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Abstract: Acoustic metamaterial science is an emerging field at the frontier of modern acoustics.
It provides a prominent platform for acoustic wave control in subwavelength-sized metadevices or
metasystems. However, most of the metamaterials can only work in a narrow frequency band once
fabricated, which limits the practical application of acoustic metamaterials. This paper highlights
some recent progress in tunable acoustic metamaterials based on various modulation techniques.
Acoustic metamaterials have been designed to control the attenuation of acoustic waves, invisibility
cloaking, and acoustic wavefront engineering, such as focusing via manipulating the acoustic
impedance of metamaterials. The reviewed techniques are promising in extending the novel acoustics
response into wider frequency bands, in that tunable acoustic metamaterials may be exploited for
unusual applications compared to conventional acoustic devices.

Keywords: acoustic metamaterials; tunability; effective mass density; effective bulk modulus;
Helmholtz resonator

1. Introduction

Metamaterials are rationally designed artificial structures with periodically or non-periodically
arranged subwavelength elements [1–4], which exhibit unusual properties beyond natural occurring
media [5]. The metamaterials have been widely investigated for guiding and controlling the flow
of electromagnetic waves and acoustic waves in a supernatural manner since its discovery [6–14].
Novel wave manipulations such as the negative index, reversed Cherenkov radiation [15], and inverse
Doppler effect [16] have been demonstrated experimentally. With such novel physical characteristics,
the subwavelength metaatom-based metamaterial gives birth to the perfect lens, invisibility cloaks,
and other new types of functional devices. As such, it provides new physical mechanisms in
manipulating classical waves in comparison with traditional materials and devices. The features
of metamaterials are determined to a great extent by the rationally designed metaatoms, instead of the
intrinsic properties of natural materials [17–20]. Since the geometric parameters of metamaterials can be
specifically optimized, desirable properties can be acquired by changing the topology and sizes [21–25].
Due to their ability to control wave–matter interactions [26–30], metamaterials have been proven to be
an important concept for the development of functional materials [31–40].

Electromagnetic (EM) metamaterials have been intensively studied since the birth of
metamaterials, and the research on EM metamaterials has achieved great progress [41–46]. As early
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as the 1960s, the concept of negative refraction was proposed. Sir John Pendry proposed a kind of
composite made of periodic metal rods for realizing negative permittivity at a microwave frequency
band in 1996 [1], and then another kind of structure constructed of resonant split rings was proposed
to achieve the negative permeability in 1999 [2]. Based on these theoretical considerations, Smith et al.
exquisitely designed and fabricated hybrid structures with periodic metal rods and resonant split
rings. The existence of a negative index was directly proved through the observation of negative
refraction [3,47]. Since then, metamaterials have attracted intensive studies, and various optical,
terahertz, and microwave metamaterials have already been developed in the past decades [48,49].

Acoustic waves, which play important roles in our modern daily life, are similar to EM waves
in their master equations. Since sound waves and electromagnetic waves have a large amount
of analogical characteristics, the supernatural phenomena such as negative refraction [50], invisible
cloak [51,52], and wavefront manipulation [53] also occur through specific designed acoustic composite
structures, i.e., acoustic metamaterials (AMMs). AMMs are a new type of man-made structure that
regulate acoustic behavior, resulting in negative effective mass densities and negative effective bulk
modulus based on localized resonance mechanisms as well as extraordinary scattering properties [54].

For traditional acoustic materials, the insulation and absorption of low-frequency sound is
confronted with great challenges due to the limitation of mass density law (which states that the
acoustic transmission loss through a wall is proportional to the product of wall thickness, the mass
density, and the sound frequency) [55,56]. Recent reports show that AMMs demonstrate an excellent
performance of acoustic attenuation surpassing the traditional matter, especially at low frequency.
In the study of AMMs, numerous attempts are concentrated on adjusting the density or the bulk
modulus of the structures to manipulate the scattering of acoustic waves [57–60]. AMMs are considered
as those complex material structures, rather than the sum of component parts, that are proposed
and manufactured to modulate the propagation of acoustic waves in gases, liquids, and solids [61,62].

An acoustic band structure with periodic acoustic lattice was proposed in the last decades that has
shown novel properties of sound propagation [63–72]. Although the AMM is composed of periodic
structures, the working mechanism of AMM is locally resonant rather than the Bragg scattering in
the earlier acoustic band gap material, which is called a phononic crystal (PC) [73–75]. Properties of
AMMs can be described with homogenized parameters, the effective mass density, and the effective
modulus [76,77]. For traditional composite materials, the effective mass density reflects the inertial
characteristic of a material. For a compound containing two components, in general, the static mass
density ρeff can be modeled as the volume average of the density of the two components [78]:

ρe f f = ρ1 f + ρ2(1− f ) (1)

where f means the volume percentage of component 1, and ρ1 and ρ2 are the mass density of component
1 and 2, respectively. However, for an artificial composite material with local resonators, there will
be a relative motion between the matrix and the resonators if the displacement between them is not
synchronous and even inverse [79]. The effective mass of this system can be acquired by [80,81]:

De f f V = M0 +
mω2

0
ω2

0 −ω2
(2)

where Deff is the effective density, V is the total volume, ω0 is the resonant frequency, ω is the angular
frequency of the time harmonic excitation, and M0 and m are the mass of the matrix and the solid
components, respectively.

Therefore, the effective density of the whole structure could be negative at some frequencies The
first locally resonant sonic material, which is the prototype of AMMs, was demonstrated by Liu et al.
in 2000 [82]. The unit of phononic crystal-like material is made of a solid material core with relatively
high density and a soft coating, as shown in Figure 1a. This AMM exhibits dipolar resonant modes
at certain frequency ranges where the wavelengths in the bulk medium are at least two orders of the
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lattice parameter. According to Equation (2), its effective mass density is calculated to be negative,
so that the propagating wave becomes an evanescent wave, and low-frequency band gaps appear
in the transmission. The gaps of the AMMs can be ascribed to Bragg scattering and local resonance.
The Bragg scattering occurs around the frequency where the periodic constant of the acoustic material
is of the order of the acoustic wavelength. The band-folding rising from the Bragg scattering can lead
to band gaps in which the acoustic waves cannot propagate. Negative dynamic mass will occur when
the frequency is close to the resonant frequency of the crystal. The negative mass density is analogous
with a mass-spring model in which the matrix can be regarded as a spring, and the core is similar to
the mass [81].
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Figure 1. (a) Photograph of a local resonant acoustic structure. Adapted with permission from [82],
The American Association for the Advancement of Science, 2000. (b) Schematic of periodical
daisy-chained Helmholtz resonators. Adapted with permission from [83], Springer Nature, 2006.

Negative modulus can be designed by a class of AMMs consisting of an array of
subwavelength-sized Helmholtz resonators, as shown in Figure 1b [83]. The system did not adopt
the combination of different materials, but changed the geometry to limit the propagation of the
acoustic wave in fluid [84]. The periodic shunted Helmholtz resonators can also be regarded as a
simple mass-spring model [85]. Since the volume of the neck is much smaller than the volume of the
cavity, it can be approximated that fluid in the neck is incompressible. Therefore, the fluid in the neck
can be modeled as mass, while the fluid in the cavity can be considered a spring. In the framework of
effective medium theory (EMT), the effective bulk modulus of fluid and solid composite structures Beff
is [78]:

1
Be f f

=
1− f

B1
+

f
B2

(3)

where B1 and B2 refer to the modulus of the matrix and solid components, respectively. When the
damping of the system is negligible, the effective bulk modulus of a Helmholtz resonator can be
written as [65]:

1
Be f f

=
1
B
(1−

ω2
sh

ω2 ) (4)

where B is the bulk modulus of air, ωsh is the cutoff frequency of the side hole, and ω is the angular of
the harmonic excitation. For the monopolar resonant mode of this AMM, the effective bulk modulus is
found to be negative.

The monopolar and dipolar resonances of each scattering object are the key to realizing the
negative effective modulus and effective mass density, respectively [50]. The negative effective
properties indicate an out-of-phase wave response to the applied input; to be specific, it tends to
move toward the left with the force to the right when the effective mass density is negative, while it
expands with exerted pressure when the effective bulk modulus is negative [86]. When both situations
occur simultaneously, a frequency range appeared in which propagation in the AMM is allowed;
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then, the acoustic structure is classified as a double negative acoustic metamaterial. In these negative
composite structures, the effective wave velocity Veff is given by [87]:

Ve f f =

√
Be f f

De f f
(5)

In Equation (5), when both negativities occur simultaneously, the terms within the square root
are positive and the velocity is real. The acoustic wave is a transmission wave rather than an
evanescent wave in single negative structures. Then, a pass band appears in the band structure,
which is called a double negative acoustic metamaterial. A one-dimensional structure was first
designed and demonstrated experimentally for double negative acoustic metamaterials [88]. The dipole
resonance was regulated by the elastic membrane arranged periodically, and the monopolar response
was provided through the side opening tube. Researchers found a double negative band at the low
frequency limitation; the same configuration was employed for demonstrating the reverse Doppler
shift in the double negative zone [68]. Later various attempts were exploited for tuning both the
density and the bulk modulus for developing composite acoustic structures with tunable properties.
For example, a classical design with double negativities was designed by Yong et al. [89], in which
an array of glass bottles are attached to a plastic tube wall, and the membranes are also fixed among
the resonators as well. These bottles operate as Helmholtz resonators with negative mass density,
and the membranes convey collective acoustic oscillation that is similar to that in plasmonics to achieve
negative mass density.

The manipulation of acoustic waves has been investigated intensively in last decades [90–93].
The development of AMMs provides a new platform for the manipulation of the propagation of
acoustic waves, including the airborne acoustic wave [94–96], underwater acoustic wave [97–100],
elastic wave [76,101,102], and surface acoustic wave [58]. The theoretical and experimental research of
an acoustic cloak [103], acoustic rectification [53], acoustic lens [104,105], and near-zero index [106]
have been carried out. Although a great deal of investigations have been reported, many studies mainly
focused on passive metamaterials with constant material properties [107]. The acoustic properties of
passive metamaterials are difficult to change once they are fabricated, resulting in a fixed and narrow
working band. For the enhanced performances of AMMs, it is highly desirable to achieve tunable or
reconfigurable AMMs in which the scattering characteristics of acoustic waves can be changed in real
time to broaden and tune the regulation frequency bands for AMMs.

These fascinating properties can be achieved with active AMMs (AAMMs), which have been
implemented by incorporating active mechanisms such as active components and reconfigurable
structural parts in passive metamaterials. The working bands, as well as the characteristics of AAMMs,
can be actively tuned for a far-reaching application potential in multifunctional applications [108–113].
In this short review, we will summarize the recent progress in the topic of tunable AMMs. The diverse
manipulating manners of tunable AMMs are stated as well, including different modulation techniques
with piezos, mechanic interactions, voltage, electromagnetic field, fluid filling, temperature, and angle
varying. Decorated membrane resonators (DMRs) AMM with double negative parameters are
expounded as well. At last, new classes of AMMs with tunable band gaps are reviewed.

2. Piezoelectric Control of Acoustic Metamaterials

According to the converse piezoelectric effect, the mechanical parameters of piezos (PZT) change
under voltage, so emphatic research on the local resonant gap and the negative material properties of
the AMM is significant to design a new AAMM. Since an active acoustic cloak consisting of an array
of fluid cavities separated by piezoelectric boundaries was designed by Baz [107], lots of research
combining PZT with AMM has been proposed [114–117]. A theoretical analysis of one-dimensional
AMMs with piezoelectric boundaries has been discussed by Akl et al. [84]. In comparison to
the equivalent transmission line theory, lumped parameter models can be employed to approach
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the acoustic response composite structures. For example, the electrical current, electric potential,
the electrical capacitor, and electrical inductor are in analogy with the acoustic volume flow rate,
acoustic pressure difference, the acoustic cavity compliance, and the acoustic mass.

Airoldi and Ruzzene demonstrated the experimental research on shunted piezos [118–120].
A beam is fixed with periodic shunted piezoelectric patches whose electrodes are connected to the
Antoniou’s circuit (shown in Figure 2b) because of its high value of inductance. The equivalent
inductance of the circuit is L = Z1Z3Z4C1/Z2, where C1 is the capacitance of the piezoelectric patch.
Then, the resonance frequency can be calculated with:

f0 = 1/2π
√

LCp (6)

where Cp is the equivalent capacitance of this sample, and f 0 could be tuned by changing the value of
Z4 [119].
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Antoniou’s circuit. Reproduced under a Creative Commons CC BY 3.0 Licence [120] Copyright 2011,
IOP Publishing.

Since the effective parameters can be tuned in real time by introducing piezoelectric patches
into compound structures, AAMMs with tunable bands and resonant frequencies can be acquired
consequently. Akl et al. proposed a series of schemes with acoustic fluid domains and piezoelectric
subdomains [61,121–123]. A straight acoustic cavity with a rigid wall is coupled from both ends
to bimorph diaphragms, as shown in Figure 3a. The periodical structure consists of an array of
identical composite units that are fabricated by depositing PZT layers on both surfaces of the Brass
disk. The composite cell is sensitive to the effect of actuated voltage, and the stiffness along the
propagation path will be tuned. Meanwhile, these two bimorph diaphragms play different roles as
sensor and actuator in adjusting the transmission of sound waves (Figure 3b). When an incident
acoustic pressure is exerted on the cell, the sensing bimorph will measure the sound signal and submit
it to the actuating bimorph by a feedback control circuit with a controller and amplifier. Then,
the effective mass density of the cell could be tuned actively by changing the stiffness of the bimorphs
via the power amplifier. The subsequent analysis and experimental results were demonstrated by this
research group as well [122]. The sample was measured by being mounted on an impedance tube,
and it showed homogenized dynamic properties over a frequency bandwidth approaching 3 kHz.
In Figure 3c, the PZT layers operating as sensor and actuator can also be used in the sonic acoustic
domain by bonding on both sides of a Brass plate [124].

Another AAMM is composed of a square of ultra-thin foil fixed by a rigid boundary; a pair of
piezoelectric patches are attached to the center of the foil [55]. The finite element method and an
impedance tube were used to numerically and experimentally study sound transmission behaviors,
respectively. The sound transmission loss (STL) [125] can be calculated by:

STL = 10 log10(Win/Wtr) (7)
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where Win and Wtr are the energy of incidence and transmission acoustic waves, respectively.

Appl. Sci. 2018, 8, x 6 of 21 

STL = 10log10(1 + (
𝜔𝜌𝑒𝑓𝑓

2𝜌0𝑐0

)
2

) (8) 

From Equation (8), we can see that when the effective dynamic mass density 𝜌𝑒𝑓𝑓  is 

approaching infinity near the resonant frequency, the STL peak will be observed. Similarly, a two-

dimensional AMM consisting of a substrate with arrays of piezoelectric patches fixed on the both 

sides of the plate is proposed by Chen et al. [115], in which a locally resonant bandgap arises because 

the internal oscillators between shunting inductors and piezo-patches split the dispersion curves.  

Bonding membranes with piezoelectric materials is a valid mean of controlling metamaterials 

dynamically.  

 

Figure 3. Schematic of (a) The active composite sample; (b) The operation mechanism of the proposed 

cell. Adapted with permission from [121], AIP Publishing, 2012. (c) The construction of the suggested 

one-dimensional (1D) acoustic metamaterial (AMM) with one unit cell of the material highlighted. 

Adapted with permission from [124], AIP Publishing, 2017. (d) The active composite sample. Adapted 

with permission from [126], APS, 2013. 

DMRs and Helmholtz resonators are widely applied in achieving negative mass density and 

negative bulk modulus. Composite AMMs with double negativities are proposed to achieve new 

features beyond single negative characteristics. An AAMM with a hard core coated by PZT composite 

materials was designed by Jin et al. [127]. Negative mass density and elastic modulus occurs 

simultaneously by switching the electrical boundaries of the PZT material. The piezoelectric constant 

e33 is confirmed to have a significant influence on the frequency range with an effective negative 

modulus. A feasible design on sound insulation was reported in a study by Liang et al. [128], in which 

acoustoelastic surface modes with double negativity behaviors were realized. The idea is to curve 

periodic slits into a perfect rigid screen and fill in the holes with elastic material. Similar to the Drude-

like metamaterial, the transmittance gap of the sample could be changed to control surface waves by 

adjusting the inclusion, lattice constant, and scale of slits. Another example is illustrated by Rogelio 

(a)

(d)(c)

(b)

Figure 3. Schematic of (a) The active composite sample; (b) The operation mechanism of the proposed
cell. Adapted with permission from [121], AIP Publishing, 2012. (c) The construction of the suggested
one-dimensional (1D) acoustic metamaterial (AMM) with one unit cell of the material highlighted.
Adapted with permission from [124], AIP Publishing, 2017. (d) The active composite sample. Adapted
with permission from [126], APS, 2013.

According to Equation (6), the resonance can be controlled by the varying value of the equivalent
inductor. Then, the STL properties can be modulated actively. Considering that the transmitted wave
is a plane wave, the STL can be further expressed as [55]:

STL = 10 log10 (1 +
(

ωρe f f

2ρ0c0

)2
) (8)

From Equation (8), we can see that when the effective dynamic mass density ρe f f is approaching
infinity near the resonant frequency, the STL peak will be observed. Similarly, a two-dimensional
AMM consisting of a substrate with arrays of piezoelectric patches fixed on the both sides of the
plate is proposed by Chen et al. [115], in which a locally resonant bandgap arises because the internal
oscillators between shunting inductors and piezo-patches split the dispersion curves.

Bonding membranes with piezoelectric materials is a valid mean of controlling
metamaterials dynamically.

DMRs and Helmholtz resonators are widely applied in achieving negative mass density
and negative bulk modulus. Composite AMMs with double negativities are proposed to achieve
new features beyond single negative characteristics. An AAMM with a hard core coated by PZT
composite materials was designed by Jin et al. [127]. Negative mass density and elastic modulus
occurs simultaneously by switching the electrical boundaries of the PZT material. The piezoelectric
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constant e33 is confirmed to have a significant influence on the frequency range with an effective
negative modulus. A feasible design on sound insulation was reported in a study by Liang et al. [128],
in which acoustoelastic surface modes with double negativity behaviors were realized. The idea is
to curve periodic slits into a perfect rigid screen and fill in the holes with elastic material. Similar to
the Drude-like metamaterial, the transmittance gap of the sample could be changed to control surface
waves by adjusting the inclusion, lattice constant, and scale of slits. Another example is illustrated
by Rogelio et al. to show that the double negative properties of airborne sound transmission can be
manipulated by simple scattering units without membranes [129]. The acoustic structure consists
of arrays of cylindrical cavities embedded in a two-dimensional waveguide, and each scatterer is
surrounded by anisotropic fluid-like metamaterials. It should be noted that the scatterers penetrate the
upper surface of the waveguide. As the sound speed in scatterers is smaller than that in the background
fluid, the wavelength in the shells is shorter than that of the background. When oscillator behavior
occurs in the shells due to the acoustic pressure, a series of resonances could be induced consequently.

Most double negative AMMs are mainly designed by fastening elastic membranes in the intervals
of an array of Helmholtz cavities, which manipulate the mass density and the bulk modulus,
respectively. However, the control methods above are mutually independent, so the compressibility of
the resonator changes only the modulus, and the deformation of the membrane alerts only the
density [130]. Since piezoelectric plates could efficiently adjust both negative effective density
and negative bulk modulus in certain frequency ranges, Popa et al. proposed a new method of
adjusting these two parameters simultaneously [126], in which an electrode is fixed in a hole drilled
in the plastic frame that is fabricated by felt fabric to attenuate the vibration, as shown in Figure 3d.
When the vibrations transmit through the fabric frame directly, the coupling in the system will
be restrained consequently, and the intracell instability will evidently decrease as well. Since the
piezoelectric membrane is actuated actively and generates a strong resonance, the parameters of the
unpowered unit are constants, while those of the powered unit vary within a large frequency range.
Then, the sample can be dynamically controlled by exerting an external active system to achieve
varying properties.

A very thin AMM slab similar to the above structure was designed by Popa et al. as well [131],
in which the sample consisted of an array of membranes fastened between identical Helmholtz
resonators to change its local acoustic response. The transmission characteristics of these units could
be adjusted by the digital electronics. Moreover, the non-reciprocity and nonlinearity of AAMM is
achieved [108]. The novel structure is a promising candidate to operate as a lens and a beam steering
device at the same time. The digital manipulating manner renders a feasible way of actively controlling
the AMM quantitatively and immediately.

3. Mechanically Controlled Acoustic Metamaterials

3.1. Plunger Control

In the AMMs with piezoelectric plates, multiple materials were used to construct the AMMs with
novel properties [56]. The performance of an array of Helmholtz resonators with constant parameters
has been studied extensively [132,133]. Since the traditional Helmholtz resonators are characterized
by stationary responses and operate at fixed frequency ranges, their application is impractical in an
automotive environment.

Then, the dynamic regulation of the designed composite structures is an urgent matter to control
low frequency noise. Lee et al. designed tunable Helmholtz resonators manipulated by the mechanical
method [130], in which an array of side tubes connected to the wall of a main duct are tuned by the
terminal plungers, as shown in Figure 4a. With the procession or retreat of the plungers, the effective
compressibility of air in the configuration will be changed accordingly. Local resonances occur around
the eigenfrequencies and generate a varying compressibility from −∞ to +∞ continuously, as shown
in Figure 4b. Then, the effective bulk modulus of this acoustic construction can be achieved from
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negative to positive. At the lower frequency edge of each period, the compressibility is negative,
and the sound became evanescent, so a stop band occurs in this range. The side Helmholtz resonators
model renders a feasible pattern to solve the gap problems and realize the wide-range tunability
uninterrupted. The tunable mechanism is suitable for adjusting the resonant-cavity type AMMs by
changing the volume of fluid inside. However, there are still two problems with the control strategy.
The tubes distance d only affects the width of the resonance; it cannot change the period of effective
compressibility βr. As the mechanical method is a passive way to adjust the transmission spectrum,
the accuracy of the regulation is limited. Then, a feedback circuit can be used in this equipment to
control the displacement of the plungers quantitatively.
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3.2. Pressurized Air Control

The membrane-type AMM with negative dynamic mass and a negative bulk modulus is
an important kind artificial compound structure that can effectively absorb or reflect acoustic
waves [56,97,134–139]. The structures consisting of DMRs have been explored intensively for
surpassing the acoustic mass law. The DMR is composed of a tensioned elastic membrane whose
boundary is fixed on a solid ring, and a platelet is pasted to the center of the membrane. The effective
density Deff of the DMR could be calculated with De f f = 〈σzz〉/〈az〉, where σzz and az are the stress
and acceleration normal to the membrane plane at rest, respectively [136]. By properly designing
the negative effective mass density, the DMRs show a distinct advantage related to increasing sound
insulation at low frequencies [56,140].

The transmission properties in the low-frequency range largely rely on its first two eigenmodes.
Transmittance peaks arise at resonant frequencies, and transmittance dips occur at anti-resonance
frequencies, respectively [141]. As a result, the resonant frequencies can be altered by adjusting
the structure parameters of the configuration [142]. Super absorbers for low-frequency have been
demonstrated by Mei et al. [143], in which thin elastic films decorated with designed patterns of rigid
platelets effectively reduce the sound transmission. An active membrane-type metamaterial with
centralized actuation is shown in Figure 5a [137], in which two vertically stacked DMRs are mounted
onto a frame, and the whole configuration needs to be airtight. When an external source of pressurized
air is exerted to alter the static pressure in the cabin by channels inside the frame, large nonlinear
deformation could be acquired, as shown in Figure 5b. Hence, the eigenmodes and the transmission
property of the sample will be changed. The peak of the STL curve shifts to a higher frequency with
the increase of pressure difference β0 (Figure 5c).
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Figure 5. A unit cell of the proposed active AMMs (AAMM) with an inflatable double membrane
AMM element. (a) Isometric view of the square AAMM unit cell; (b) Cross-sectional view through
the AAMM unit cell; (c) Experimental and theoretical normal sound transmission loss (STL) for the
double AMM at two different inflation pressure differences β0. Adapted with permission from [137],
Elsevier, 2016.

3.3. Mechanical Deformation Control

An adaptive AMM whose transmission properties are adjusted by mechanical deformation is
proposed by Wang et al. [144]. Comparing with DMRs, the elastic membranes around the plate are
replaced by flexible beams in this structure, as shown in Figure 6a. The black regions in the picture
indicate voids in the structure. When a compressive strain ε is exerted in the out-of-plane direction,
the beams will deform (Figure 6b). Experimentally measured transmittance in a sample with 6 ×
3 unit cells at different applied prestrains is shown in Figure 6c. The resonant frequency of the sample
changes with the varying strain consequently. Furthermore, this class of configurations can also be
used as an acoustic switch.
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Figure 6. Tunable acoustic metamaterial: (a) Undeformed configuration comprises resonating units
dispersed into an elastomeric matrix; (b) Deformation of the structure with a compressive strain in the
vertical direction; (c) Experimental transmittance of the sample with different prestrains. Adapted with
permission from [144], APS, 2014.

4. Active Control with Electric and Magnetic Biasing

4.1. Active Control of Membrane-Type Acoustic Metamaterials by Electrode

Another AAMM consisting of hollow cylindrical resonators is controlled by an external electric
field to achieve negative effective density and tunable transmission coefficient [141]. This AMM is
fabricated by a DMR as the bottom and a mesh structure as its top, as shown in Figure 7. The disk
is coated with a layer of gold that can be regarded as a platelet electrode. The mesh structure is
also coated with gold film to become a fishnet electrode. Therefore, both of them will operate as the
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electrodes of a plate capacitor when direct current (DC)/alternating current (AC) voltage is exerted
between the mesh structure and the central disk. However, theories of the modulation by DC and AC
voltage are quite different, because DC voltage exerts a force on the unit, but AC voltage offers a
vibration source.Appl. Sci. 2018, 8, x 10 of 21 
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4.2. Active Control of Composite Acoustic Metamaterials by Electromagnets

Electromagnets are another promising candidate for designing AAMM because of their tunable
properties by voltage. A spatial sound modulator based on an active acoustic metasurface is designed
and realized by Ma et al. [145]. As shown in Figure 8, the mode of membrane can be electrically
switched from “ON” to “OFF”, two states of the modulators. Switching is achieved by switching the
DC voltage across the electromagnet.
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Composite AMMs, coupling the characteristics of negative mass density and a negative bulk
modulus, directly affect the speed of sound in many continuous domains. Chen et al. designed a double
negative AMM manipulated by electromagnets [146]. They fabricated a periodical array of flexible
membranes fastened on a main duct and an array of side holes drilled into the duct wall, as shown in
Figure 9a. The membranes offer negative mass density with the acoustic waves transmitting (Figure 9c).
Meanwhile, the holes evenly distributed among the membranes generate a negative bulk modulus.
Electromagnets are applied to transform the membranes and change the interior tension when DC
voltage is exerted. Different DC voltages could lead to varying transmission spectra, and a double
negative pass band will form at their resonant frequencies (Figure 9b).
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stiffness of the membranes with electromagnets; (b) Experimental transmissions; and (c) Simulated
equivalent density of the tunable double-negative metamaterials under different driving voltages
supplied to the electromagnets. Reproduced under a Creative Commons Attribution 4.0 International
License [146] Copyright 2016, Nature Publishing Group.

5. Tunable Acoustic Metamaterials Based on Other Mechanisms

Except for the piezoelectric, mechanical, electric, and magnetic control methods, some new
mechanisms have been introduced in realizing tunabilities in acoustic metamaterials.

5.1. Active Acoustic Metamaterials Biased with Magnetic Fields

Research on actively tunable metamaterials based on elastic membranes has gained attention
recently due to the negative mass density that can be achieved by membrane-type metamaterials [146].
The structural characteristics of the magnetorheological elastomer can be changed significantly by
the external uniform magnetic field [147], the elastomers with ferroferric oxide (Fe3O4) particles
embedded in silicon rubber have great potential to modulate the local resonant band gaps or the Bragg
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scattering characteristics of AMMs. One of the samples is fabricated by Xu et al. [148], in which the
magnetorheological elastic membrane is fixed by a non-magnetic metal tube, and the propagation
properties in terms of the structure are achieved experimentally (Figure 10a). The magnetic field
surrounding the sample can be decomposed into the identical radial portion and the gradient
axial portion. The distribution of the axial magnetic field gradient is shown in Figure 10b; then,
the experimental transmission loss and effective mass density spectrums are shown in Figure 10c,d as
well. With the location moving to the edge of the magnet, the axial magnetic field gradient increases,
and the resonant frequency shifts to a higher frequency gradually at the zero-density point. It should
be noted that the properties of this configuration are insensitive to the uniform magnetic field.

Appl. Sci. 2018, 8, x 12 of 21 

and the resonant frequency shifts to a higher frequency gradually at the zero-density point. It should 

be noted that the properties of this configuration are insensitive to the uniform magnetic field. 

 

Figure 10. Tunable AMMs with varying magnetic field gradient. (a) Schematic front view of the 

membrane structure (the elastic membrane fabricated with magnetorheological elastomers is fixed by 

the support frame); (b) The magnetic field gradient varies along the axial direction. Inset: The 

schematic of test points; (c) The measured STL; and (d) Effective mass density spectra in different 

gradient magnetic fields. Adapted with permission from [148], AIP Publishing, 2014. 

Another membrane-type sound absorber with magnetic negative stiffness is demonstrated using 

a viscoelastic-coated membrane with a light iron plate fixed on its center, and the membrane is 

fastened on the edge of a container as its top [149]. A cylindrical magnet is assembled on the bottom 

of the container and directly under the plate. The absorption spectrum could be tuned by changing 

the specific acoustic resistance of the membrane or the total stiffness of the absorber. On the basis of 

this configuration, actively controlled AMM can be fabricated by replacing the magnet by an 

electromagnet. 

5.2. Fluid-Filled Acoustic Metamaterial 

Unlike the extensively studied technique to achieve actively controlled AMMs by changing the 

tension of the membrane and reforming the compressibility of fluid in the cavities, some new types 

of manipulating method have also been proposed theoretically and implemented experimentally. Jin 

et al. proposed a novel plate with hollow pillars with existing whispering-gallery modes (WGMs) 

[75]. By tuning the inner radius of the pillar, these modes can merge inside both Bragg and low-

frequency gaps, which can be used for phononic crystal and AMM applications. Filling the hollow 

parts with a fluid gives rise to new localized modes, which depend on the physical properties and 

height of the fluid. Thus, these modes can be actively controlled for the purpose of multichannel 

multiplexing [150]. Water and mercury are filled in the hollow, respectively, in the lab (Figure 11b). 

The upper end of the vertical bar is in the frequency of a WGM when the inner hole is empty, and the 

lower end is in the frequency when the inner hole is entirely filled with liquid. The upper frequency 

range that is limited by two horizontal cyan lines is the Bragg band gap, and the lower one is the low-

frequency band gap. When the plate’s hollow pillars are connected by thin bars, the Bragg band gap 

can be tuned to be much wider and extend to a subwavelength region, and the low-frequency gap 

can be shifted to an extremely low frequency [151]. 

Figure 10. Tunable AMMs with varying magnetic field gradient. (a) Schematic front view of the
membrane structure (the elastic membrane fabricated with magnetorheological elastomers is fixed by
the support frame); (b) The magnetic field gradient varies along the axial direction. Inset: The schematic
of test points; (c) The measured STL; and (d) Effective mass density spectra in different gradient
magnetic fields. Adapted with permission from [148], AIP Publishing, 2014.

Another membrane-type sound absorber with magnetic negative stiffness is demonstrated using
a viscoelastic-coated membrane with a light iron plate fixed on its center, and the membrane is fastened
on the edge of a container as its top [149]. A cylindrical magnet is assembled on the bottom of the
container and directly under the plate. The absorption spectrum could be tuned by changing the
specific acoustic resistance of the membrane or the total stiffness of the absorber. On the basis of this
configuration, actively controlled AMM can be fabricated by replacing the magnet by an electromagnet.

5.2. Fluid-Filled Acoustic Metamaterial

Unlike the extensively studied technique to achieve actively controlled AMMs by changing the
tension of the membrane and reforming the compressibility of fluid in the cavities, some new types of
manipulating method have also been proposed theoretically and implemented experimentally. Jin et al.
proposed a novel plate with hollow pillars with existing whispering-gallery modes (WGMs) [75].
By tuning the inner radius of the pillar, these modes can merge inside both Bragg and low-frequency
gaps, which can be used for phononic crystal and AMM applications. Filling the hollow parts with a
fluid gives rise to new localized modes, which depend on the physical properties and height of the
fluid. Thus, these modes can be actively controlled for the purpose of multichannel multiplexing [150].
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Water and mercury are filled in the hollow, respectively, in the lab (Figure 11b). The upper end of the
vertical bar is in the frequency of a WGM when the inner hole is empty, and the lower end is in the
frequency when the inner hole is entirely filled with liquid. The upper frequency range that is limited
by two horizontal cyan lines is the Bragg band gap, and the lower one is the low-frequency band gap.
When the plate’s hollow pillars are connected by thin bars, the Bragg band gap can be tuned to be
much wider and extend to a subwavelength region, and the low-frequency gap can be shifted to an
extremely low frequency [151].Appl. Sci. 2018, 8, x 13 of 21 
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5.3. Temperature-Controlled Acoustic Metamaterials

The intensive research on the influence of the fluid temperature on the features of sonic resonators
is significant to achieve multiple functions such as phase modulation and acoustic wave transmission
control. It is well known that the properties of a fluid are largely dependent upon its temperature.
On the other hand, attaching side Helmholtz resonators to duct walls is a feasible way to attenuate
the acoustic energy in narrow ranges around the resonant frequencies [84]. Then, a one-dimensional
composite metamaterial is proposed by Xia et al. [152], in which a rigid wall acoustic duct is connected
with an array of Helmholtz resonators and filled with water to realize sound insulation, as shown in
Figure 12a. The sensitive shifts of the structure properties with frequencies in different temperatures
are described in Figure 12b,c as well. Simultaneously, a negative effective bulk modulus is achieved
near the resonant frequency. The properties of AMMs changed by the temperatures of internal fluid
render a new method to modulate the transmission of sound effectively, but the manipulation of
altering temperature rapidly and accurately is an urgent problem to be solved.

5.4. Lossy Acoustic Metasurfaces with Tunable Asymmetric Transmission

Asymmetric acoustic wave propagation is a new research direction to manipulate the wavefront
of transmission and reflection [153,154]. The sample comprising an array of lossy gradient-index
metasurfaces (GIM) is shown in Figure 13a, and every unit is fabricated by four arranged Helmholtz
resonators. The transmission properties of the units can be adjusted by changing the structure
parameters of the cavities. Experimental configuration is installed in an acoustic field, and θ means
the rotation angle of the sample deviated from the initial direction. The energy contrast in Figure 13b
indicates that there is a large asymmetry occurring in a specific incidence angular range. The symmetry
property in a large angle region is caused by the impedance mismatch of the positive direction [155].
With an actuating force controlled by the external circuit, active tunable transmission properties could
be achieved by changing the rotation angel of the GIM. In addition, the phase of the above units can
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be tuned from 0 to 2π with the transmittance approximating to 1, which makes the unit a promising
candidate to twist acoustics.
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Adapted with permission from [152] Elsevier, 2016.
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APS, 2017.

6. Conclusions

Manipulating acoustic waves with metamaterials and/or metasurfaces is helpful in realizing
subwavelength acoustic devices and systems. However, the narrow working band of most of
the fabricated metamaterials due to the local resonant nature of acoustic metamaterials may limit
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their practical application. In this review, we provide a survey of the recently developed tunable
acoustic metamaterials based on various modulation techniques, including acoustic metamaterials
with piezoelectric materials, mechanically controllable components, and with electric and magnetic
biasing. Such active AMMs are promising candidates in many applications, including the attenuation
of acoustic waves, invisibility cloaking, and acoustic wavefront engineering such as focusing. It is
worth noting that intensive attempts on tunable AMMs have been proposed to actively modulate
sound transmission/reflection in sonic, infrasonic, and ultrasonic fields. These studies are merely
focused on theoretical and numerical modeling, as well as experimental demonstration; there is still a
long way to go in the practical application of AAMMs.
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