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Abstract: Path planning problems involve finding a feasible path from the starting point to the target
point. In mobile robotics, path planning (PP) is one of the most researched subjects at present. Since
the path planning problem is an NP-hard problem, it can be solved by multi-objective evolutionary
algorithms (MOEAs). In this article, we propose a multi-objective method for solving the path
planning problem. It is a population evolutionary algorithm and solves three different objectives
(path length, safety, and smoothness) to acquire precise and effective solutions. In addition, five
scenarios and another existing method are used to test the proposed algorithm. The results show the
advantages of the algorithm. In particular, different quality metrics are used to assess the obtained
results. In the end, the research indicates that the proposed multi-objective evolutionary algorithm is
a good choice for solving the path planning problem.

Keywords: robotics; path planning; multi-objective evolutionary algorithm; multi-objective
optimization; refiner operators

1. Introduction

Path planning (PP) is an essential element of various significant fields, such as video games [1],
robots [2,3], and wireless sensor networks (WSNs) [4–6]. The aim of this problem is to calculate
a feasible path from the starting point to the target point in workspace. In ref. [1], common
pathfinding algorithms and techniques based on graph generation problems are outlined including A*,
its variants, the probabilistic road method, quadtrees, and rapidly exploring random trees. In ref. [7],
an overview of robotic motion planning is presented. This article shows artificial potential fields (APF),
velocity obstacles (VO), probability based motion planning (PMP), artificial intelligence (AI), computer
geometry, and focused D* and D* lite algorithms.

In ref. [8], the shortest-path algorithms were studied. The purpose was to obtain a path
with minimal cost between the two nodes (or vertices) in the graph. Moreover, different graph
theory algorithms were introduced. Redlarski modified the meta-heuristic river formation dynamics
algorithm to obtain the shortest path [9]. Patle proposed a matrix binary code based genetic algorithm
(MGA) to seek the path of best fit [10]. Pandey used the fuzzy-wind driven optimization algorithm for
autonomous mobile robot navigation and collision avoidance [11].

A* is a classic deterministic path planning method and was first proposed in ref. [12]. Over the
next few decades, for single-objective path planning problems, A* and its variants received widespread
attention from scholars [13–15]. In ref. [16], Dijkstra and A* were relaxed and used to solve large scale
grid space more efficiently. A new focal any-angle A* method was improved in ref. [17] by merging the
advantages of grid-based and visibility graph-based methods. Batch-Theta* was proposed in ref. [18].
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It is a variant of Theta* and is used to select the best target with the lowest cost path. Most traditional
methods find visible paths by considering a single objective optimization and rarely optimize multiple
metrics at the same time.

However, most problems in the real world should be solved by considering several conflicting
objectives, such as price and quality. The path planning problem is no exception. Generally, we
need to consider multiple objectives, such as the path length (concerned with operation time), the
path safety (concerned with distance from obstacles), and the path smoothness (concerned with
energy consumption). At least two of them compete with each other. According to the complexity
of the PP problem, it can be classified as NP-hard [19]. The conflicting objectives must be processed
simultaneously, and the objectives weighting methods appear [20,21]. However, it is difficult to
determine the relationship between the weighting factors. Therefore, it is suitable to treat these
objectives as vectors.

In this regard, some scholars study multi-objective heuristic algorithms based on the graph search
space, for example, MOA* [22], MOD* [23], MOD* Lite [24] and so on. For the same grid space, no
matter how many times the algorithm runs, it can find the same Pareto optimal points. In other words,
the MOA* is a deterministic algorithm. The drawback is that the heuristic of MOA* is no longer a
scalar, like A*, but a vector. The minimum heuristic function of a node is no longer a value. In general,
it is a set of non-dominated vectors. This feature determines that the computational efficiency of
MOA* is much lower than A* or other single-objective heuristic algorithms. In recent years, the use of
probabilistic evolutionary algorithms has been popular to resolve the multi-objective PP problem, for
example, the artificial bee colony [25], Ant Colony Optimization (ACO) [26], neural network [27], tabu
search [28], particle swarm optimization algorithm (PSO) [29–32], genetic algorithm (GA) [33–35].

Some scholars only optimize the path length objective in their respective articles [25,26,28,36],
although the scholars claim that they have solved the multi-objective problem. We present some
related literature as follows. Contreras-Cruz presented the artificial bee colony and evolutionary
programming [25]. Chen proposed a two-stage ACO algorithm for robotic path planning [26]. Châari
used tabu search for the path planning problem in grid environments [28]. The genetic algorithm was
used to solve mobile robot path planning in a static environment [36].

In this paper, we propose an effective multi-objective algorithm for the path planning problem.
Our contributions are as follows:

• The model of multi-objective PP problem is presented.
• We propose a novel MOEA for the multi-objective PP problem. We design a new framework

for the evolutionary algorithm. A repository is used to store the non-dominated solutions that
are found. The individuals in the repository converge to the global Pareto front. The proposed
algorithm is also different from previous evolutionary algorithms, such as the genetic algorithm,
PSO, and the Ant Colony Algorithm, etc. This is the biggest innovation of this work.

• In addition to traditional evolutionary operators, we also propose some practical evolutionary
operators. These operators focus on optimizing the path length, safety, and smoothness. Some of
these operators are first proposed. This is another innovation in this article.

• We combine the advantages of the traditional heuristic Dijkstra method and the evolutionary
algorithm to improve the computational efficiency. In the initial stage, Dijkstra is employed to
generate local optimal solutions instead of randomly generating initial solutions. This can reduce
the number of generations and allow the solutions to quickly approach the Pareto front. To the
best of our knowledge, few scholars have taken a similar approach in the field of multi-objective
path planning.

• Different quality metrics are used to test the MOEA. The results indicate the MOEA can find
better solutions in complex environments.

The rest of this article is outlined below. Section 2 reviews the related work. Section 3 presents the
environmental modeling, the path form, and the definitions of PP objectives. Section 4 explains the



Appl. Sci. 2018, 8, 1425 3 of 21

MOEA and evolutionary operators in detail. Section 5 shows the results. Finally, Section 6 submits the
concluding remarks.

2. Related Work

In ref. [37], evolutionary algorithms were reviewed in detail, including the neural network, fuzzy
logic, natural inspired algorithms, and hybrid algorithms. The Q-learning method was improved to
optimize three objectives in the path planning problem (traversal time, traversal state number, and
90-degree corner) in ref. [38]. Multi-objective memetic algorithms were presented to solve the path
planning problem in ref. [39]. Multiple objectives were optimized simultaneously, such as the path
length, smoothness, and safety. The multi-objective intelligent water drops (IWD) algorithm was
designed for the path planning problem in ref. [40]. The path length and safety were taken into account.
In ref. [41], Bakdi adopted a step-by-step strategy to get the best path. First, the genetic algorithm
was used to generate a collision-free path from the source to the target. The piecewise cubic Hermite
interpolation polynomial was then used to smooth the generated path. Han used a similar strategy
in ref. [31]. Initially, the surrounding point set algorithm was proposed to find the collision-free path,
and then the particle swarm algorithm was used to improve the path. The results show that the
generated path produced a great improvement in both length and smoothness indicators.

Gong optimized the path length and safety with multi-objective particle swarm optimization
in ref. [29]. Zhang used multi-objective particle swarm optimization to solve path planning in an
uncertain environment considering the path length and safety [30]. Mac considered the path length
and smoothness and adopted multi-objective particle swarm optimization [32]. Davoodi employed
NSGA-II to solve multi-objective path planning in a discrete space [33]. Moreover, the path length
and safety were optimized at the same time. Ahmed optimized three objectives—path length, safety
and smoothness—but only uses traditional evolutionary operators. So, for complex environments, it
requires more individuals and iterations to find optimal paths [34].

We concentrated on planning collision-free paths for robots in the presence of obstacles. At the
same time, we considered multiple objectives. The path length, smoothness, and safety were taken
into account. In general, these objectives are contradictory, so it was necessary to propose a new
multi-objective approach to solve this problem.

3. Path Planning Problem

For mobile robots, the aim of path planning is to find a feasible path in a specific environment.
This path begins at the starting point (S) and ends at the target point (T). We explain the aspects of the
PP problem in the following text. They include the environmental modeling, the path form, and the
definitions of objectives.

In this article, the workspace is considered to be a continuous two-dimensional space. In this
continuous workspace, obstacles are assumed to be static polygons, and the robot is assumed to be a
single point. If the robot is a polygon, the Minkowski sums can be adopted for the two sets: obstacles
and robot. Then, the polygon robot is assumed to be a point. In regard to the field of computational
geometry, this article has gives approximation algorithms [42].

A path consists of successive segments. By summing all the segments of this path, the length of
the entire path can be obtained. We assume that path p = [S = p0, p1, p2, ..., pn, pn+1 = T] contains
a starting point (S), target point (T), and n consecutive points. The character (n) is the number of
intermediate points or rotation points (RPs). Thus, a segment of path is generated by two consecutive
points in the path. Figure 1 graphically represents the path.
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Figure 1. Path representation.

3.1. Path Planning Objectives

In this work, to obtain precise and effective solutions, we optimized three objectives: path length,
path safety and path smoothness.

The energy loss of a mobile robot is related to the length of the path—the longer the path, the
greater the loss of energy. Besides the path length, the energy loss is also related to the smoothness
of the path. For the same path length, the smoother the path, the smaller the energy loss. When
the robot moves forward at a constant speed and only changes in velocity direction, the walking
time of the robot is also related to the length. In addition, the most important factor that we need to
consider is the safety of the path. The safe path distance reflects the distance from the surrounding
obstacles—the greater the safety distance, the safer the path. So, this article describes the energy loss,
walking time, and safety distance through the length, smoothness, and safety. We want to find the
shortest, smoothest, and safest path. This is known as the multi-objective optimization problem. For
the sake of convenience, we unified to minimize the three objectives. The mathematical definitions of
these objectives are described in the following subsections.

3.1.1. Path Length

Based on the Euclidean distance, the segment length can be calculated between two consecutive
points. By summing all the segments of this path, the length of the entire path can be obtained.
p = [S = p0, p1, p2, ..., pn, pn+1 = T] represents path p. pi = (xi, yi) and pi+1 = (xi+1, yi+1) denotes
two consecutive points or rotation points (RPs). The length of a line segment is calculated using
Equation (1):

dis(pi, pi+1) =
√
(xi − xi+1)2 + (yi − yi+1)2. (1)

A path consists of some consecutive segments, and the total length of path p can be calculated
as follows:

Length(p) =
n

∑
i=0

dis(pi, pi+1). (2)

3.1.2. Path Safety

The safe distance of the path reflects the distance from the surrounding obstacles. The set
O = {O1, O2, ..., Om} includes all m obstacles in the workspace. MinDis(pi pi+1, Oj) is the minimum
distance between segment pi pi+1 and obstacle Oj. Therefore, Min

0≤i≤n
Min

1≤j≤m
{MinDis(pi pi+1, Oj)} is

the shortest distance between the obstacles and the path—the larger the value, the safer the path.
After adding a negative sign to the value, the maximum optimization safety problem is transformed
into the minimum optimization problem. The path safety objective is calculated using Equation (3):

Sa f ety(p) = −Min
0≤i≤n

Min
1≤j≤m

{MinDis(pi pi+1, Oj)}. (3)
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3.1.3. Path Smoothness

This is designed to calculate the degree of path bending. The smoother the path, the smaller the
energy loss. The average angle of path represents the smoothness objective. The best average value is
0◦. This means that the path is straight.

For two consecutive segments p1 p2 and p2 p3, pi = (xi, yi), i = 1− 3, the deviation angle is
calculated with Equation (4):

Angle[p1, p2, p3] = π − cos−1
(
(x2 − x1) (x3 − x2) + (y2 − y1) (y3 − y2)

dis(p1, p2)× dis(p2, p3)

)
. (4)

Therefore, the average angle of path p can be computed with Equation (5):

Smoothness(p) =
1
n

n−1

∑
i=0
{Angle[pi, pi+1, pi+2]}. (5)

In this work, for the path planning problem, the model of multi-objective optimization (MOP) is
as follows: 

p = [S = p0, p1, p2, ..., pn, pn+1 = T]
Minimize f1(p) = Length(p)
Minimize f2(p) = Sa f ety(p)
Minimize f3(p) = Smoothness(p).

(6)

A collision without obstacles is the only constraint. It is permissible to touch the boundaries of
obstacles. In this work, we defined the infeasible path as a path to collide with obstacles and considered
the boundary of the workspace as an obstacle.

Usually, at least two objectives conflict with each other. Approximate Pareto optimal paths can be
found by solving the model illustrated in Equation (6). At present, many evolutionary algorithms have
been able to solve lots of MOP problems, such as genetic algorithms, artificial bee colony algorithms,
and particle swarm optimization algorithms. Although the MOP problem of path planning has been
studied for many years, it is still difficult to efficiently find the approximate Pareto solutions due to the
complexity of the path planning problem.

4. Multi-Objective Evolutionary Algorithm for the PP Problem

In this section, the proposed MOEA is clearly described. Chromosomes (or individuals) in MOEA
move towards the global best solutions. Non-dominated individuals that have been discovered so far
are clustered into a sub-group called the repository and converge to global non-dominated solutions.
To further improve the local search capabilities, we propose a family of evolutionary operators for the
population. We explain the algorithm in the following text.

4.1. Flow Chart

The flow chart of the proposed MOEA is as follows:

(1) Initialize the population (POP).
(2) Evaluate each individual in population (POP).
(3) Store non-dominated individuals that have been found into the repository (REP).
(4) The objective space that has been found is divided into grid regions, and the individuals of

the repository (REP) are located in the corresponding grids.
(5) While the number of iterations does not reach the preset maximum DO

(a) Generate an empty population (NEWPOP): NEWPOP = φ

(b) For i = 1 to NP DO(%% NP is the number of chromosomes or individuals)
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(%% For individual POP[i], use refiner operators (safety, shortest, mutation,
smoothness, shortness, and position update) to produce six new children. They are
evaluated, and then, feasible individuals are placed in children population (NEWPOP).
The feasible solution is one solution that lies on a valid search space. In this article,
the feasible solution is one path that does not cross obstacles, but it can touch the
boundaries of obstacles. If the new chromosome is an infeasible solution, replace the
individual POP[i] with REP[h]. REP[h] is an individual repository and is chosen as
follows: The more individuals in the grid, the lower the fitness values of these grids.
This aims to decrease the possibility of selecting a grid with too many individuals.
Then, based on the fitness values, roulette wheel selection is used to select the grid.
Once a grid has been selected, we randomly consider an individual within this grid as
REP[h]. The remainder operators are run for POP[i] in sequence. After the last operator
(position update) has been used for the individual POP[i], if the generated children (co)
are a feasible solution, replace POP[i] with co.

(i) co = ClearanceOperator (POP[i])
(ii) If IsInfeasibleSolution(co) do

POP[i] = REP[h]

else NEWPOP = NEWPOP + co
(iii) Run the process (ii) with the remainder operators for POP[i] in sequence
(iv) If IsFeasibleSolution(co) do

POP[i] = co

(c) Update the contents of the repository (REP): REP = REP∪ POP∪NEWPOP. Meanwhile,
eliminate the dominating individuals in the repository (REP). Then, divide the found
objective space into grid regions in step (4). Due to the limited capacity of the repository,
when it is full, we remove individual REP[j] from the repository (REP) in turn until the
number of individuals in the repository does not exceed the capacity of the repository.
The following technique is used to select the individual REP[j]: The more individuals
in the grid, the higher the fitness values of these grids. The aim is to increase the
possibility of selecting a grid with too many individuals. Then, based on the fitness
values, roulette wheel selection is used to select the grid. Once a grid has been selected,
we randomly consider an individual within this grid as REP[j].

(d) Increment the loop counter.

In the proposed algorithm, each individual is a path and the path consists of a number of
sequential segments. Therefore, the feasibility of individual is determined by the feasibility of the path.
As we can see, the algorithm starts from initialization steps 1–4. Once the initialization steps have been
finished, the algorithm iterates (considering the maximum number of iterations) and attempts to find
the best solutions by repeating step 5. At the beginning of each iteration, an empty children population
(NEWPOP) is generated, and a family of operators is applied to each individual POP[i]. The new
individuals are produced and feasible solutions of them are inserted into the children population
(NEWPOP). Then, the repository (REP) is updated ( REP = REP ∪ POP ∪ NEWPOP). In this update, the
dominated solutions are discarded, and the non-dominated solutions are stored until the maximum
allowed capacity of repository (REP) is reached. The process of 5_(c) guarantees that the obtained
well-distributed Pareto front is not destroyed.

In addition, some evolutionary operators are shown to find the feasible and optimal paths more
efficiently. Six operators (safety, shortest, mutation, smoothness, shortness, and position update) are
presented. In this article, we select three well-known objectives (path length, safety, and smoothness)
to optimize. Six operators are proposed to optimize the three corresponding objectives. The safety
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operator is used to increase the safety of a path. The shortest and shortness operators are used to
shorten the path length differently. The mutation is used to randomly change the RPs of a path.
The smoothness operator attempts to get as smooth of a path as possible. The position update operator
is designed to change the RPs of the path by using the positions of the RPs. Therefore, the six operators
are related to the three objectives that need to be optimized. All of the operators use probability.
We clearly explain the initialization and operators in the following text.

4.2. Safety Operator

The safety operator attempts to increase the safety of the path. Each segment is regarded as an
input, and in turn, we attempt to increase the safe distance between the segment and the obstacles.
Let us first define the critical point.

The critical point is the closest point on the segment to the obstacles. We find the critical point
and replace it with a newly generated free point near the critical point to give a greater safety distance.
The new point is generated by dividing the workplace into grid regions. In this work, we set the
number of grids to 400× 400. The grid (nc) that the critical point is located in and the center points of
the adjacent 8 grids of nc are found. The safety distances of the 8 center points and the critical point
are compared, and then one point that has the maximum safety value is selected as the new point.
Note that when all segments of this path have been handled with the safety operator, the operator is
finished. Figure 2 illustrates the safety operator.

Figure 2. Safety operator.

4.3. Shortest Operator

When the speed of the mobile robot is constant and only the direction changes, the walking time
of the robot is related to the path length. Therefore, the shorter the path length is, the shorter the
walking time of the robot is. The shortest operator aims to remove the extra rotation points (RPs) on
the path and reduce the length of path. For the i-th rotation point in the path, the j-th point is selected
in turn from the target point (T) to the (i + 2)-th point. If the new segment (ij) does not collide with
the obstacles, the points between the i-th and j-th points in the path are deleted. The iteration runs if
the value of i satisfies the following condition: i ≤ n. n is the number of RPs on the path. The shortest
operator can obtain a new feasible path. This operator has a powerful force for finding the shortest
path. To avoid premature convergence to a local optimal solution, the probability of the shortest
operator is set to 10%. Figure 3 presents the shortest operator.
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Figure 3. Shortest operator.

4.4. Mutation Operator

The mutation operator randomly modifies a rotation point on the path. The process of mutation
is that a rotation point is randomly selected, and then it is replaced with a random point in free space.
Figure 4 shows the mutation operator.

Figure 4. Mutation operator.

4.5. Smoothness Operator

For the same length path, the smoother the path is, the lower the energy consumption is. Therefore,
smoothness is also one of the factors that affects energy loss. The smoothness operator aims to find a
path—the smoother the better. It reduces the maximum turn angle to improve it. First, we find the
maximum turn angle and the two line segments that generate the angle. Each of the two segments
randomly generates a free point. We take the two newly generated points as the rotation points, and
then remove the intersection points of the two line segments. Accordingly, the maximum turn angle of
the new path reduces. The smoothness operator is shown in Figure 5.
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Figure 5. Smoothness operator.

4.6. Shortness Operator

The shortness operator is designed to randomly decrease the path length. It randomly removes
a rotation point on the path. This means that the previous point and the next point form a new line
segment. It deletes two line segments and adds a shorter line segment to the path. Apparently, the
whole length of the path decreases. In addition, this operator is different from the shortest operator.
This operator uses a mechanism which randomly deletes a point on the path and may generate a new
path that is not feasible. However, the shortest operator does not change the feasibility of the path.
A graphical explanation of the shortness operator is shown in Figure 6.

Figure 6. Shortness operator.

4.7. Position Update Operator

This operator aims to improve a path by utilizing consecutive rotation points. A path (p = [S =

p0, p1, p2, ..., pn, pn+1 = T]) contains a starting point (S), a target point (T), and n rotation points. Based
on the position and velocity of rotation point (pi), a new rotation point (pnew

i ) can be acquired with
Equation (7): i = 1, 2, ..., n. The general mechanism of the position update operator is presented in
Figure 7.
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Figure 7. Position update operator.

v f = pi−1 − pi
vl = pi+1 − pi
v = r1 × v f + r2 × vl

pnew
i = pi + v.

(7)

The generated velocity (v) should satisfy the constraint [Min_v, Max_v]. In other words, the
vector of v should be located in the rectangular region generated by the minimum velocity (Min_v)
and maximum velocity (Max_v). Furthermore, the newly generated rotation point (pnew

i ) should be in
the free workspace. If point (pnew

i ) is not feasible, its new value is adjusted with Equation (8) until point
(pnew

i ) is feasible. Since new segments may collide with obstacles, we should examine the feasibility of
the two new segments (pnew

i−1 pnew
i ) and (pnew

i pi+1). If there is a collision, the position of rotation point
(pnew

i ) needs to be adjusted with Equation (8). In this operator, r1, r2, and r3 are random numbers
ranging from 0 to 1:

pnew
i = r3 × pi + (1− r3)× pnew

i . (8)

4.8. Initialization

Generally, generating an initial population is always the first step of evolutionary algorithms.
Potential solutions (individuals) are generated and evolved. The individual in the population is
a random path. Each path consists of k random rotation points in the free workspace. k is a
random number ranging from 1 to 3. The number of rotation points on the path varies after using
evolutionary operators.

Three objectives (length, safety, and smoothness) were optimized in this article. To further
improve the evolutionary efficiency, we found the local minimum value of each objective (if it could be
found) and put the corresponding feasible paths into the initial population. For the length and safety
of path, we provide the following two ideas to find the local minimum feasible paths. In regard to the
smoothness objective of the path, the local minimum smooth path exists in the region near the local
minimum distance path or the local minimum safety path, so improvements in the local minimum
distance and safety of the paths were sufficient.

For the path length, we used the Dijkstra algorithm to find the local minimum distance path, as
follows: (1) Find the set (Q) of obstacles that collide with the line segment (ST). (2) For each obstacle
(j; j ∈ Q), if the line segment between any vertex of j and the start point (S) collides with obstacle k
(k /∈ Q), or the line segment between any vertex of j and the target point (T) collides with obstacle
k (k /∈ Q), obstacle k is put into set Q. (3) For each obstacle (j; j ∈ Q), all vertices are stored into set
Vertex. (4) For any two vertices (i, j; i, j ∈ Vertex), if the line segment (ij) is located in the semi-free
space, the line segment (ij) is put into the edges set (Edge). (5) For all vertexes (Vertex) and edges
(Edge), the local minimum length path can be obtained with the Dijkstra algorithm.
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Next, we show how to find the local minimum safety path. This idea is inspired by dividing the
continuous workspace into discrete grids, as follows. (1) First, divide the workspace into N = N1 × N2

grids, calculate the clearance distance of each grid from corresponding nearest obstacles, and convert
the clearance distance into a safety value—the closer to the obstacle, the greater the safety value is.
Conversely, the farther away from the barrier, the smaller the safety value is. (2) Taking into account
the safety values of all grids and the four-connected relationship (namely, each grid has 4 adjacent
grids), the Dijkstra algorithm can be used to find the local minimum safety path from the start grid
(where the start point is located) to the target grid (where the target point is located). (3) If the local
minimum safety path does not exist or the path is not feasible, the number (N) of grids is increased
and we go back to step (1). Note that the initial grids (N) can be set to a small value, such as 400, and
then the value of N is gradually increased.

Finally the parameters are set as follows. The size of population is set to 80. The maximum
generation number is set to 100. The size of repository is set to 300. The objective search space is
divided into [12; 12; 12] grid regions. In addition, we set the probabilities of safety, shortest, mutation,
smoothness, shortness, and positions update operators to 0.5, 0.1, 0.5, 0.5, 0.5, 0.5, respectively.
Furthermore, the velocity constraints [Min_v, Max_v] in the position update operator are set to ±1%
of the vector distance between the upper boundary and lower boundary of the workspace.

5. Results

In this section, we compare MOEA with PSO. PSO was used in article [30] to solve the PP problem.
In order to compare the characteristics of algorithms, we used different quality metrics including the
hypervolume indicator (HV) [43] and the set coverage metric (scm) [44].

In the objective space, the volume of non-dominated solutions can be measured by the HV.
We first define the concepts of characters. Non-dominated solutions are denoted by A = {a1, a2, ..., an}.
The reference point is represented by r = (r1, r2, ..., rd). In the d-objective minimum optimization
problem, the hypervolume region of A restricted by r can be calculated with Equation (9). L represents
the Lebesgue measure [45]:

HV(A, r) = L(
|A|
∪

i=1
h(ai)|ai ∈ A)

h(ai) = [ai1 , r1]× [ai2 , r2]× ...× [aid , rd].
(9)

Therefore, the dominant proportions of two groups of non-dominated solutions can be measured
by the set coverage metric (scm). The two groups of solutions are denoted by A = {a1, a2, ..., an} and
B = {b1, b2, . . . , bm}, respectively. Accordingly, scm(A, B) can be shown as

scm(A, B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B| . (10)

If scm(A, B) = 1, any solution in A is better than the solution in B. On the contrary, if scm(A, B) =
0, this implies that any solution in B is better than the solution in A. Since relationship (�) denotes
a weak dominance relation and is not symmetric, scm(A, B) and scm(B, A) need to be calculated.
In other words, the sum of them is not definitely equal to 1.

The five scenarios shown in Figure 8 were used for testing. More maps are available from http:
//imr.ciirc.cvut.cz/planning/maps.xml. In each workspace, obstacles were generated. The starting
point and target point are presented in Table 1. For equitable contrast, the following PSO parameters
were set: the swarm size was 80, the maximum generation number was 100, the size of the feasible
archive was 20, and the size of the infeasible archive was 20, and the maximal sampling times was 20,
respectively. For each scenario shown in Figure 8, 30 independent runs were performed. In each run,
the optimal solutions obtained by two algorithms were analysed with quality metrics. Table 2 presents

http://imr.ciirc.cvut.cz/planning/maps.xml
http://imr.ciirc.cvut.cz/planning/maps.xml
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the results of the hypervolume median and interquartile range. The results show that the solutions
obtained by MOEA were larger and denser in objective space.
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Figure 8. In this figure, five scenarios are shown and named A–E from left to right.

Table 1. Scenario initialization

Scenarios Starting Point Target Point

Figure 8A (1500, 1200) (3900, 3900)
Figure 8B (400, 100) (1450, 1450)
Figure 8C (253.6, 403.5) (1895.3, 1206.9)
Figure 8D (1007.2, 1400) (1908.6, 1008.1)
Figure 8E (120, 120) (1800, 1800)

Table 2. The results of the hypervolume median and interquartile range

Scenarios MOEA (MedianInterquartile) PSO (MedianInterquartile)

Figure 8A 0.97770.023 0.7680.098
Figure 8B 0.96620.020 0.5330.076
Figure 8C 0.99570.006 0.6940.134
Figure 8D 0.97630.005 0.6370.126
Figure 8E 0.96990.019 0.6670.081

Furthermore, set coverage metric (scm) was also used to test the solutions. The results are
presented in Table 3. It is obvious that most of solutions obtained by MOEA dominated the solutions by
PSO. The average value of scm (MOEA,PSO) was 94.91%, while the average value of scm (PSO,MOEA)
was 1.08%. The results indicate that solutions obtained by MOEA are closer to the approximate
Pareto front.
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Table 3. Set coverage metric results

Scenarios scm (MOEA,PSO) scm (PSO,MOEA)

Figure 8A 0.9697 0.014
Figure 8B 0.9143 0.017
Figure 8C 0.9524 0.005
Figure 8D 0.9615 0.007
Figure 8E 0.9474 0.011

Average 0.9491 0.0108

Moreover, in each scenario, we needed to use reference points. The ideal reference point should
be the ideal optimal value of objectives and is defined as the following. The ideal minimum length can
be calculated by linking the starting point and target point with a line segment. In a similar manner,
the ideal smoothness value is equal to 0. Since the safety is not positive, the smaller the value is, the
safer the path is. The ideal safety value is computed by adding 10% to the minimum safety value.
On the contrary, the nadir reference point is the nadir worst value of objectives. For the length and
smoothness objectives, the nadir worst values are computed by adding 10% to the worst values. We set
the worst safety value to 0; this value implies that the path touches the boundary of obstacles and does
not collide with obstacles. The reference points are presented in Table 4.

Table 4. Reference points of the five scenarios

Scenarios Ideal Nadir

Figure 8A (3612.5,−60.5, 0) (6292.7, 0, 46.16)
Figure 8B (1710.3,−40.8, 0) (4385.2, 0, 37.96)
Figure 8C (1827.7,−15.3, 0) (3277.3, 0, 35.3)
Figure 8D (982.9,−88, 0) (5727.7, 0, 82.4)
Figure 8E (2375.9,−52.25, 0) (4962.2, 0, 61.85)

For the five scenarios shown in Figures 8–13 show the approximate Pareto front. The red circles
represent the non-dominated solutions with the proposed MOEA algorithm. It is clear that red circles
are closer to the yellow ideal point than the black points. The black points denote the solutions with
PSO. This also indicates that solutions by MOEA are closer to the approximate Pareto front. Moreover,
the best paths are presented in Figures 14–18. The best path is a solution and has the minimum
distance from the ideal point. The objectives were normalized and the distances were calculated with
the Euclidean distance.

The following insights can be emphasized from the experimental results. For the multi-objective
PP problem, MOEA has a better set coverage metric than PSO. This means that MOEA can obtain
better quality solutions (optimizing three objectives: path length, safety, and smoothness).
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Figure 9. Approximate Pareto fronts for Figure 8A: MOEA vs. PSO.
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Figure 10. Approximate Pareto fronts for Figure 8B: MOEA vs. PSO.
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Figure 11. Approximate Pareto fronts for Figure 8C: MOEA vs. PSO.
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Figure 12. Approximate Pareto fronts for Figure 8D: MOEA vs. PSO.
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Figure 13. Approximate Pareto fronts for Figure 8E: MOEA vs. PSO.
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Figure 14. Graphical solution for the Figure 8A with MOEA.
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Figure 15. Graphical solution for the Figure 8B with MOEA.
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Figure 16. Graphical solution for the Figure 8C with MOEA.
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Figure 17. Graphical solution for the Figure 8D with MOEA.



Appl. Sci. 2018, 8, 1425 18 of 21

0 500 1000 1500 2000
0

500

1000

1500

2000
Length(p) =4466.3407
Safety(p) =-47.5
Smoothness(p) =7.7944

Figure 18. Graphical solution for the Figure 8E with MOEA.

6. Conclusions and Future Work

In this article, MOEA was presented to resolve the path planning problem. We dealt with three
objectives: length, safety, and smoothness. In addition, we also proposed extra evolutionary operators
to find precise and effective paths. Moreover, we used the well-known PSO algorithm for comparison.
The obtained results were evaluated with the hypervolume indicator (HV) and the set coverage metric
(scm). The comparisons show that the solutions obtained by MOEA are larger and denser in objective
space and closer to the approximate Pareto front. Accordingly, five different scenarios were used
for testing. The results show the advantages of proposed MOEA. This is a significant contribution.
Another contribution is that we combine the advantages of the evolutionary algorithm with the
traditional heuristic Dijkstra method to further improve the search efficiency.

The shortcomings in this work are as following: (1) Since the operators are not very fast, the
algorithm is currently only suitable for the off-line path planning problem. The next step is to further
improve the computing speed of the operators. (2) Because the proposed algorithm does not consider
the size and dynamic behavior of a specific robot, the algorithm can only plan the optimal path for the
mobile robot. Other work can then be carried out, such as trajectory tracking.

In the field of path planning, there are still many issues that are worthy of attention. For the
single-objective path planning problems, at present, some scholars are focused on the following topics:
(1) More efficient algorithms are needed to solve large-scale and real-time path planning problems.
(2) Based on the dynamic characteristics of robots, by controlling the behavior of the robot motor
in real time, the path planning problem and the trajectory tracking problem are combined to find
an optimal walking path. For multi-objective path planning problems, there are several problems
that need to be solved: (1) Most algorithms designed by scholars are offline. It is a challenging
task to improve the computational efficiency of the algorithms. Hybrid algorithms may be effective
approaches. (2) Currently, several researchers are focused on the dynamic environment. There are
three types of dynamic obstacles: (a) The positions and velocities of the dynamic obstacles at any one
time are completely known; (b) the positions and velocities of the dynamic obstacles are unknown,
but predictable; and (c) the positions and velocities of the dynamic obstacles are unknown and
unpredictable. There are some heuristic algorithms such as D* lite that can solve the single-objective
shortest path in dynamic environments. For multi-objective path planning problems in dynamic
environments, it may be a good solution to combine evolutionary algorithms with the advantages of
traditional heuristic algorithms. (3) In recent years, some scholars have focused on the multi-robot
multi-objective path planning problem. This is a complex coupling optimization problem. We will
continue to focus on and solve these issues over the next few years.
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