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Abstract: In this paper, an improved equivalent circuit model (ECM) considering partial
electrochemical properties is developed for accurate state-of-charge (SOC). In the proposed model,
the solid-phase diffusion process is calculated by a simple equation about particle surface SOC,
and the double layer is simulated by two resistance-capacitance (RC) networks. To improve the
global accuracy of the model, a subarea parameter-identification method based on particle swarm
optimization is proposed, in order to determine the optimal model parameters in the entire SOC
area. Then, an SOC estimator is developed based on extended kalman filter. The comparative study
shows that a model considering solid-phase diffusion with two RC networks is the best choice.
Finally, experimental results show that the accuracy of the proposed model is one times higher than
that of the traditional ECM in the low SOC area, and is able to estimate SOC with errors less than
1% in the entire SOC area. Furthermore, estimation results of two types of batteries under two
working conditions indicate that the developed model and SOC estimator have satisfactory global
accuracy and guaranteed robustness with low computational complexity, which can be applied in
real-time situations.

Keywords: lithium-ion batteries; simplified electrochemical model; state of charge estimator;
extended kalman filter

1. Introduction

Electrochemical energy storage systems (EESS) are power sources for many devices, e.g., cell
phones, laptops, medical devices, electric vehicles (EVs), smart grid systems, etc. [1]. With a high
demand of superior EESS, lithium-ion batteries (LIBs) have gained increasing popularity over other
existing typical electrochemical batteries due to their favorable performances in high energy density,
lightweight, long cyclic lifetime, low self-discharge rate, and almost zero memory effect [2,3]. However,
LIB is a nonlinear dynamic system with a very narrow operating range, and some incorrect operations
could lead to irreversible damage and shortened life [4–6]. Therefore, a reliable and effective battery
management system (BMS) is required to optimize performance, improve safety and prolong life
of LIBs. The critical state estimation, such as state of charge (SOC), state of health, and state of
power, is fundamental in a BMS. Specifically, the SOC is an essential indicator used to regulate the
operating decisions and to avoid overcharge or overdischarge [7]. However, the SOC cannot be directly
measured by sensors, and the battery itself is highly nonlinear, which makes accurate SOC estimation
very difficult [8].
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1.1. Literature Review

Since the SOC estimation is essentially based on the battery model for most SOC estimation
methods, an accurate battery model and matched model parameters are the prerequisite for accurate
SOC estimation. Obviously, model accuracy is closely related to model structure and model parameter
identification algorithm. The equivalent circuit models (ECMs) are the most common battery models
adopted in the actual BMS because of few computations and acceptable precision [9]. The popular
and widely reported ECMs include the Rint model, Thevenin model, partnership for a new generation
of vehicles (PNGV) model, and general nonlinear (GNL) model [10–12], which are all based on
resistance-capacitance (RC) networks with different orders. The model structure and electronic
component values of the ECM directly affect the features and accuracy of the model. Ref. [13]
investigated eleven ECMs and stated that the second-order RC models are the best choice owing to
their balance of accuracy and reliability. However, ECMs are not empirical models, which means the
model parameters have no clear electrochemical meaning [14]. Therefore, the model errors may be
large, especially in low SOC area (SOC lower than 20%) [15]. Generally, the empirical model needs
large computations and memories due to its complex equations, and currently it is still hard to use in a
BMS for on-line estimation and real-time control. Based on the structure of ECM, Ref. [15] proposed an
extended equivalent circuit model (EECM) considering partial electrochemical properties. However,
the reliability of parameter identification is doubtful because nine parameters need to be identified in
proposed EECM.

The most popular existing approaches for parameter identification of ECMs include the genetic
algorithm (GA) [16], particle swarm optimization (PSO) algorithm [17], and the least-squares
method [18]. The appropriate identification algorithm should match the battery model to pursue the
balance between accuracy and computation. Moreover, the local optimization problem should also be
avoided in the process of model parameter identification.

We could conclude that an improved ECM considering partial electrochemical properties is
a better choice to balance accuracy and computational burden for online application. Moreover,
appropriate model parameter identification and SOC estimation algorithm are essential for improving
the accuracy and robustness of SOC estimation.

1.2. Main Contributions

This paper aims at developing an onboard battery model considering partial electrochemical
properties and an accurate and robust SOC estimator in the entire SOC area. The unique contributions
brought about in this paper are the following.

(1) Four typical ECMs and four improved ECMs considering partial electrochemical properties are
compared under the new European Driving Cycle (NEDC) and the dynamic stress test (DST)
working conditions to obtain a more suitable battery model for the entire SOC area.

(2) A subarea parameter-identification method based on PSO is proposed to improve the global
model accuracy in the entire SOC area.

(3) A SOC estimator based on extended kalman filter (EKF) for our proposed model is developed,
and its accuracy and robustness are verified by experiments.

1.3. Organization of the Paper

The rest of this paper is organized as follows: Section 2 describes the developed model. In Section 3,
a model-parameter identification method in the entire SOC area is proposed, and model errors are
compared for various models to obtain a more appropriate model. Section 4 describes an EKF-based
SOC estimator for the developed model, and its advantages are verified by experiments. Finally,
conclusions drawn and the closing remarks are presented in Section 5.
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2. Electrochemistry-Based Equivalent Circuit Model

2.1. Single-Particle Model

The pseudo-two-dimensional model (P2D) are widely used to describe the electrochemical
behavior of lithium-ion batteries [14,19,20]. However, P2D is hard to use in onboard cases because
of its complexity. Therefore, a series of model simplification attempts were made to reduce the
computational complexity. The single-particle model (SPM) is a simplified model that is derived by
approximating the electrode by a single spherical particle, and is becoming a popular model in recent
years for SOC estimation [21,22]. The schematic of the SPM, which is illustrated in Figure 1.
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Figure 1. Schematic of the single-particle model (SPM) (modified from Reference [23]). 
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Based on Reference [15], the terminal voltage (Ut) can be expressed as:

Ut =
(

UP

(
csur f ,r

)
− UN

(
csur f ,r

))
− U0 − UDL (1)

where csur f ,r is lithium concentration at electrode particle surface, UP

(
csur f ,r

)
and UN

(
csur f ,r

)
are

the surface potential of positive electrode and negative electrode, respectively. U0 is the sum of the
liquid phase voltage drop caused by the separator and electrolyte, and the voltage drop of the collector.
UDL is the voltage drop of the double layer, and it can be determined as:

UDL = IRCT

(
1 − e(

−t
τDL

)
)

(2)

where RCT is the resistance of the double layer, and τDL is time constant.
Moreover, Equation (1) can be rewritten as:

Ut =
(

UP

(
SOCsur f ,r

)
− UN

(
SOCsur f ,r

))
− U0 − UDL (3)
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where SOCsur f ,r is the SOC at particle surface. However, SOCsur f ,r could not be directly determined,
and it can be expressed as:

SOCsur f ,r = SOCavg + ∆SOC (4)

where SOCavg is the average SOC, which is represented by the average concentration of Li+ in the
electrode particle (Cmean). ∆SOC is the difference between SOCavg and SOCsur f ,r, which is related to
the difference of csur f ,r and Cmean in solid-phase diffusion process. According to Reference [15], ∆SOC
follows the Equation (5):

∆SOC = KSD IF

(
1 − e(

−t
τSD

)
)

(5)

where KSD is concentration difference parameter in solid diffusion, IF is the faradaic current, and τSD
is time constant.

When the traditional ECM is used for SOC estimation, the open circuit voltage (OCV) of the
battery UOCV is looked up by the SOCavg with the OCV-SOC curve. However, SOCavg could not

reflect the solid-phase diffusion. In this study, we used UOCV

(
SOCsur f

)
instead of UOCV

(
SOCavg

)
,

and Equation (3) is hence rewritten as:

Ut = UOCV

(
SOCsur f

)
− U0 − UDL (6)

It is noted that the difference between the surface concentration csur f and the average
concentration Cmean indicates the solid-phase diffusion results. csur f reflects the dynamic process
of lithium-ion, which indirectly reflects the process of solid-phase diffusion. SOCsur f is closely
related to csur f . Therefore, our model includes the solid phase diffusion process and is a simplified
electrochemical model.

2.2. ECM Considering Electrochemical Properties

A typical ECM generally uses the RC network comprising resistors and capacitors to simulate
the dynamic characteristics of the battery, and these ECMs with n RC-networks is called the nRC
model hereafter. The terminal voltage of the battery determined by the Kirchhoff voltage law can be
expressed as [13,24]:

Ut = UOCV(SOC)− IR0 −
n

∑
i=1

Ri

(
1 − e−t/RiCi

)
(7)

where R0 is ohmic resistance, I is charge or discharge current, Ri and Ci are the i-th polarization
resistance and i-th polarization capacitance, respectively.

Comparing Equation (7) with Equation (6), we can see that the model equations are very similar,
the small difference is that the Equation (7) uses the SOCavg, while the Equation (6) uses the SOCsur f .
Combining traditional ECM and considering the solid-phase diffusion process inside the battery, an
electrochemistry-based ECM is developed, and the schematic of this model is shown in Figure 2.
In this model, the RC network is used to simulate the influence of the double electric layer, and a
simple equation is used to calculate the solid-phase diffusion process. The number of RC networks
corresponds to the number of double electric layers. To clarify the effect of the double layer and
solid-phase diffusion on the model accuracy, eight models are chosen for comparison, and their
mathematical equations are shown in Table 1. In Table 1, nRC represents ECMs with n RC-networks,
EnRC (n = 0, 1, 2, 3) represents ECMs considering electrochemical properties. Obviously, n is the
number of electric double layers in the model. In Section 3, model parameters will be identified, and
errors of eight models will be compared to choose the right model.
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Table 1. Discretization equations of various resistance-capacitance (RC) models.

Model Name Discretization Equations (Discharge Is Negative) Number of Parameters

0RC Ut(k) = UOCV
(
SOCavg(k)

)
+ IR0 2

E0RC


Ut(k) = UOCV(SOCsurf(k)) + IR0
SOCsurf(k) = SOCavg + ∆SOC(k)

∆SOC(k) = ∆SOC(k − 1)e−
Ts

τSD + KSD I
(

1 − e−
Ts

τSD

) 4

nRC:
1RC
2RC
3RC


Ut(k) = UOCV

(
SOCavg

)
+ IkR0 +

n
∑

i=1
Ui(k) (n = 1, 2, 3)

Ui(k) = Ui(k − 1)e−
Ts
τi + IkRi

(
1 − e−

Ts
τi

) 1RC: 4
2RC: 6
3RC: 8

EnRC:
E1RC
E2RC
E3RC



Ut(k) = UOCV
(
SOCavg(k)

)
+ IkR0 +

n
∑

i=1
Ui(k) (n = 1, 2, 3)

Ui(k) = Ui(k − 1)e−
Ts
τi + IkRi

(
1 − e−

Ts
τi

)
SOCsurf(k) = SOCavg + ∆SOC(k)

∆SOC(k) = ∆SOC(k − 1)e−
Ts

τSD + KSD I
(

1 − e−
Ts

τSD

)
E1RC: 6
E2RC: 8
E3RC: 10

3. Model Parameter Identification and Comparison

3.1. Experiments

The experiments were performed using a commercial LIB with cathode of LiNixCoyMn1−x−y

(NCM). To fully verify the effectiveness of the proposed model, two types of LIBs were selected for
experiments. The basic parameters of two LIBs are listed in Table 2. As shown in Figure 3a, the
experiments were conducted in a battery tester made by DIGATRON which has a current range
of −100 A to +100 A and a voltage range of 0 V to 20 V. The voltage accuracy is 1 mV and the current
accuracy is ±0.1% full scale. A software (BTS-600, Digatron Power Electronics, Aachen, Germany)
installed on PC is used to control the charging and discharging of the battery according to the given
operating conditions, and record the terminal voltage and current of the battery at a frequency of 1 Hz.
The acquired data was used for model parameter identification and SOC estimation.
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Figure 3. Experimental equipment and results. (a) Schematic of the cell test system; (b) Measured
current under European Driving Cycle (NEDC) working condition; (c) Measured voltage under NEDC
working condition.

Capacity and hybrid pulse power characterization (HPPC) experiments [25] were first performed
to determine the capacity and OCV of LIBs. The capacity test process is as follows: Place the test LIB
in the temperature chamber at 25 ◦C for 3 h. Then, discharge the LIB at a constant discharge current
1/3 C to 2.5 V. After waiting for 1 h, fully charge the LIB using the constant current-constant voltage
(CC-CV) method. In this method, the LIB is charged at a constant current (1/3 C) until the voltage
reaches 4.15 V, and then, the LIB is charged at a constant voltage until the charging current falls to
1.6 A; then, charging is paused for 1 h. This process is repeated three times, and the mean value of the
test capacity is chosen as the battery capacity. The HPPC test is designed to determine the open circuit
voltage (OCV). In this test, a series of pulse power sequences are provided to the fully charged battery.
Following one pulse power sequence, the battery is discharged to a SOC of 97.5% at 1/3 C and rested
for 3 h before the next pulse power sequence is provided. The battery is tested at decrements of 2.5%
SOC (10% when the SOC is less than 90%) until the cutoff voltage of 2.5 V is reached.

Then, the two test LIBs were subsequently fully charged at 1/3 C. The discharge experiment was
then performed, until the batteries were fully discharged at 1/3 C under the NEDC and DST working
cycles until the cutoff voltage of 2.5 V is reached, respectively. It is noted that the charge and discharge
currents are controlled by the program according to the cyclic working curve. The current and
voltage curves under NEDC cycles on Cell #1 obtained from the experimental results are displayed in
Figure 3b,c. The experimental data of Cell #2 under two cycle conditions are not listed here for brevity.

Table 2. Main parameters of experimental lithium-ion batteries (LIBs).

Type Nominal Capacity (Ah) Lower Cut-Off Voltage (V) Upper Cut-Off Voltage (V) Maximum Charge Current (A)

Cell #1 32.5 2.5 4.15 65
Cell #2 40 2.8 4.2 100
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3.2. Model Parameter Identification Using PSO

For the nRC and EnRC, the model parameters that need to be identified and optimized can be
expresses as:

Vj =
[

R+
0 R−

0

]
(if the model is 0RC)

Vj =

[
R+

0 R−
0 τ1 R1︸ ︷︷ ︸

1st RC

τ2 R2︸ ︷︷ ︸
2nd RC

· · · τn Rn︸ ︷︷ ︸
n−th RC

]
(if the model is nRC, n = 1, 2, 3)

Vj =

[
R+

0 R−
0 τ1 R1︸ ︷︷ ︸

1st RC

τ2 R2︸ ︷︷ ︸
2nd RC

· · · τn Rn︸ ︷︷ ︸
n−th RC

KSD τSD

]
(if the model is EnRC)

(8)

From Equation (8), it can be easily found that the identification parameters of the EnRC model
are only two more than that of the nRC model. In the process of identification and optimization, the
closer the model terminal voltage to the measured terminal voltage, the more accurate are the model
parameters. Therefore, the root-mean-square error (RMSE) between the model terminal voltage and
the measured terminal voltage can be employed as the fitness value to assess the model parameters and
acquire the optimal model parameters that make the model voltage closest to the measured voltage.
The objective function for the optimization can be expressed as:

min : g(V) =

√
1
n

n

∑
k=1

(ui,k(V)− ûi,k)
2, (9)

where g(V) is the objective function, ui,k is the model voltage, and ûi,k is the measured voltage.
During parameter optimization, the upper and lower bounds of the parameters can be obtained

by experimental results. The bounds of the same parameters for different models are maintained the
same for fair comparison.

In this study, the PSO algorithm is used for global optimization for parameter identification
of the above model. The PSO is a typical swarm intelligence algorithm, inspired by flocks of birds
in search for food; it has been successfully applied for artificial neural-network training, function
optimization, and pattern classification [26]. Because of the emergence of several variants over time,
certain researchers have attempted to define a standard PSO version, with updates to incorporate
the latest advances. The most recent standard PSO version was defined in 2011 and is referred to as
the Standard PSO2011 (SPSO2011). The following is a brief description of the basic principles of PSO
algorithm, and detailed descriptions of the PSO can be found in Reference [27].

Each particle in the algorithm represents a potential solution to the problem. The state of each
particle is represented by its position x, velocity v, and fitness. In the iteration process, particle states are
continuously updated until the termination criteria are met. Assume that in a D-dimensional search space,
there is a swarm consisting of n particles, X = (X1, X2, . . . , Xn), where the velocity of the ith particle is
expressed as a D-dimensional vector Xi = (Xi1, Xi2, . . . , XnD)T, the individual extremum is expressed as
Pi = (Pi1, Pi2, . . . , PnD)T, and the swarm extremum is expressed as Pbest = (Pg1, Pg2, . . . , PgD)T. Then, the
following relationship exists between particle velocity and position update during the iteration process:

Vk+1
id = ωVk

id + c1r1

(
Pk

id − Xk
id

)
+ c2r2

(
Pk

gd − Xk
id

)
, (10)

Xk+1
id = Xk

id + Vk+1
id , (11)

where ω is the inertia weight; d = 1, 2, . . . , D; i = 1, 2, . . . , n; k is the current iteration number; c1 and c2

are acceleration factors, and r1 and r2 are random numbers subject to uniform distribution within [0,1].
The calculation flow of PSO is shown in Table 3. Similar to other evolution-based algorithms, PSO

is a random search algorithm. However, PSO preliminarily conducts a search based on its own velocity
in order to avoid complex genetic operations; hence, it is a very efficient optimization algorithm.
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Table 3. Calculation flow of particle swarm optimization (PSO).

Step 1: Initialize the variables, randomly generate a particle swarm, and calculate the particle fitness values;

Step 2: Repeat the following steps until the termination criterion is satisfied (the error is sufficiently small, or
the maximum loop count is reached):
Implement the following operations on each individual:
Update the velocity and position state (according to Equations (10) and (11));
Update the variable representing the individual’s best position;

Step 3: Output the optimization results.

To improve the accuracy of the ECM in the entire SOC range, a subarea parameter-identification
method is adopted in this study. The basic principles of this method are as follows: The entire
SOC range (0–100%) is divided into 10 areas, and the PSO algorithm is then used to identify the
model parameters in each area. Ten sets of model parameters are thereby obtained to form model
parameters for the entire SOC area. For SOC estimation, the model parameters are selected based on
the corresponding area of the SOC.

3.3. Results and Discussion

Model parameters of eight models are identified by the above method in the whole SOC area,
and results are shown in Figures 4 and 5. Figure 4 shows identification results under NEDC working
condition. As shown in Figure 4a, the accuracy of the EnRC model is obviously higher than that of
the nRC model with the same order in the low SOC area, indicating that the proposed model provide
satisfactory accuracy in the whole SOC area due to the consideration of the solid-phase diffusion
process. Moreover, the model accuracy increases with the increase of the order of RC network, but it
will not increase continuously. The accuracy of E2RC and E3RC models is almost the same. Therefore,
the E2RC model is the best choice owing to it balance of accuracy and complexity. Figure 4b shows the
estimated and measured terminal voltages of E2RC and 2RC models under NEDC working condition.
Obviously, the model error of E2RC model is only half of that of 2RC model in the low SOC area.
Table 4 list the identification time of eight battery models, we can see that the computation time of
our proposed model is slightly larger than that of the ECM with the same order. Through the above
comparative analysis, we can conclude that E2RC model is the best choice with the best accuracy and
low computation.
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Table 4. Identification time of eight battery models (Cell 1@ European Driving Cycle (NEDC)) in the
entire state-of-charge (SOC) area.

Model Name Identification Time (s)

0RC 1.7796
E0RC 4.0983
1RC 5.2645

E1RC 5.9482
2RC 5.9897

E2RC 6.1520
3RC 8.5727

E3RC 11.3445

Figure 5 shows RMSE and terminal voltage comparisons of various models under DST working
condition. We can see that the E2RC model is the best choice under DST. Based on the comparative
study of the above eight models under two working conditions, we can conclude that the model error
in the low SOC are is only half of that for traditional ECM, and the E2RC model is the most suitable
model. Therefore, the battery model used in this study for SOC estimation is the E2RC model.

It is noted that the n in EnRC model represents the number of double layers in the SPM. It can be
seen that the models with two double layers have the highest accuracy, which is consistent with the
model shown in Figure 1. Moreover, the proposed model uses only one solid-phase diffusion equation
in the SPM to achieve satisfactory model accuracy, which is different with the model proposed in
Reference [14].
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4. SOC Estimation in the Entire SOC Area

4.1. EKF-Based SOC Estimator

The EKF algorithm is used to estimate the SOC in this paper. The EKF considers the noise
characteristics of the current and voltage sensors, and effectively overcomes the problem of random
errors [28]. The schematic of EKF is illustrated in Fig. 6. The EKF is based on dynamic equations.
Assuming that k is the discrete-time index, xk is the state vector to be estimated, zk is the output vector,
and the system input vector is uk. The battery model can be expressed by the following state equations:

xk+1 = f(xk, uk) + wk (12)

zk = h(xk, uk) + vk (13)

where wk denotes random process noise, vk denotes measurement error,f(xk, uk) is a nonlinear state
transition function, and h(xk, uk) is a nonlinear measurement function.

The state equations of the SOC estimator can be expressed as:

xk = (SOCk, u1,k, u2,k, ∆SOC) (14)

hk = OCV(SOCsur f ,k)− u1,k − u2,k − R0 Ik + vk (15)



Appl. Sci. 2018, 8, 1592 11 of 15

uk = Ik (16)

In Figure 6, the superscript “−” and “+” indicate a priori estimate and a posteriori estimate at time
step k, respectively. P is the covariance matrix of uncertainty in state estimation; Q is the covariance
matrix of process noise; R is covariance matrix for measuring uncertainty; Kk is kalman gain matrix.
The detailed EKF algorithm can be found in Reference [29].
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4.2. Results and Discussion

The EKF-based SOC estimator described in Section 4.1 is used to estimate the SOC under NEDC
and DST working conditions in the entire SOC area (0–100%), respectively. The results are shown in
Figures 7 and 8. Results imply that the SOC estimation error based on 2RC and E2RC model is similar
in high SOC area, however, the SOC estimation error based on E2RC model is less 50% of that based
on 2RC model in low SOC area. Moreover, the SOC estimation error based on E2RC model is always
less than 1% in the entire SOC area.

Furthermore, in order to evaluate the robustness of our proposed model, we set various sensor
errors and model errors to calculate the SOC estimation errors in the entire SOC area. The sensor error
mainly originates from the voltage sensor and current sensor, whereas the model error has two types,
namely, voltage drift or voltage noise. Reference [12] indicated that the voltage noise has no effect on
the SOC error for a large time scale. Hence, the effect of the voltage drift (Udri f t), model error (Mdri f t),
and current sensor error (Idri f t) on the SOC is considered in our study.

Figure 9 describes the influence of various model and sensor errors on the SOC estimated by EKF
estimator under NEDC and DST working conditions. Figure 9a shows the relationship between the
model error and the RMSE of SOC (RSOC) based on E2RC model. We can see that as long as the Mdri f t
is within ±20mV, RSOC can be kept within 5%. Figure 9b shows the relationship between the Udri f t
and RSOC. The Udri f t is generally within 10 mV according to Reference [30]. In this case, RSOC can be
maintained at less than 3%. Figure 9b shows the relationship between the Idri f t and RSOC, indicating
that Idri f t has little effect on the RSOC obtained by EKF estimator. From the above analysis, we can see
that the proposed battery model can achieve satisfactory accuracy in a wide range of model and sensor
errors, which implies that our proposed model has good robustness in the SOC entire area.
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5. Conclusions

This paper proposes a SOC estimator based on a SPM model in the entire SOC area. In this study,
the PSO algorithm is employed to identify the global model parameters in the subarea, and the SOC
estimation algorithm is estimated by EKF. The experimental results of two types of batteries under
NEDC and DST conditions can be concluded as follows:

(1) Comparative studies show that E2RC model is the best choice. The accuracy of the proposed
model is one times higher than that of the traditional ECM in the low SOC area, and slightly
better than that of the ECM in the high SOC area.

(2) An EKF-based SOC estimator using our proposed model has higher SOC estimation accuracy
than the ECM, especially in low SOC area. The SOC estimation error is less than 1% in the entire
SOC area.

(3) The proposed battery model and SOC estimation algorithm have satisfactory accuracy and
robustness with low computational complexity.
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