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Abstract: A method is proposed to improve the feature extraction of vibration signals of rotating
machinery. Firstly, the single-channel vibration signal is decomposed with ensemble empirical mode
decomposition (EEMD). Then, the number of fault signals can be estimated with singular-value
decomposition (SVD). Finally, the fault signals can be extracted with kernel-independent component
analysis (KICA). The advantage of this method is that it can estimate the number of fault signals of
single-channel vibration signals and can extract the fault features clearly. Compared with wavelets,
empirical mode decomposition (EMD), variational mode decomposition (VMD) and EEMD, the better
performance of this method is proven with three experimental analyses of faulty gear, a faulty rolling
bearing and a faulty shaft. The results demonstrate that the proposed method is efficient to extract
the fault features of single-channel vibration signals of rotating machinery.

Keywords: rotating machinery fault diagnosis; single-channel monitoring; EEMD-based KICA;
singular-value decomposition

1. Introduction

The faults of gears, rolling bearings and shafts of rotating machinery are disastrous for the
whole machinery. Many studies on fault diagnosis of rotating machinery have been published [1–3].
However, due to cost issues and limited monitoring environments, multiple sensors cannot be installed
on rotating machinery, and sometimes it is even single-channel monitoring. In order to acquire more
fault information of single-channel vibration signals of rotating machinery and improve the efficiency
of fault diagnosis, many feature extraction methods have been proposed, such as wavelets [4,5],
empirical mode decomposition (EMD) [6,7], ensemble empirical mode decomposition (EEMD) [8,9],
variational mode decomposition (VMD) [10,11] and so on. However, these methods have the problem
that the extracted features sometimes are not clear enough, they cannot estimate the number of
fault signals, and they need to be searched artificially from all component signals. In recent years,
blind source separation (BSS) has been applied more and more to diagnose the faults of rotating
machinery [12,13]. The goal of BSS is to estimate latent signals from the mixed signals without any
knowledge of the mixing process. Kernel-independent component analysis (KICA) is one of the most
famous algorithms of BSS [14,15]. The vibration signal of large rotating machinery often mixes several
signals and shows a strong nonlinear characteristic. The advantage of KICA is that both linear signals
and nonlinear signals can be separated.

Estimating the number of latent signals accurately is an important prerequisite for an effective
separation of a blind signal. The typical methods are spatial smoothing rank (SSR) [16,17] and
information theory [18,19], but they all have some limitations, such as signal-to-noise ratio (SNR).
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Singular-value decomposition (SVD) is a nonparametric technique [20,21]. Listing the singular values
in descending order first, the sequence number of the maximum ratio of neighboring singular values
(NSVR) can be applied to estimate the number of source signals, and it has a good estimation effect
under a large number of coherent signals, as well as low SNR.

In this paper, a fault-feature extraction method of single-channel vibration signals based on
EEMD-based KICA is proposed, and the number of fault signals is estimated by SVD. The three
experimental analyses show that this method has a better performance than wavelets, EMD, VMD
and EEMD to extract the fault features of rotating machinery. Its advantage is that the number of fault
signals of a single-channel vibration signal can be estimated and the extracted fault features are obvious.
This method only needs to input a single-channel vibration signal, and the outputs are fault signals
and number, without artificial selection, which improves the efficiency of fault-feature extraction.

The structure of this paper is as follows: The theory of EEMD, correlation coefficients, SVD and
KICA are introduced in Section 2. The mathematical model of the proposed method is in Section 3.
The performance of the proposed method with faulty gear is evaluated by an experimental analysis in
Section 4.1, and the performance of the proposed method with a faulty rolling bearing is evaluated in
Section 4.2. In Section 4.3, a faulty shaft experiment proves the effectiveness of the proposed method.
The conclusion of this paper is presented in Section 5.

2. Theory

2.1. EEMD

Huang et al. [22] reported that any signal is made up of several intrinsic mode functions (IMFs).
The instantaneous frequency of any point of each IMF is meaningful. A signal is formed by the
superposition of many IMFs. Huang proposed the EEMD algorithm in 2009, that is, the white Gaussian
noise is introduced in the decomposition process. Although white Gaussian noise is added to each IMF,
as the noise added at each time of decomposition is random, it can be eliminated by the decomposition
of enough times and the ensemble averaging. The procedure of EEMD is as follows:

Step 1: White Gaussian noise with the mean value of zero and constant amplitude standard
deviation is added to the decomposed signal x(t), and the signal after adding noise is normalized.

Step 2: EMD is used to decompose the normalized signal to obtain each IMF.
Step 3: Step 1 and Step 2 are repeated n times, ensuring the noise added at every time obeys a

normal distribution.
Step 4: Ensemble averaging of the n sets of IMFs obtained from EMD. According to the rule in

statistics, the statistical mean of an uncorrelated random sequence is zero, and the influence of white
Gaussian noise added to IMFs is removed. Finally, the decomposition of x(t) can be obtained by
EEMD, that is,

x(t) =
n

∑
i=1

n

∑
j=1

cij(t) +
n

∑
j=1

rj(t), (1)

where ci(t) is the i-th IMF, and r(t) is redundancy.
The size of the white Gaussian noise added in the iterative process of EMD can directly affect the

result of EEMD. The purpose of adding noise in EEMD is to avoid modal aliasing. However, if the
noise is too large, it will affect the distribution characteristics of the extreme point intervals of effective
high-frequency components. When the noise is too small, it will affect the selection of low-frequency
extreme points of signal and lose the function of scale supplement. The criterion for adding white
noise to EEMD is as follows:

δ =
ηh
η f

; β =
ηg

η f
; 0 < β <

δ

2
, (2)

where ηh is the amplitude standard deviation of effective high-frequency component of x(t), ηg is the
amplitude standard deviation of the added white Gaussian noise, and η f is the amplitude standard
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deviation of x(t). Under normal circumstances, when β = δ/4, the modal aliasing problem can be
effectively avoided. When ηg = 0.4 and the number of the ensemble average is 100, a better processing
result can be obtained.

EEMD can not only effectively avoid modal aliasing, reduce signal noise and get more meaningful
IMFs, it can also decompose a one-dimensional observation signal into a multi-dimensional one,
and create a condition for blind source separation.

2.2. Correlation Coefficient

The formula for the correlation coefficient ρxzi of the IMF to the source signal is as follows:

ρxzi =
cov(X, Zi)√
D(X)

√
D(Zi)

, (3)

where X is the mixed source signal, Zi is the i-th IMF, D(X) and D(Zi) are the variances of signal X
and Zi, respectively, and cov(X, Zi) is the covariance between the signals X and Zi.

2.3. SVD

The signal S(t) = [s1(t), . . . , sn(t)]
T is contained with n source signals. The observed signal

X(t) = [x1(t), . . . , xm(t)]
T is obtained by m different sensors. The observed signal is assumed to be a

linear superposition of source signals and noise signal N(t) = [n1(t), . . . , nm(t)]
T via a hybrid matrix

A = (aij)m×n. The observed signal X(t) can be described as follows:

xi(t) =
n

∑
j=1

aijsj(t) + ni(t), i = 1, 2, · · · , m, j = 1, 2, · · · , n, (4)

X(t) = AS(t) + N(t). (5)

The matrix RX is the covariance matrix of the observed signal X(t), and the eigenvalue
decomposition of RX is performed as follows:

RX = QΛQH , (6)

where Λ is a diagonal matrix composed of the eigenvalues {λ1, λ2, . . . , λm} of RX. Every column
vector of eigenvector Q is a unit eigenvector corresponding to the eigenvalue, and the unit vectors are
orthogonal to each other. It can be deduced that the eigenvalues of RXRH

X derived by characteristic
decomposition are

{
λ2

1, λ2
2, . . . , λ2

m
}

. That is,

RXRH
X = QΛQH(QΛQH)

H
= QΛ2QH . (7)

Therefore, the singular value of RX defined by the singular value is {|λ1|, |λ2|, . . . , |λm|}, because
the covariance matrix’s singular values are the same as the absolute value of the eigenvalues. So,
the number of nonzero eigenvalues is equal to the number of nonzero singular values. It is assumed
that R̃X is the covariance matrix of mixed signal-contained noise. According to the mixed system
model X = AS + N, the following can be calculated:

R̃X = XXH ,
L = (AS+N)(AS+N)H

L
= ASSHAH+ASNH+NSHAH+NNH

L

= RX + RN + A(SNH)+(NSH)AH

L

(8)
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where L is the number of sampling points, RN ≈ σ2I, SNH

L ≈ 0, NSH

L ≈ 0, and then,

R̃X = RX + σ2I, (9)

where σ2 is the power of noise.
If λ1 ≥ λ2 ≥ · · · ≥ λk+1 = λk+2 = · · · = λm = 0 is m eigenvalues of RX and µ1 ≥ µ2 ≥ · · · ≥ µk

≥ µk+1 ≥ · · · ≥ λm ≥ 0 is m eigenvalues of R̃X,µ1 ≈ λ1 + σ2, µ2 ≈ λ2 + σ2, . . . , µk ≈ λk + σ2, . . . ,
µm ≈ λm + σ2. Therefore, in the case of a high signal-to-noise ratio (SNR), the number of main
eigenvalues of the covariance matrix is equal to the number of signals.

The eigenvalues of R̃X are in descending order, that is, µ1 ≥ µ2 ≥ . . . ≥ µm ≥ 0. Let
γk = µk/µk+1, k = 1, 2, . . . , m − 1; if γk is the maximum ratio of neighboring singular values,
the number of signals will be k.

2.4. KICA

The mathematical description of BSS is: X = AS + N, where S = [s1(t), s2(t), · · · , sN(t)] is a
vector of N source signals, X = [x1(t), x2(t), · · · , xM(t)] is a vector of M mixed signals, the mixing
matrix A is an M × N dimensional matrix, and N(t) is a noise vector. The meaning is that when the
mixing matrix and source signals are unknown, we only determine the remove-mixing matrix W based

on the observed data, and the output
_
S = WX is the estimation of source signals.

KICA is not a simple nucleation of independent component analysis (ICA), but a new ICA method.
The idea of kernel technology is to use nonlinear mapping φ : Rm → R , and map the nonlinear variable
yi ∈ Rm(i = 1, 2, · · · , N) of original input space into a kernel feature space R to linearize it, and then
analyse the mapped data in this feature space. Thus, the linear blind source separation in the space
R is equivalent to nonlinear blind source separation in the original space. One of the important
characteristics of this technology is that a kernel function can be used instead of an inner product
between two vectors to realize nonlinear transformation without specific form being considered.
The kernel function of the radial basis function (RBF) K(xi, yi) = exp(− ‖ xi − yi ‖ /δ2) is chosen here.

The characteristic of KICA is to use a nonlinear function in reproducing kernel Hilbert
space (RKHS) as a contrast function; the signal is mapped from low-dimensional space to the
high-dimensional space, and the kernel method is used to search the minimum value of contrast
function in this space. This function has a certain correlation with mutual information and has better
mathematical properties. Moreover, this function space is suitable for various source signals. Therefore,
compared with traditional ICA, KICA has better flexibility and robustness.

The KICA’s contrast function is constructed by measuring the correlation of a set of random
variables directly. Let F be a real vector function space, for simplicity, s1 and s2 are two unary random
variables of space F. Define the correlation coefficient ρF of s1 and s2 as the maximum correlation
coefficient between random variables f1(s1) and f2(s2),

ρF = max
f1, f2∈F

corr( f1(s1), f2(s2)) = max
f1, f2∈F

cov( f1(s1), f2(s2))

(var f1(s1))
1/2(var f2(s2))

1/2 . (10)

ρF is also called a contrast function between random variables. Obviously, if s1 and s2 are independent,
then ρF = 0. If space F is large enough and ρF = 0, then s1 and s2 are also independent of each other.
The procedure of KICA is as follows:

Input: data vector x1, x2, · · · , xn and kernel function k(x, s).
Step 1: Whiten data vector x1, x2, · · · , xn.
Step 2: Use Cholesky decomposition to find the Gram matrix (K1, K2, · · · , Km) of original

independent data, where si = Wxi (Wis the remove-mixing matrix).
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Step 3: Define λH to be the maximum eigenvalue of Equation (11).
K1K1 K1K2 · · · K1Km

K2K1 K2K2 · · · K2Km
...

...
. . .

...
KmK1 KmK2 · · · KmKm




α1

α2
...

αm

 = λ


K1K1 0 · · · 0

0 K2K2 · · · 0
...

...
. . .

...
0 0 · · · KmKm




α1

α2
...

αm

 (11)

Step 4: Minimize MλH = −0.5 log λH for W.
Output: W.
This algorithm keeps running repeatedly between Step 2 and Step 4 until the convergence

condition is satisfied, so that the remove-mixing matrix W can be obtained. According to s = Wx, for a
set of observed data x1, x2, · · · , xn, the original independent source signals can be estimated effectively
through the remove-mixing matrix W.

3. The Proposed Method

In this paper, a fault-feature extraction method of rotating machinery based on EEMD-based
KICA is proposed. Its advantage is that it can estimate the number of fault signals of a single-channel
vibration signal and can extract fault features clearly. This method only needs to input a single-channel
signal, and the outputs are fault signals and number, without artificial selection. The procedure of the
proposed method has been summarized in Figure 1. The detailed procedure is described as follows:

Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 18 

F  is also called a contrast function between random variables. Obviously, if 
1s  and 

2s  are 

independent, then 0F = . If space F  is large enough and 0F = , then 1s  and 2s  are also 

independent of each other. The procedure of KICA is as follows: 

Input: data vector 
1 2, , , nx x x  and kernel function ( , )k x s . 

Step 1: Whiten data vector 1 2, , , nx x x . 

Step 2: Use Cholesky decomposition to find the Gram matrix 1 2( , , , )mK K K  of original 

independent data, where i is x=W  (W is the remove-mixing matrix). 

Step 3: Define H  to be the maximum eigenvalue of Equation (11). 

1 1 1 2 1 1 1 1 1

2 1 2 2 2 2 2 2 2

1 2

0 0

0 0

0 0

m

m

m m m m m m m m

 

 


 

     
     
     =
     
     
     

K K K K K K K K

K K K K K K K K

K K K K K K K K
 

(11) 

Step 4: Minimize 0.5log
H HM = −  for W . 

Output: W . 

This algorithm keeps running repeatedly between Step 2 and Step 4 until the convergence 

condition is satisfied, so that the remove-mixing matrix W  can be obtained. According to s x=W , 

for a set of observed data 1 2, , , nx x x , the original independent source signals can be estimated 

effectively through the remove-mixing matrix W . 

3. The Proposed Method 

In this paper, a fault-feature extraction method of rotating machinery based on EEMD-based 

KICA is proposed. Its advantage is that it can estimate the number of fault signals of a single-channel 

vibration signal and can extract fault features clearly. This method only needs to input a single-

channel signal, and the outputs are fault signals and number, without artificial selection. The 

procedure of the proposed method has been summarized in Figure 1. The detailed procedure is 

described as follows: 

 

Figure 1. The summarized procedure of the proposed method. 

Step 1: The collected single-channel signal ( )tX  is decomposed with EEMD, and all IMFs can 

be obtained. Then, the multidimensional observation signal can be formed with all IMFs. 

Step 2: The observation signal is decomposed with SVD first. Then, singular values are listed in 

descending order. Next, the ratio of neighboring singular values is calculated. Finally, the sequence 

number of the maximum ratio will be the number of fault signals M. 

Step 3: Calculate the correlation coefficient of each IMF to ( )tX  and select the top M IMFs with 

the highest correlation to form a new observation signal. Finally, use KICA to extract the fault signals 

from the new observation signal. 

Figure 1. The summarized procedure of the proposed method.

Step 1: The collected single-channel signal X(t) is decomposed with EEMD, and all IMFs can be
obtained. Then, the multidimensional observation signal can be formed with all IMFs.

Step 2: The observation signal is decomposed with SVD first. Then, singular values are listed in
descending order. Next, the ratio of neighboring singular values is calculated. Finally, the sequence
number of the maximum ratio will be the number of fault signals M.

Step 3: Calculate the correlation coefficient of each IMF to X(t) and select the top M IMFs with
the highest correlation to form a new observation signal. Finally, use KICA to extract the fault signals
from the new observation signal.

4. Application and Validation

4.1. Experimental Analysis of Faulty Gear

In order to verify the effectiveness of the proposed method with faulty gear, the collected vibration
signal of faulty gear is analyzed. The experimental device is shown in Figure 2. The whole device is
driven by a 550 W (220 V, 50 Hz) AC motor that drives the shaft system with couplings. There are two
rolling bearings on the shaft system. The shaft section between two bearing seats is equipped with
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a belt wheel, and the belt drives the active gear shaft of the gear box. One acceleration transducer is
installed vertically on the shell near the shaft. The sampling frequency fs = 8192 Hz and the sampling
point number is 8192. The motor speed is 850 rpm, that is, the rotation frequency fr = 14.2 Hz.
The number of gear teeth Z = 20. According to fc = Z× fr, the gear mesh frequency fc = 283.3 Hz.
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Figure 2. The test rig of faulty gear.

In this experimental analysis, the collected vibration signal of a broken tooth fault is selected,
and the number of the broken tooth Zb = 1. From experience, when the gear is affected by a broken
tooth fault, the rotation frequency fr and its frequency multiplication will be the main features in the
frequency domain, and the frequency fz = Zb × fc will also exist. The time-domain waveforms and
amplitude spectra obtained by fast Fourier transform (FFT) [23] of a healthy signal and faulty signal
are shown in Figure 3.Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 18 
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Figure 3. The time-domain waveforms and amplitude spectra of a healthy signal and faulty signal.
(a) The time-domain waveform of a healthy signal. (b) The amplitude spectra of a healthy signal.
(c) The time-domain waveform of a faulty signal. (d) The amplitude spectra of a faulty signal.
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The fault features of the collected signal cannot be found in Figure 3. The performance of feature
extraction of a broken tooth fault with wavelets, EMD, VMD, EEMD and the proposed method are
compared in the following section.

4.1.1. Wavelets

In this method, the collected signal is decomposed with five-layer Daubechies wavelet
decomposition first, and then the amplitude spectra of each component can be obtained with FFT.
The result in Figure 4 shows that the rotation frequency fr and its frequency multiplication are not
extracted, and the frequency fz is also not extracted. Therefore, wavelets cannot extract the fault
feature of a broken tooth.
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Figure 4. The amplitude spectra of each component after five-layer wavelet decomposition. (a) The
fifth layer of the low-frequency component. (b) The fifth layer of the high-frequency component. (c) The
fourth layer of the high-frequency component. (d) The third layer of the high-frequency component.

4.1.2. EMD

In this method, the collected signal is decomposed with EMD first, and then the amplitude spectra
of each IMF can be obtained with FFT. The result in Figure 5 shows that the rotation frequency fr and
its frequency multiplication are not extracted, and the frequency fz is also not extracted. Therefore,
EMD cannot extract the fault feature of a broken tooth.
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4.1.3. VMD

In this method, the collected signal is decomposed with VMD first, and then the Hilbert envelope
spectra (HES) [24] of each component signal can be obtained. The result in Figure 6 shows that the
motor rotation frequency fr and its double frequency and triple frequency can be seen in each subfigure
of Figure 6, and the frequency of 288 Hz, which is very close to fz, can be seen in Figure 6b,d. However,
the features are still not clear enough.
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Figure 6. The Hilbert envelope spectra of each component signal after variational mode decomposition
(VMD). (a) Component signal 1. (b) Component signal 2. (c) Component signal 3. (d) Component
signal 4.

4.1.4. EEMD

In this method, the collected signal is decomposed with EEMD first, and then the Hilbert envelope
spectra of each IMF can be obtained. The result in Figure 7 shows that the motor rotation frequency
fr and its double frequency and triple frequency can be seen in each subfigure of Figure 7, and the
frequency of 288 Hz, which is very close to fz, can be seen in Figure 7a,b. However, the features are
not clear enough, the amplitudes of other frequencies are very high and noise energy is still high.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 18 

4.1.4. EEMD 

In this method, the collected signal is decomposed with EEMD first, and then the Hilbert 

envelope spectra of each IMF can be obtained. The result in Figure 7 shows that the motor rotation 

frequency rf  and its double frequency and triple frequency can be seen in each subfigure of Figure 

7, and the frequency of 288 Hz, which is very close to zf , can be seen in Figure 7a,b. However, the 

features are not clear enough, the amplitudes of other frequencies are very high and noise energy is 

still high. 

 

Figure 7. The Hilbert envelope spectra of each IMF after ensemble empirical mode decomposition 

(EEMD). (a) IMF1. (b) IMF2. (c) IMF3. (d) IMF4. 

4.1.5. The Proposed Method 

In this method, the collected signal is decomposed with EEMD first, and then the number of 

fault signals can be estimated with SVD. The ratios of neighboring singular values are shown in Table 

1. 

Table 1. The ratios of neighboring singular values. 

Sequence Number NSVR 

1 6.254 

2 2.561 

3 2.033 

4 1.875 

5 1.262 

6 0.801 

As shown in Table 1, the sequence number of the maximum NSVR is 1. Therefore, the number 

of fault signals is 1. According to the correlation coefficient of each IMF, the observation signal is 

reconstructed with high-correlation IMFs. Finally, the fault signals can be extracted from the new 

observation signal with KICA. The Hilbert envelope spectra of the extracted fault signal is shown in 

Figure 8. 

Figure 7. The Hilbert envelope spectra of each IMF after ensemble empirical mode decomposition
(EEMD). (a) IMF1. (b) IMF2. (c) IMF3. (d) IMF4.



Appl. Sci. 2018, 8, 1441 9 of 17

4.1.5. The Proposed Method

In this method, the collected signal is decomposed with EEMD first, and then the number of fault
signals can be estimated with SVD. The ratios of neighboring singular values are shown in Table 1.

Table 1. The ratios of neighboring singular values.

Sequence Number NSVR

1 6.254
2 2.561
3 2.033
4 1.875
5 1.262
6 0.801

As shown in Table 1, the sequence number of the maximum NSVR is 1. Therefore, the number
of fault signals is 1. According to the correlation coefficient of each IMF, the observation signal is
reconstructed with high-correlation IMFs. Finally, the fault signals can be extracted from the new
observation signal with KICA. The Hilbert envelope spectra of the extracted fault signal is shown in
Figure 8.Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 18 
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analysis (KICA).

The result in Figure 8 shows that the motor rotation frequency fr = 14 Hz and its double
frequency and triple frequency have been extracted clearly, and fz = 283.3 Hz is also extracted clearly.
The amplitude of fr is much larger than fz, so it can be clearly judged to be the broken tooth fault.

4.1.6. Results and Discussions

Compared with the methods of wavelets and EMD, the proposed method has a significantly better
performance for the feature extraction of a single-channel vibration signal of faulty gear. Although
VMD and EEMD can extract fault features, the noise energy is still very high. Compared with the
method of EEMD, the noise energy has been reduced in the proposed method, which is efficient for
fault-feature extraction.

4.2. Experimental Analysis of Faulty Rolling Bearing

In order to verify the validity of the proposed method for a faulty rolling bearing vibration signal,
the test data from the bearing database of Case Western Reserve University are selected for analysis.
The experimental device is shown in Figure 9. At the output terminal of the motor, one acceleration
transducer is vertically installed on the shell of a supporting bearing to collect data.
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The rolling bearing used in the test is SKF6205. The motor speed is 1180 rpm, that is, the rotation
frequency fr = 19.7 Hz. The sampling frequency fs = 8192 Hz and the number of sampling points is
8192. The inner and outer rings of the rolling bearing are respectively machined with tiny pitting pits
of 0.28 mm in depth and 0.54 mm in diameter to simulate the faults of an inner ring and an outer ring.
The fault frequency of the inner ring can be expressed as:

fic =
1
2

N(1 +
d
D

cos α) fr. (12)

The fault frequency of the outer ring can be expressed as:

foc =
1
2

N(1− d
D

cos α) fr, (13)

where N is the number of rollers, d is the diameter of the rollers, D is the pitch diameter of the
bearing, and α is the bearing’s contact angle. According to Equations (12) and (13), fic = 106 Hz and
foc = 70 Hz.

The time-domain waveform and amplitude spectra of a healthy signal and faulty signal are shown
in Figure 10.
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(a) The time-domain waveform of a healthy signal. (b) The amplitude spectra of a healthy signal.
(c) The time-domain waveform of a faulty signal. (d) The amplitude spectra of a faulty signal.
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The fault features of the inner ring and outer ring cannot be found from the time-domain waveform
and amplitude spectra in Figure 10. Therefore, the effectiveness of feature extraction via wavelets,
EMD, VMD, EEMD and the proposed method are compared in the following section.

4.2.1. Wavelets

In this method, firstly, the observation signal is decomposed with six-layer Daubechies wavelet
decomposition, and then the amplitude spectra of each component can be obtained with FFT. The result
is shown in Figure 11. The frequency of 107 Hz, which is very close to fic, is extracted in Figure 11b,
but foc is not extracted. Therefore, wavelets cannot fully extract the fault feature of a rolling bearing.
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4.2.2. EMD

In this method, the observation signal is decomposed with EMD first, and then the amplitude
spectra of each IMF can be obtained with FFT. The result in Figure 12 shows that the fault features of
the inner ring and outer ring are not extracted.
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4.2.3. VMD

In this method, the observation signal is decomposed by VMD first, and then the Hilbert envelope
spectra of each component signal can be obtained. The result is shown in Figure 13. In Figure 13a,b,
the fault frequency of the outer ring, fic = 70 Hz, is extracted. The fault frequency of the inner ring,
foc = 106 Hz, can be seen in Figure 13c. However, the amplitudes of other frequencies and the noise
energy are still high.
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4.2.4. EEMD

In this method, the observation signal is decomposed with EEMD first, and then the Hilbert
envelope spectra of each IMF can be obtained. The result is shown in Figure 14. In Figure 14a,
the fault frequency of the inner ring, fic = 106 Hz, is extracted. The fault frequency of the outer ring,
foc = 70 Hz, can be seen in Figure 14b. However, the features are not clear enough, the amplitudes of
other frequencies are very high and the noise energy is still high.
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4.2.5. The Proposed Method

In this method, the observation signal is decomposed with EEMD first, and then the number
of fault signals can be estimated with SVD. The ratios of neighboring singular values are shown in
Table 2.

Table 2. The ratios of neighboring singular values.

Sequence Number NSVR

1 1.524
2 36.810
3 6.884
4 3.922
5 5.516
6 0.981

As shown in Table 2, the sequence number of the maximum NSVR is 2. Therefore, the number
of fault signals is 2. According to the correlation coefficient of each IMF, the observation signal is
reconstructed with high-correlation IMFs. Finally, the fault signals can be extracted from the new
observation signal with KICA. The Hilbert envelope spectra of the extracted fault signals are shown in
Figure 15.
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In Figure 15b, the fault frequency of the inner ring, fic = 106 Hz, is extracted. The fault frequency
of the outer ring, foc = 70 Hz, can be seen in Figure 15a. Furthermore, the features are extracted clearly.

4.2.6. Results and Discussions

Compared with the other four methods, the proposed method has a better performance for the
feature extraction of a single-channel vibration signal of a faulty rolling bearing. The feature of fault
frequency is more obvious and noise energy is obviously reduced. The experimental analysis of the
faulty rolling bearing proves that our proposed method can estimate the number of fault signals and is
efficient to extract the features of a single-channel signal with multiple faults.
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4.3. Experimental Analysis of a Faulty Shaft

A faulty-shaft experimental analysis is applied to verify the effectiveness of the proposed method.
The schematic diagram of the test system is shown in Figure 16, and the test rig and signal acquisition
system are shown in Figure 17. The test system includes a sensor, shaft test-bed, shaft speed controller,
dynamic signal acquisition instrument, computer and analysis software. The sensor sends a radial
vibration signal of the shaft into the dynamic signal acquisition instrument, and then converts the
analog signal into a digital signal. Finally, the digital signal will be uploaded to analysis software of
the computer to realize various analyses required by the user.
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Figure 17. The test rig and signal acquisition system of a faulty shaft.

In this experimental analysis, the artificial imbalance fault and rub-impact fault are created. Only
one eddy current displacement sensor is used to collect the mixed vibration signal of the faulty shaft.
The sampling frequency is 1000 Hz and the number of sampling points is 10,000. The motor speed is
2000 rpm, that is, the rotation frequency fr = 33.3 Hz. From experience, the feature of an imbalance
fault causes the frequency fr alone in the frequency-domain. The feature of a rub-impact fault causes
the frequency fr and 1/n of fr, where n is equal to 2, 3, 4 or 5. The time-domain waveform of the
collected signal is shown in Figure 18, and the amplitude spectra of the collected signal obtained with
FFT is shown in Figure 19.
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Figure 19. The amplitude spectra of the collected signal.

As can be seen in Figure 18, none of the periodic amplitude can be seen in the time domain.
The frequency of 33.45 Hz, which is very close to fr, can be seen in Figure 19, but the amplitude of
other frequencies is very high and the noise energy is high.

In the proposed method, firstly, the collected single-channel vibration signal is decomposed with
EEMD, and then the number of fault signals can be estimated with SVD. The ratios of neighboring
singular values are shown in Table 3.

Table 3. The ratios of neighboring singular values.

Sequence Number NSVR

1 1.926
2 22.568
3 3.448
4 2.962
5 1.979
6 1.038

As shown in Table 3, the sequence number of the maximum NSVR is 2. Therefore, the number of
fault signals is 2. Finally, high-correlation IMFs are selected to reconstruct a new observation signal,
and then fault signals can be extracted with KICA. The Hilbert envelope spectra of the extracted fault
signals are shown in Figure 20.

Both the frequencies of 33.45 Hz and 6.836 Hz can be found in Figure 20a, which can be considered
the features of a rub-impact fault. Figure 20b only has the frequency of 33.45 Hz, which can be
considered as the feature of an imbalance fault. Furthermore, the fault features are significantly
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obvious. It demonstrates that the proposed method has a good performance of fault-feature extraction
of a faulty shaft with both the imbalance fault and the rub-impact fault.
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The method with EEMD-based KICA has been proposed to improve the efficiency of fault-feature
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that it can estimate the number of fault signals of a single-channel vibration signal and extract the
fault features clearly. This method only needs to input a single-channel signal, and the outputs are
fault signals and number, without artificial selection. Through the experiment of faulty gear, a faulty
rolling bearing and a faulty shaft, the results show that the proposed method makes the fault features
more clear compared with wavelets, EMD, VMD and EEMD, which demonstrates its effectiveness for
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