algorithms even if the heterogeneous cloud computing network is complex.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 11 of 15

balancing index can be defined by rmin/rmax, where rmin is the shortest completed task time of all tasks
and rmax is the longest completed task time of all tasks [1,15].

(a) (b)

Figure 2. The comparison results of MakeSpan among Sufferage, MaxSufferage, and ACSS algorithms
for (a) n = 4 and number of tasks = 50 and (b) n = 4 and number of tasks = 100.

In general, the value of the load balancing index is a number between 0 and 1, with 0 being the
worst load balance and 1 being the optimal load balance.

As shown in Figures 3–5, the ACSS algorithm can obtain the best load balancing index (0.88)
over Sufferage (0.87) and MaxSufferage (0.83). Because the ACSS algorithm uses the distribution of
the average value, the MakeSpan of each node can achieve similar results. However, MaxSufferage
completed time is better than that of Sufferage, but the load balancing results are similar. This is
because MaxSufferage did not consider the load status of the node during the selection of tasks. As a
result, the proposed ACSS algorithm can obtain the best results of complete time and load balance
among these algorithms even if the heterogeneous cloud computing network is complex.

(a) (b)

Figure 3. The results of load balancing index in the Sufferage scheduling algorithm for (a) n = 4 and
number of task = 50 and (b) n = 4 and number of tasks = 100.
Figure 3. The results of load balancing index in the Sufferage scheduling algorithm for (a) n = 4 and
number of task = 50 and (b) n = 4 and number of tasks = 100.

Appl. Sci. 2018, 8, 1385 12 of 15
Appl. Sci. 2018, 8, x FOR PEER REVIEW 12 of 15

(a) (b)

Figure 4. The results of load balancing index in the MaxSufferage scheduling algorithm for (a) n = 4
and number of tasks = 50 and (b) n = 4 and number of tasks = 100.

(a) (b)

Figure 5. The results of load balancing index in the Advanced Cluster Sufferage Scheduling (ACSS)
scheduling algorithm for (a) n = 4 and number of tasks = 50 and (b) n = 4 and number of tasks = 100.

Besides this, the formula = ∑ × 100% is used to calculate the ratio of resource
utilization to show whether the use of resource in this paper is maximized. In factor RU, the
represents the total expected completion time by virtual machine j, N represents the number of virtual
machines, and m represents the final completion time of the virtual machine. The related ratio results
of resource utilization are shown in Figure 6. In Figure 6, the ratio of resource utilization of ACCS
can reach 89%, and this result is better than for other algorithms. This is because that the average
value is used to consider the allocation status of nodes in the ACSS algorithm.

(a) (b)

Figure 6. The ratio of Resource Utilization in the ACSS scheduling algorithm for (a) n = 4 and number
of tasks = 50 and (b) n = 4 and number of tasks = 100.

Subsequently, the parameter of matching proximity [11] is used to evaluate the degree of
proximity of various scheduling algorithms. In Figure 7, the MET (Minimum Execution Time) and

Figure 4. The results of load balancing index in the MaxSufferage scheduling algorithm for (a) n = 4
and number of tasks = 50 and (b) n = 4 and number of tasks = 100.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 12 of 15

(a) (b)

Figure 4. The results of load balancing index in the MaxSufferage scheduling algorithm for (a) n = 4
and number of tasks = 50 and (b) n = 4 and number of tasks = 100.

(a) (b)

Figure 5. The results of load balancing index in the Advanced Cluster Sufferage Scheduling (ACSS)
scheduling algorithm for (a) n = 4 and number of tasks = 50 and (b) n = 4 and number of tasks = 100.

Besides this, the formula = ∑ × 100% is used to calculate the ratio of resource
utilization to show whether the use of resource in this paper is maximized. In factor RU, the
represents the total expected completion time by virtual machine j, N represents the number of virtual
machines, and m represents the final completion time of the virtual machine. The related ratio results
of resource utilization are shown in Figure 6. In Figure 6, the ratio of resource utilization of ACCS
can reach 89%, and this result is better than for other algorithms. This is because that the average
value is used to consider the allocation status of nodes in the ACSS algorithm.

(a) (b)

Figure 6. The ratio of Resource Utilization in the ACSS scheduling algorithm for (a) n = 4 and number
of tasks = 50 and (b) n = 4 and number of tasks = 100.

Subsequently, the parameter of matching proximity [11] is used to evaluate the degree of
proximity of various scheduling algorithms. In Figure 7, the MET (Minimum Execution Time) and

Figure 5. The results of load balancing index in the Advanced Cluster Sufferage Scheduling (ACSS)
scheduling algorithm for (a) n = 4 and number of tasks = 50 and (b) n = 4 and number of tasks = 100.

Besides this, the formula RU =
∑N

j=1 TCj
Nm × 100% is used to calculate the ratio of resource utilization

to show whether the use of resource in this paper is maximized. In factor RU, the TCj represents the
total expected completion time by virtual machine j, N represents the number of virtual machines,
and m represents the final completion time of the virtual machine. The related ratio results of resource
utilization are shown in Figure 6. In Figure 6, the ratio of resource utilization of ACCS can reach 89%,
and this result is better than for other algorithms. This is because that the average value is used to
consider the allocation status of nodes in the ACSS algorithm

Appl. Sci. 2018, 8, x FOR PEER REVIEW 12 of 15

(a) (b)

Figure 4. The results of load balancing index in the MaxSufferage scheduling algorithm for (a) n = 4
and number of tasks = 50 and (b) n = 4 and number of tasks = 100.

(a) (b)

Figure 5. The results of load balancing index in the Advanced Cluster Sufferage Scheduling (ACSS)
scheduling algorithm for (a) n = 4 and number of tasks = 50 and (b) n = 4 and number of tasks = 100.

Besides this, the formula = ∑ × 100% is used to calculate the ratio of resource
utilization to show whether the use of resource in this paper is maximized. In factor RU, the
represents the total expected completion time by virtual machine j, N represents the number of virtual
machines, and m represents the final completion time of the virtual machine. The related ratio results
of resource utilization are shown in Figure 6. In Figure 6, the ratio of resource utilization of ACCS
can reach 89%, and this result is better than for other algorithms. This is because that the average
value is used to consider the allocation status of nodes in the ACSS algorithm.

(a) (b)

Figure 6. The ratio of Resource Utilization in the ACSS scheduling algorithm for (a) n = 4 and number
of tasks = 50 and (b) n = 4 and number of tasks = 100.

Subsequently, the parameter of matching proximity [11] is used to evaluate the degree of
proximity of various scheduling algorithms. In Figure 7, the MET (Minimum Execution Time) and

Figure 6. The ratio of Resource Utilization in the ACSS scheduling algorithm for (a) n = 4 and number
of tasks = 50 and (b) n = 4 and number of tasks = 100.

Appl. Sci. 2018, 8, 1385 13 of 15

Subsequently, the parameter of matching proximity [11] is used to evaluate the degree of proximity
of various scheduling algorithms. In Figure 7, the MET (Minimum Execution Time) and ECT (Expected
Computing Time) are used to estimate whether the task can be quickly matched. A large value for
matching proximity means that a large number of tasks are assigned to the machine that executes them
faster, as expressed by

Matching Proximity =
∑i∈Tasks ECTiSi

∑i∈Tasks ECTi METi
. (4)

As show in Figure 7, the matching ratio of the three algorithms is close to 1. These three algorithms
have good matching efficiency. Subsequently, the performance and complexity of algorithms can
be compared in Table 12. The results of the comparison table show that ACSS can obtain the best
performance among all algorithms in evaluation factors including makespan, load balance, resource
utilization, and matching proximity. Based on [9], the Big O notation is used to estimate the complexity
of these algorithms. Then, the results of complexity of MaxSufferage and ACSS are O(n2rm) because
parameter r indicates that the alternative condition is selected when the condition of (MSVi > ECTij) &&
(EECTi < AECTij of Sj) is satisfied. As a result, the complexity of the ACC algorithm is approximately
equal to that of the Sufferage algorithm.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 13 of 15

ECT (Expected Computing Time) are used to estimate whether the task can be quickly matched. A
large value for matching proximity means that a large number of tasks are assigned to the machine
that executes them faster, as expressed by Matching	Proximity = ∑ ∈∑ ∈ 	. (4)

As show in Figure 7, the matching ratio of the three algorithms is close to 1. These three
algorithms have good matching efficiency. Subsequently, the performance and complexity of
algorithms can be compared in Table 12. The results of the comparison table show that ACSS can
obtain the best performance among all algorithms in evaluation factors including makespan, load
balance, resource utilization, and matching proximity. Based on [9], the Big O notation is used to
estimate the complexity of these algorithms. Then, the results of complexity of MaxSufferage and
ACSS are O(n2rm) because parameter r indicates that the alternative condition is selected when the
condition of (MSVi > ECTij) && (EECTi < AECTij of Sj) is satisfied. As a result, the complexity of the
ACC algorithm is approximately equal to that of the Sufferage algorithm.

Figure 7. The ratio of Matching Proximity in all of scheduling algorithms.

Table 12. The performance and complexity comparisons of all of algorithms.

 Sufferage MaxSufferage ACSS

Experiments

MakeSpan 7.57 × 104 6.97 × 104 6.96 × 104
Load Balance 0.87 0.84 0.88

Resource Utilization 91% 95.5% 96%
Matching Proximity 0.97 0.965 0.963

Complexity O (n2m) O (n2rm) O (n2rm)

5. Conclusions

In this study, the TLCD architecture is proposed to provide secure and reliable scheduling and
to improve the defect of slow response in cloud systems. Basically, TLCD includes three layers of
procedures. In the first layer, which is called the CAC layer, the system can dispatch the
heterogeneous tasks into appropriate category clusters to reduce task delay and overloading.
Subsequently, a CSA algorithm is proposed in the CS layer to dispatch the task to an appropriate
cluster to enhance the reliability and reduce the cost and completion time. In the final layer, which is
defined as the SNS layer, the system can improve the load balancing and reduce the completion time
by elements of MSV and the average ECT of Sj. Simulation results show that the proposed algorithms
can obtain the best results among all algorithms in evaluation factors including makespan, load
balance, resource utilization, and matching proximity under heterogeneous environments.

Author Contributions: M.-L.C. and Y.-F.H. designed the framework and wrote the manuscript. H.-C.H. and
W.-C.T. verified the results of our work and conceived the experiments together. M.-L.C. and Y.-F.H. discussed
the results and contributed to the final manuscript.

Figure 7. The ratio of Matching Proximity in all of scheduling algorithms.

Table 12. The performance and complexity comparisons of all of algorithms.

Sufferage MaxSufferage ACSS

Experiments

MakeSpan 7.57 × 104 6.97 × 104 6.96 × 104

Load Balance 0.87 0.84 0.88
Resource Utilization 91% 95.5% 96%
Matching Proximity 0.97 0.965 0.963

Complexity O (n2m) O (n2rm) O (n2rm)

5. Conclusions

In this study, the TLCD architecture is proposed to provide secure and reliable scheduling and
to improve the defect of slow response in cloud systems. Basically, TLCD includes three layers of
procedures. In the first layer, which is called the CAC layer, the system can dispatch the heterogeneous
tasks into appropriate category clusters to reduce task delay and overloading. Subsequently, a CSA
algorithm is proposed in the CS layer to dispatch the task to an appropriate cluster to enhance the
reliability and reduce the cost and completion time. In the final layer, which is defined as the SNS layer,
the system can improve the load balancing and reduce the completion time by elements of MSV and
the average ECT of Sj. Simulation results show that the proposed algorithms can obtain the best results
among all algorithms in evaluation factors including makespan, load balance, resource utilization, and
matching proximity under heterogeneous environments.

Appl. Sci. 2018, 8, 1385 14 of 15

Author Contributions: M.-L.C. and Y.-F.H. designed the framework and wrote the manuscript. H.-C.H. and
W.-C.T. verified the results of our work and conceived the experiments together. M.-L.C. and Y.-F.H. discussed the
results and contributed to the final manuscript.

Funding: This research was funded by Ministry of Science and Technology of Taiwan under Grant MOST
106-2221-E-324-020.

Conflicts of Interest: The founding sponsors had no role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

References

1. Petkovic, I. CRM in the cloud. In Proceedings of the IEEE 8th International Symposium on Intelligent
Systems and Informatics, Subotica, Serbia, 10–11 September 2010; pp. 365–370.

2. Casanova, H.; Legrand, A.; Zagorodnov, D.; Berman, F. Heuristics for scheduling parameter sweep
applications in grid environment. In Proceedings of the 9th Heterogeneous Computing Workshop, Cancun,
Mexico, 1 May 2000; pp. 349–363.

3. Chiang, M.L.; Luo, J.A.; Lin, C.B. High-Reliable Dispatching Mechanisms for Tasks in Cloud Computing.
In Proceedings of the BAI2013 International Conference on Business and Information, Bali, Indonesia,
7–9 July 2013; p. 73.

4. Buyya, R.; Ranjan, R.; Calheiros, R.N. Modeling and simulation of scalable Cloud computing environments
and the CloudSim toolkit: Challenges and opportunities. In Proceedings of the International Conference on
High Performance Computing & Simulation, Leipzig, Germany, 21–24 June 2009; pp. 1–11.

5. Jones, M.T. Google’s Geospatial Organizing Principle. IEEE Comput. Graph. Appl. 2017, 27, 8–13. [CrossRef]
6. Lee, Y.H.; Huang, K.C.; Wu, C.H.; Kuo, Y.H.; Lai, K.C. A Framework of Proactive Resource Provisioning in

IaaS Clouds. Appl. Sci. 2017, 7, 777. [CrossRef]
7. Alfazi, A.; Sheng, Q.Z.; Qin, Y.; Noor, T.H. Ontology-Based Automatic Cloud ServiceCategorization for

Enhancing Cloud ServiceDiscovery. In Proceedings of the IEEE 19th International Enterprise Distributed
Object Computing Conference, Adelaide, SA, Australia, 21–25 September 2015; pp. 151–158.

8. Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988,
24, 513–523. [CrossRef]

9. Reda, N.M.; Tawfik, A.; Marzok, M.A.; Khamis, S.M. Sort-Mid tasks scheduling algorithm in grid computing.
J. Adv. Res. 2015, 6, 987–993. [CrossRef] [PubMed]

10. Anousha, S.; Ahmadi, M. An improved Min-Min task scheduling algorithm in grid computing. Lect. Notes
Comput. Sci. Grid Pervasive Comput. 2013, 7861, 103–113.

11. Merajiand, S.; Salehnamadi, M.R. A batch mode scheduling algorithm for grid computing. J. Basic Appl.
Sci. Res. 2013, 3, 173–181.

12. Shojafar, M.; Cordeschi, N.; Baccarelli, E. Energy-efficient Adaptive Resource Management for Real-time
Vehicular Cloud Services. IEEE Trans. Cloud Comput. 2018. [CrossRef]

13. Shojafar, M.; Javanmardi, S.; Abolfazli, S.; Cordeschi, N. FUGE: A joint meta-heuristic approach to cloud job
scheduling algorithm using fuzzy theory and a genetic method. Clust. Comput. 2015, 18, 829–844. [CrossRef]

14. Shojafar, M.; Canali, C.; Lancellotti, R.; Abawajy, J. Adaptive Computing-plus-Communication Optimization
Framework for Multimedia Processing in Cloud Systems. IEEE Trans. Cloud Comput. 2018. [CrossRef]

15. Maheswaran, M.; Ali, S.; Siegel, H.J.; Hensgen, D.; Freund, R.F. Dynamic Mapping of a Class of Independent
Tasks onto Heterogeneous Computing Systems. J. Parallel Distrib. Comput. 1999, 59, 107–131. [CrossRef]

16. Braun, T.D.; et al. A comparison study of static mapping heuristics for a class of meta-tasks on heterogeneous
computing systems. In Proceedings of the Heterogeneous Computing Workshop (HCW ‘99), San Juan,
Puerto Rico, 12 April 1999; pp. 15–29.

17. Etminani, K.; Naghibzadeh, M. A Min-Min Max-Min selective algorithm for grid task scheduling.
In Proceedings of the Third IEEE/IFIP International Conference in Central Asia on Internet, Tashkent,
Uzbekistan, 26–28 September 2007; pp. 138–144.

18. Lan, J.; Zhou, J.; Liu, X. An area-efficient implementation of a Message Authentication Code (MAC) algorithm
for cryptographic systems. In Proceedings of the IEEE Region 10 Conference (TENCON), Singapore,
22–25 November 2016; pp. 1977–1979.

http://dx.doi.org/10.1109/MCG.2007.82
http://dx.doi.org/10.3390/app7080777
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1016/j.jare.2014.11.010
http://www.ncbi.nlm.nih.gov/pubmed/26644937
http://dx.doi.org/10.1109/TCC.2016.2551747
http://dx.doi.org/10.1007/s10586-014-0420-x
http://dx.doi.org/10.1109/TCC.2016.2617367
http://dx.doi.org/10.1006/jpdc.1999.1581

Appl. Sci. 2018, 8, 1385 15 of 15

19. Li, S.; Liu, J.; Wang, S.; Li, D.; Huang, T.; Dou, W. A Novel Node Selection Method for Real-Time Collaborative
Computation in Cloud. In Proceedings of the International Conference on Advanced Cloud and Big Data
(CBD), Chengdu, China, 13–16 August 2016; pp. 98–103.

20. Chiang, M.L.; Hsieh, H.C.; Tsai, W.C.; Ke, M.C. An Improved Task Scheduling and Load Balancing Algorithm
under the Heterogeneous Cloud Computing Network. In Proceedings of the IEEE 8th International
Conference on Awareness Science and Technology (iCAST2017), Taichung, Taiwan, 8–10 November 2017;
p. 61.

21. Deng, J.; Huang, S.C.H.; Han, Y.S.; Deng, J.H. Fault-Tolerant and Reliable Computation in Cloud Computing.
In Proceedings of the IEEE Globecom 2010 Workshop on Web and Pervasive Security, Miami, FL, USA,
6–10 December 2010; pp. 1601–1605.

22. Yoon, E.J.; Yoo, K.Y. An Efficient Diffie-Hellman-MAC Key Exchange Scheme. In Proceedings of the Fourth
International Conference on Innovative Computing, Information and Control (ICICIC), Kaohsiung, Taiwan,
7–9 December 2009; pp. 398–400.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Three-Layer Cloud Dispatching Architecture
	Category Assignment Cluster Layer
	Cluster Selection Layer
	Server Nodes Selection Layer

	Example and Comparison Results
	The SVi Calculation Phase
	The MSVi Calculation Phase
	The Task Dispatching Phase

	Conclusions
	References

