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Abstract: Due to the close resemblance between overlapping and cancerous nuclei, the
misinterpretation of overlapping nuclei can affect the final decision of cancer cell detection. Thus,
it is essential to detect overlapping nuclei and distinguish them from single ones for subsequent
quantitative analyses. This paper presents a method for the automated detection and classification
of overlapping nuclei from single nuclei appearing in cytology pleural effusion (CPE) images. The
proposed system is comprised of three steps: nuclei candidate extraction, dominant feature extraction,
and classification of single and overlapping nuclei. A maximum entropy thresholding method
complemented by image enhancement and post-processing was employed for nuclei candidate
extraction. For feature extraction, a new combination of 16 geometrical and 10 textural features was
extracted from each nucleus region. A double-strategy random forest was performed as an ensemble
feature selector to select the most relevant features, and an ensemble classifier to differentiate between
overlapping nuclei and single ones using selected features. The proposed method was evaluated on
4000 nuclei from CPE images using various performance metrics. The results were 96.6% sensitivity,
98.7% specificity, 92.7% precision, 94.6% F1 score, 98.4% accuracy, 97.6% G-mean, and 99% area under
curve. The computation time required to run the entire algorithm was just 5.17 s. The experiment
results demonstrate that the proposed algorithm yields a superior performance to previous studies
and other classifiers. The proposed algorithm can serve as a new supportive tool in the automated
diagnosis of cancer cells from cytology images.

Keywords: pleural effusion; automatic cell analysis; overlapping nuclei; maximum entropy
thresholding; geometric features; textural features; random forest

1. Introduction

Cancer is a class of diseases characterized by malignant cells, and malignant pleural effusion
(MPE) is the excessive accumulation of cancerous effusion in the pleura, as shown in Figure 1 [1]. MPE
is one of the most aggressive cancerous effusions and a sign of an advanced stage of cancer. It is a
common problem for cancer patients, and around half of cancer patients end up developing MPE.
MPE can be caused by metastatic cancers or primary cancers (mesothelioma). MPE often implies
an advanced stage of cancer and confers a poor prognosis [2,3]. Thus, fast and accurate diagnosis

Appl. Sci. 2018, 8, 1608; doi:10.3390/app8091608 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7155-9475
http://dx.doi.org/10.3390/app8091608
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/8/9/1608?type=check_update&version=2


Appl. Sci. 2018, 8, 1608 2 of 20

and prognosis of cancer cells in pleural effusion is a first priority task required so that cytologists can
arrange effective treatment plans.
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cells are touching, overlapping or clustered. Furthermore, the excessive enlargement of size and 
irregular shapes of overlapping nuclei regions may lead automatic systems to misclassify them as 
malignant cells. Thus, overlapping nuclei should be detected and distinguished from single ones 
prior to nuclei feature learning. 

Many researchers have reported several methods for delineating the interregional contours of 
overlapping cell nuclei or for splitting the overlapping nuclei into individual ones. Watershed 
methods [8,9] and concavity analysis based methods [10,11] are the most widely used overlapping-
nuclei splitting methods in microscopy image analysis. Recently, Kumar et al. reported a rule-based 
clump isolation method for separating overlapping nuclei [12]. In another study, Wang et al. 
presented a bottleneck rule method for isolating overlapping cells [13]. These previous studies 
indicate that there has been a tremendous interest in accurately delineating individual cell nuclei in 
cell image analysis. 

Nevertheless, it is crucial to accurately determine the presence of overlapping nuclei prior to the 
occurrence of any splitting process. Some studies have been devoted to distinguishing overlapping 
nuclei from single ones. For instance, Tafavogh et al. [14,15] demonstrated a method for the 
identification of overlapping nuclei on microscopic images of neuroblastoma. Nuclei are segmented 
using a mean shift method, and three size-and shape-based features of cells namely (i) area, (ii) 
diameter equality, and (iii) concavity dominance are extracted to differentiate between single and 
overlapped cells using step-by-step conditional filtering. Abbas et al. [16] proposed a method for 
detecting overlapping nuclei in microscopic red blood cell images prior to performing a splitting 
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Cytology examination is currently considered the gold standard for diagnosing cancerous cells
in pleural effusion. Cytologists take a small amount of effusion then fix and stain it on a glass slide
using certain staining methods. They then visually examine the cytology slides under a microscope in
order to diagnose for abnormality in every single cell [4,5]. However, classical cytological diagnosis is
laborious, tedious, and unreasonably time-consuming. It is also prone to different diagnosis results
depending on the observer. Recently, there has been growing interest in automated cell analysis
systems which can serve as assistance tools to help cytologists during cytology examinations. They
can provide fast, accurate and objective diagnostic results for cell analysis [6,7].

One of the difficulties found while developing such systems is the presence of overlapping nuclei.
Nuclei morphology, e.g., size, shape, and density are the most important features used by cytologists
in predicting cell malignancy. For instance, the excessive enlargement of nuclei and their irregular
shapes are highly suggestive of malignancy. Accurate delineation of each cell contour is essential for
the quantitative analysis of cell morphology. In practice, there is a great deal of overlapping nuclei
occurrence in cytological pleural effusion (CPE) images. Although human experts find little difficulty in
differentiating between single and overlapping nuclei, it is still a challenging task for automatic systems.
Overlapping nuclei in CPE images often appear as dark purple regions, and there is a high degree of
resemblance among the nuclei forming the overlapped or clustered regions. Thus, an automatic system
may wrongly interpret overlapping nuclei as single nuclei. It is difficult to retrieve and quantitatively
analyze features such as nucleus morphology and density if cells are touching, overlapping or clustered.
Furthermore, the excessive enlargement of size and irregular shapes of overlapping nuclei regions
may lead automatic systems to misclassify them as malignant cells. Thus, overlapping nuclei should
be detected and distinguished from single ones prior to nuclei feature learning.

Many researchers have reported several methods for delineating the interregional contours
of overlapping cell nuclei or for splitting the overlapping nuclei into individual ones. Watershed
methods [8,9] and concavity analysis based methods [10,11] are the most widely used overlapping-nuclei
splitting methods in microscopy image analysis. Recently, Kumar et al. reported a rule-based clump
isolation method for separating overlapping nuclei [12]. In another study, Wang et al. presented a
bottleneck rule method for isolating overlapping cells [13]. These previous studies indicate that there
has been a tremendous interest in accurately delineating individual cell nuclei in cell image analysis.

Nevertheless, it is crucial to accurately determine the presence of overlapping nuclei prior
to the occurrence of any splitting process. Some studies have been devoted to distinguishing
overlapping nuclei from single ones. For instance, Tafavogh et al. [14,15] demonstrated a method
for the identification of overlapping nuclei on microscopic images of neuroblastoma. Nuclei are
segmented using a mean shift method, and three size-and shape-based features of cells namely (i) area,
(ii) diameter equality, and (iii) concavity dominance are extracted to differentiate between single and
overlapped cells using step-by-step conditional filtering. Abbas et al. [16] proposed a method for
detecting overlapping nuclei in microscopic red blood cell images prior to performing a splitting
process. First, an image is binarized using an automatic thresholding approach, then three features,
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namely (i) convex hull, (ii) area, and (iii) elongation, are extracted. The pre-labeled value of each
feature through parameter-tuning is used to determine overlapping nuclei. Wang et al. [13] reported
on a pre-determination scheme to identify overlapping nuclei using shape-based classification. Five
shape features that is (i) solidity, (ii) convexity, (iii) eccentricity, (iv) area, and (v) variance are extracted
for each nucleus and fed as input to an SVM classifier to classify single and overlapping cell nuclei.
Four different types of image set: oil cells, yeast cells, blood cells and curvularia cells, are used to
evaluate the method and obtain a classification accuracy of 86%, 90%, 88%, and 88% respectively.
Guven et al. [17] proposed an unsupervised data-clustering method to determine the presence of
overlapping cell nuclei from Pap smear cervical images. The nuclei borders are firstly outlined using a
morphological operation. Three shape-based features and two minima based features are extracted
and used as inputs to a fuzzy clustering method to discriminate between single and overlapping
nuclei. The method is evaluated using 290 nuclei and obtains an F-score of 79.1%, a recall of 67.4%,
and precision of 95.7%. The methods in [14–16] are parameter-dependent and limited to objects with a
great variation of size and shape. The method proposed in [13] is based only on shape and size features.
In the case of cytology pleural effusion images, the forms of overlapping nuclei vary greatly. Thus,
it can be deduced that considering only size and shape features may not be sufficient for discriminating
between overlapping and single nuclei. The method presented in [17] takes into account not only
shape features but also local minima based features and judges for the presence of overlapping nuclei
using an unsupervised clustering method, which yields acceptable performance. However, the method
is designed specifically for cervical cells. It cannot be taken for granted that this method will provide
good results with pleural effusion cells. The originators of the aforementioned method did not take into
consideration the textural pattern difference between single and overlapping nuclei despite the fact
that the texture pattern between single and overlapping nuclei varies greatly. Moreover, supervised
learning techniques could greatly help to attain a more accurate detection rate [18]. For our method,
we extract a new combination of 16 geometric (i.e., size and shape) and 10 textural features and select
the most relevant features from a total of 26 that are then used in identifying overlapping nuclei in
CPE images. Using the selected features, five supervised learning methods, namely naïve Bayes (NB),
support vector machine (SVM), K nearest neighborhood (KNN), decision tree (DT), and random forest
(RF), are examined for the classification of single and overlapping nuclei. It should also be noted that
our study objective is focused on accurately detecting overlapping nuclei to improve the extraction
of each nucleus. Our proposed method is not a separation algorithm for overlapping nuclei or an
extraction algorithm for interregional contours of overlapping nuclei.

We hereby propose the following novel ideas to distinguish between single and overlapping
nuclei in CPE images using three main steps: (i) nuclei segmentation: extracting candidate nuclei using
maximum entropy thresholding supplemented by preprocessing and refinement; (ii) feature extraction:
extracting a new combination of nuclei features, 16 geometric features and 10 textural features; and
(iii) classification: selecting the most relevant features and determining whether the nucleus is single
or overlapping using a double-strategy random forest algorithm. The performance of the proposed
method was assessed using six evaluation metrics namely sensitivity, specificity, precision, F1 score,
accuracy, and G-mean on a local dataset containing 4000 nuclei. The experiment results were acquired
in various ways. Firstly, the classification accuracy of using all features and selecting them by random
forest was investigated and compared. Then, the accuracy of four alternative classifiers, namely
naïve NB, SVM, KNN, and DT, was further examined and compared with the results achieved by
random forest. Third, the performance of previous studies was investigated and compared with
the results achieved from the proposed method. In addition, the computation efficiency of nuclei
segmentation, feature extraction, and classification was analyzed to prove the reliability and suitability
of the proposed method for real-time use. This analysis demonstrates that the proposed method is
relatively simple, computationally affordable, and yields promising results. Thus, it can serve as a
feasible, reproducible and cost-effective tool in the development of an advanced system for diagnosing
cancer cells in CPE images.
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The rest of this paper is divided into five sections. Section 2 presents the image acquisition and
dataset description processes. Section 3 presents the methodology proposed in this study containing
preprocessing, nuclei candidate extraction, post-processing, feature extraction, and classification. The
experiment results and discussion are presented in Section 4. The conclusion is given in the last section,
Section 5.

2. Image Acquisition and Dataset Description

The studied dataset is based on digitized microscopy images from the cytology slides of pleural
effusion materials at the Department of Pathology, Faculty of Medicine, Srinakharinwirot University,
Thailand. The study is approved by institutional ethics committee. During preparation of the cytology
slides, experts took a small amount of effusion material, and fixed and stained it on glass slides using
a classical Papanicolaou (Pap) staining method. Then, cytologists captured the digital images from
the cytological slides through a digital camera mounted to a light microscope with 40× magnification.
The original images have resolutions of 4050 × 2050 pixels stored in 8-bit RGB space. Figure 2
presents sample cytology images of pleural effusion. Cytologists also provided a ground truth dataset
containing the annotation of pathologic cells.
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3. Methodology

The aim of our study was to develop a pre-determination mechanism of overlapping nuclei which
could serve as a supportive process to enhance the diagnostic accuracy of the quantitative analysis.
Figure 3 shows the typical architecture of automatic cell analysis systems utilized for the detection
of cancer cells in microscope images. The green blocks indicate the focus range of this study. Since
our study is centered on the accurate detection of overlapping nuclei, separation of the overlapping
nuclei has been deferred for later study. The block diagram of the proposed algorithm for detecting
and classifying overlapping nuclei is depicted in Figure 4. It can generally be divided into the three
following steps: nuclei segmentation supplemented by preprocessing and post-processing, feature
extraction, and classification. The details of each step will be described in the subsections below.
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3.1. Preprocessing

As computation time is crucial in medical diagnosis applications, the original image is resized
from 4050 × 2050 pixels to 640 × 640 pixels to achieve a low-cost process. After resizing the image,
the input RGB image is converted to a 2D intensity image of its green component in order to
reduce processing complexity and achieve effective nuclei extraction. As shown in Figure 5, we
investigated the corresponding image’s individual R, G, and B components from the original RGB
image. It is reasonable to infer that cell nuclei on the green channel are more distinguishable from other
components due to higher contrast, thereby motivating us to use the green component of CPE images
in further processes. The quality of the image is further improved using histogram stretching [19],
and contrast limited adaptive histogram equalization (CLAHE) [20,21] on the green components. The
visual before and after results and the preprocessing step are shown in Figure 6.
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3.2. Nuclei Segmentation

Nuclei segmentation is an important task for most microscopic image analysis employed in disease
diagnosis, and also in the determination of overlapping nuclei. Accurate extraction of nuclei regions
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can result in the good performance of subsequent processes. In most CPE images, cell nuclei appear as
the darker regions, along with blood cells and artifacts, and are relatively low in gray-level intensity. On
the other hand, background and cytoplasm regions are high in gray-level intensity. Image gray-level
intensity variation is depicted as the surface plot in Figure 7, wherein the dark-bluish intensity valleys
represent cell nuclei regions. By benefiting from this priori-knowledge of brightness and intensity
variation inside an image, we consider gray level intensity-based image segmentation methods to
extract the cell nuclei. Thresholding methods are the simplest and most used approaches to gray level
intensity-based image segmentation. Currently, there are numerous thresholding based segmentation
methods, e.g., Otsu’s thresholding method, the adaptive thresholding method, maximum entropy
thresholding, and so on. Maximum entropy thresholding does not require specific prior knowledge and
can deal with images which have non-ideal bimodal histogram. Therefore, we employed a maximum
entropy thresholding method to extract cell nuclei from CPE images which have non-uniform gray
level distribution. Another motivation for using the maximum entropy method to select the optimal
threshold in our study was that it has been widely and successfully used in many real applications
of medical image analysis [22–24] Maximum entropy thresholding is one of the global thresholding
methods which is proposed by Shannon in 1948, [25,26]. Similar to the Otsu method, maximum entropy
thresholding selects the optimal threshold by maximizing the information measure between objects
and their backgrounds. In our study, maximum entropy thresholding based nuclei segmentation was
performed using five steps. In the first step, we computed the entropy function on the 1D histogram of
a gray level image. The second step was to compute the probability distribution of the object and the
background. Suppose i is the gray level intensity of a pixel in an image so i = [0, 1...T − 1, T, t + 1...255],
and the probability of each gray level i can be calculated as:

Pi =
ni
n

(1)

where the total number of pixels in an image is denoted as n, and the number of pixels that have a gray
level i is denoted as ni. Let roi and b respectively be the region of interest (ROI) and the background of
an image; thus, the probabilities of roi and b are defined in Equations (2) and (3):

Proi = ∑ T−1
i=0 Pi (2)

Pb = ∑ 255
i=T Pi (3)

The third step was to compute the entropies of ROI and the background, which can be computed
as follows:

Eroi(T) = ∑ T−1
i=0

Pi
Proi

log2
Pi

Proi
(4)

Eb(T) = −∑ 255
i=T

Pi
Pb

log2
Pi
Pb

, (5)

Therefore, the entropy of the gray level image segmented by threshold t is:

E(t) = Eroi(t) + Eb(t) (6)

The principle of maximum entropy is applied to select t, which maximizes E. Thus, the fourth
step was to select the optimal threshold t by maximizing the entropy of E(t) as calculated below:

t = Arg Max(E(T)) (7)

Finally, the region of interest (nuclei) is segmented into black pixel and background regions using
an optimal threshold as follows:

(region o f interest)0 ≤ t ≤ 255(background) (8)
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The visual results of maximum entropy thresholding-based nuclei segmentation are demonstrated
in Figure 8.
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3.3. Post-Processing

Since the segmentation results from maximum entropy thresholding still contain spurious objects,
such as blood cells and artifacts, it is essential to eliminate these objects for robust segmentation
performance. Priori knowledge regarding nucleus size was incorporated to remove the spurious objects.
We observed that the spurious objects were smaller than the actual nuclei. Thus, a morphology filtering
method was adapted to remove the undesired objects based on their sizes. The thresholding size
between actual nuclei and spurious objects is specified as 1500 pixels through empirical setting. Objects
greater than 1500 pixels in size were retained as actual nuclei; others were removed. Subsequently,
a morphological gradient operation, which is a combination of erosion and dilation, was applied
to refine actual nuclei regions [27]. The morphological gradient G of a grayscale image (f ) can be
computed as follows:

G( f ) = f (⊕)− f (	) (9)

where ⊕ and 	 represent the dilation and erosion, respectively. The structuring element (SE) with
disk-shape and radius (R) is used. R is set as 5 and 12 for erosion and dilation, respectively. The visual
result of the post-processing stage using morphological filtering and gradient is depicted in Figure 9.
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3.4. Feature Extraction

In this study, overlapping nuclei are distinguished from the single ones using certain features.
Extracting rich and semantically discriminative features from nuclei is of paramount relevance to
advancements in the differentiation of single and overlapping nuclei. The variations of single and
overlapping nuclei are depicted in Figure 10. It can be seen that there are different forms of overlapping
nuclei, such as light touching, multi-nuclei touching, multi-nuclei overlapping, and cohesive tight
clusters. Thus, depending solely on size and shape features may not be sufficient for the robust
identification of overlapping nuclei in CPE images. It is our observation that the textural pattern
within single and overlapping nuclei varies greatly. Thus, we considered textural features, as well
as geometric features (i.e., size and shape features), and propose a new combination of geometrical
and textural features [28] to distinguish overlapping nuclei from single ones. A total of 26 features
(i.e., 16 geometric and 10 textures) are extracted from each segmented region. They are described in
Tables 1 and 2.
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Table 1. Extracted geometric features.

No. Feature Name Description

1. Area (A) It is represented as the actual number of pixels inside the nucleus region.

2. Perimeter (P) This is measured by computing the total number of pixels on the nucleus edge.

3. Roundness
This is defined by 4π × area

perimeter2 , which represents the similarity between the nucleus region
and a circle. It varies between 0 and 1 and a circle’s roundness circularity is equal to 1.

4. Solidity
This specifies the proportion of the pixels in the convex hull that is also in the nucleus
region. It is formulated as; Area

ConvexArea .

5. Equivalent Circular
Diameter (EDC)

This is defined as the diameter of a circle with the same area as the nucleus region. It is

represented using;
√

4 × Area
pi .

6. Compactness This specifies the ratio of area and square of the perimeter. It is computed as Area
perimeter2 .

7. Eccentricity
This represents the eccentricity of the ellipse that has the same second-moments as the
nucleus region. Its value is between 0 and 1. A cell whose eccentricity is 0 is a circle,
while 1 is a line segment.

8. Local minima This represents the number of local minimum points in the nucleus region.

9. Aspect ratio of the nucleus: This is represented by the ratio of nucleus width to nucleus height using; Widthnucleus
Heightnucleus

.

10. Major Axis This represents the length (in pixels) of the major axis of the ellipse that has the same
normalized second central moments as the nucleus region.

11. Minor Axis This specifies the length (in pixels) of the minor axis of the ellipse that has the same
normalized second central moments as the nucleus region.

12. Elongation This is represented by the ratio between the major and minor axis using; majoraxis
minoraxis .

13. Actual Diameter (AD)
This is represented by the circle’s diameter circumscribing the nucleus region. It is
formulated as; perimeter

2 × pi .

14. ECD to AD It is defined as; ECD
AD .

15. Convex Area This represents the number of pixels in the convex nucleus.

16. Number of local minima This is measured by counting the number of local minima in the nucleus region.

Table 2. Extracted textural features.

No. Feature Name Description

1. Mean This represents the mean gray values of the nucleus region.

2. Standard deviation This specifies the deviation of gray values of the nucleus region.

3. Smoothness This specifies the local variation in radius lengths of the nucleus region.

4. Variance This is represented using the variance value of the gray values inside the
nucleus region.

5. Skewness This defines the skewness of gray values of the nucleus region.

6. Kurtosis This specifies the kurtosis of gray values of the nucleus region.

7. Energy This is represented by the energy of gray values of the nucleus region.

8. Entropy This specifies the entropy of gray values of the nucleus region.

9. Entropy Entropy of entropy filtered image.

10. Entropy Entropy of standard deviation filtered image.

3.5. Classification

Using all extracted features which may contain noisy and irrelevant features as input parameters
may cause a classifier to have poor generalization capability and require intensive computation
time. In bioinformatics applications, there are two ways to improve classification accuracy. They are:
selecting the significant features and choosing the best-suited classifier. In this study, we handled
these two issues using a double-strategy random forest algorithm. The reason for utilizing random
forest is that it provides favorable results for unbalanced data classification, and is more robust in
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dealing with noisy data. Our dataset of nuclei was highly unbalanced, with the number of overlapping
nuclei constituting only a very small minority of the dataset at 625 (16%) and single nuclei constituting
an abundant majority of the dataset at 3275 (84%). Random forest (RF) is one of the most successful
ensemble classification models which was proposed by Ho [29,30], and later by Breiman [31]. RF is an
ensemble of decision trees which integrates the idea of Ho’s “bagging (bootstrap aggregation)” and
Breiman’s “random variable selection”. The principle of RF is to build multiple decision trees using
randomized bootstrapped samples from a learning dataset and randomly selecting a subset for training
data. Each decision tree, also known as a Classification And Regression Tree (CART), is grown using
randomized bootstrap samples of input data and generates its own classification results. RF finally
aggregates the predictions of all decision trees by majority voting. The block diagram of RF is depicted
in Figure 11. Observations that are not contained in training bootstrap samples are “out-of-bag”
(OOB), and they are used for predicting errors. Data utilization in constructing RF is illustrated in
Figure 12. RF is widely used as a feature selection algorithm [32,33] and classifier [34–36] in medical
diagnosis analyses. In this study, we utilize RF in two stages: feature selection and classification. First,
RF-based ensemble feature selection is performed to rank the importance of features based on OOB
error permutation and select the most important features. Using the selected feature, an RF classifier is
constructed as an ensemble classifier to distinguish overlapping nuclei from single ones. Once an RF
ensemble classifier is trained, it can be used to predict new samples in the testing set. The processing
steps applied in double-strategy RF are given as pseudo code in Table 3.
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(3) I would like to request to modify Figure 12.  (Actually, I have modified it when I 
resubmitted the revised version. But it was still wrong in published paper). 

 Containing 32000 nuclei (80% of original dataset) >> Containing 3200 nuclei (80% of 
original dataset) 
(Incorrect Figure) 

 
(Modified Figure) 
 

 
Figure 12. Data utilization in constructing a RF classifier 

 

(4) I would like to modify the title of section 3.3 from Post-processing step to Post-
processing.    

Original Dataset 

Testing dataset containing 800 nuclei 
(20% of original dataset)  

In Bag  
(2/3 of training dataset) 

Out of bag 
 (1/3 of training dataset) 

Training Dataset 
Containing 3200 nuclei (80% of original dataset) 

Figure 12. Data utilization in constructing a RF classifier.

Table 3. Processing steps of double-strategy RF algorithm used in the study.

Double-Strategy RF Algorithm Steps

1. Prepare training and testing datasets (80–20% ratio)
2. Train an RF classifier using all features on the training dataset.
3. Select the most important features.
4. Create a new ‘selected featured’ dataset containing only those features.
5. Train a second classifier on this new dataset.
6. Test the new data using the trained RF classifier.
7. Compare the accuracy of the ‘full featured’ classifier to the accuracy of the ‘selected featured’ classifier.

3.6. Performance Assessment

Performance of the proposed algorithm is evaluated on a testing dataset containing 800 nuclei. Six
measures namely sensitivity, specificity, precision, F1 score, accuracy, and geometric mean (G-mean)
are considered as performance metrics [37,38]. These measures are computed using Equations (10)
through (15). It is worth noting that sensitivity is also referred as recall.

Sensitivity =
TruePositive

TruePositive + FalseNegative
× 100% (10)

Speci f icity =
TrueNegative

TrueNegative + FalsePositive
× 100% (11)

Precision =
TruePositive

TruePositive + FalsePositive
× 100% (12)

Accuracy =
TruePositive + TrueNegative

TruePositive + FalsePositive + TrueNegative + FalseNegative
× 100% (13)

F1 Score =
(

2 × Precision × Sensitivity
Precision + Sensitivity

)
× 100% (14)

G Mean =
(√

Sensitivity × Speci f icity
)
× 100% (15)

• TruePositive denotes the number of overlapping nuclei correctly detected as overlapping nuclei.
• TrueNegative represents the number of single nuclei correctly classified as a single nucleus.
• FalsePositive is the number of single nuclei wrongly classified as overlapping nuclei
• FalseNegative is the number of overlapping nuclei missed by our method.

Moreover, the proposed method is also evaluated graphically using a receiver operating
characteristics (ROC) curve and area under ROC (AUROC) [39]. The ROC curve is plotted as sensitivity
against (1-specificity).



Appl. Sci. 2018, 8, 1608 13 of 20

4. Experiment Results and Discussions

In our study, the experiments were carried out in a MATLAB_R2016b environment using an
Intel(R) Core (TM) i7 CPU 3.40–3.70 GHz personal computer and Microsoft Windows 7, 64-bit operating
system. The study is based on a local dataset containing 124 CPE images. The main contribution of
the study is the development of an effective algorithm that can accurately determine the presence
of overlapping nuclei in CPE images. The first step of the proposed algorithm was to deal with
image quality. Histogram stretching and CLAHE image enhancement methods were utilized in
order to enhance the contrast of cell nuclei. Then, maximum entropy thresholding based nuclei
segmentation was employed to extract candidate nuclei regions from surrounding objects in the image.
The segmentation performance of maximum entropy based nuclei segmentation was evaluated in
the test images and yielded a 92% detection accuracy. After the nuclei were detected, an overlapping
nuclei detection scheme was developed. A new combination of 16 geometrical and 10 textural features
was extracted from 4000 nuclei containing single and overlapping nuclei. Thus, our dataset is made
up of 4000 × 26-dimensional datasets. It is partitioned into training and testing sets in an 80/20 ratio,
as given in Table 4.

Table 4. The number of observations used in the training and testing stage.

Observational Data Training Testing Total

Single Nuclei 2692 683 3375
Overlapped Nuclei 508 117 625

Total 3200 800 4000

Then, double-strategy RF was utilized to select the most important features and classify single
and overlapping nuclei using selected high-ranking features. One of the important parameters that we
needed to adjust while constructing RF was the number of decision trees to be grown. The optimal
number of decision trees was obtained through empirical tuning. OBB errors using a different number
of decision trees are illustrated in Figure 13. From the graph, it can be seen that OOB errors decrease
at above 250 decision trees, and start to stabilize from 300 trees. Thus, we grew 400 decision trees in
order to maintain classification stability and keep the computation cost low.
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Once a random forest was constructed with 400 decision trees, feature selection was performed
by scoring OOB permutation errors using each feature. The importance of features ranked by RF
is given in Figure 14. To select the most significant features, we experimentally tested the different
feature numbers in ascending rank order and examined their training accuracy as given in Figure 15.
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The chart shows that the first eight ranked features achieved the highest training accuracy, and those
features are described in Table 5. We fed those selected features as input to train the RF ensemble
classifier. The trained RF classifier was used to validate the testing dataset. The classification accuracy
of using RF’s selected features was compared to the accuracy of using all features. In addition, we also
examined four alternative classifiers: NB [40], SVM [41], KNN [42], and DT [43] by coupling with all
features and RF’s selected features. The classification accuracies of using all features and RF selected
features blending with five classifiers are presented in Tables 6 and 7, respectively. From the experiment
results, it is shown that using RF selected features provides better accuracy compared to using all
features for most classifiers except NB. The results also reveal that the RF ensemble classifier yields
preferable accuracy compared to NB, SVM, KNN, and DT classifiers. The synergy between RF’s
selected features and the RF ensemble classifier reached the highest classification accuracy. In order to
evaluate the classifiers graphically, we plotted an ROC curve for each classifier, as given in Figure 16.
The curves show that the RF ensemble classifier gains higher accuracy and stability compared to others.
From the ROC curves, we further computed the AUC of different classifiers as presented in Figure 17.
An RF ensemble classifier using RF-selected features reached the highest AUC by a given 99.09%.
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Table 5. Features selected using random forest ensemble feature selection.

No. Feature Name Category

1. Energy Textural Feature
2. Variance Textural Feature
3. Equivalent Circular Diameter to actual diameter Geometric Feature
4. Eccentricity Geometric Feature
5. Ratio between area and perimeter Geometric Feature
6. Entropy of Local standard deviation filtered Image Textural Feature
7. Actual Diameter Geometric Feature
8. Entropy Textural Feature

Table 6. Comparison of classification accuracy obtained through different classifiers using all features.

Classifiers
Performance Measures

Sensitivity Specificity Precision F Score Accuracy G Mean

NB 62.07% 98.68% 88.89% 73.10% 93.38% 78.26%
SVM 78.45% 97.51% 84.26% 81.25% 94.75% 87.46%
KNN 79.31% 97.66% 85.19% 82.14% 95.00% 88.01%

DT 66.67% 97.07% 79.59% 72.56% 92.63% 80.45%
RF 84.48% 97.51% 85.22% 84.85% 95.63% 90.77%

Table 7. Comparison of classification accuracy obtained through different classifiers using RF’s
selected features.

Classifiers
Performance Measures

Sensitivity Specificity Precision F Score Accuracy G Mean

NB 52.14% 97.51% 78.21% 62.56% 90.88% 71.30%
SVM 93.16% 97.22% 85.16% 88.98% 96.63% 95.17%
KNN 90.60% 98.24% 89.83% 90.21% 97.13% 94.34%

DT 65.52% 98.68% 89.41% 75.62% 93.88% 80.41%
RF 96.58% 98.68% 92.62% 94.56% 98.38% 97.63%
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In order to compare with previous studies, there was no common dataset, and previous studies
were evaluated based on different types of images. In order to make a fair, objective comparison,
we adopted the methodologies of previous studies to our application. It should be noted that all
the methods in the comparison were evaluated with the same experiment settings and the same
dataset used to test the proposed method. Thus, the evaluation results were compared fairly without
affecting any other factors. The comparison of classification accuracy obtained along with their
corresponding methodologies is presented in Table 8. From the experiment results, it is inferred
that our proposed method provides superior accuracy compared to previous works [13,17]. It is also
reasonable to conclude that our combination of geometric and textural features is more discriminant
than the features used in previous studies for classifying single and overlapping nuclei. To validate
computational efficiency, we also analyzed the processing time of each processing step and the entire
algorithm as given in Table 9 and found that computational complexity is relatively simple. The visual
results of detected overlapped nuclei using our proposed method are depicted in Figure 18.

Table 8. Quantitative comparison results of the proposed algorithm and previous studies using the
same dataset.

Methodology Observational Data Features/Classifiers Quantitative Results

Shape classifier using
SVM [13]

4000 nuclei from
CPE images

Five size and shape features
Support vector machine

F1 score 84.12%

Accuracy 95.38%

G mean 90.31%

Data clustering-based
identification [17]

4000 nuclei from
CPE images

Three shapes and two local
minima based features
Fuzzy C Mean Clustering

F1 score 62.15%

Accuracy 88.13%

G mean 78.23%

Proposed Method 4000 nuclei from
CPE images

Four shapes and four
textural features
Double-strategy random forest

F1 score 94.56%

Accuracy 98.38%

G mean 97.63%
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Table 9. Computational time of each processing step and the entire algorithm.

Algorithm Steps Compuatation Time (Seconds)

Nuclei segmentation using maximum entropy thresholding 2.07 s
Geometric and textural features extraction 2.02 s
Classification using double-strategy RF 1.07 s
Entire Algorithm 5.17 s
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proposed method (the red bounding boxes indicate the different forms of detected overlapping nuclei).

The proposed algorithm can be utilized to accurately detect and classify touching, overlapping
or clustering nuclei from single nuclei. Due to its high accuracy and computational simplicity, it can
serve as a new supportive tool in developing new overlapping cell separation algorithms. Moreover,
our method has the potential to integrate with existing overlapping-separation methods, such as
watershed methods, contour concavity analysis, rule-based methods, etc., to separate overlapping
nuclei. It can be deduced that accurately detecting overlapping nuclei before decomposing them into
their constituent parts can help to reduce the workload of separation methods because these methods
need to work only on detected overlapping nuclei instead of on all nuclei. It should also be noted
that the proposed algorithm may determine the presence of overlapping nuclei even if there are no
overlapping nuclei in the image. Since the aim of our study focuses on developing a determination
algorithm for overlapping nuclei, isolating overlapping nuclei, or extracting the interregional contour
of each nucleus has been deferred for future study.

5. Conclusions

This paper presents a method for the automated detection and classification of overlapping nuclei
from CPE images using maximum entropy thresholding, new combinations of geometric and textural
features, and double-strategy RF. First, the images were enhanced on their green color channel using
histogram stretching and CLAHE. Then, maximum entropy thresholding was employed to segment
the cell nuclei from their surrounding background (i.e., cytoplasm, blood cells, artifacts, and so on).
The post-processing step was performed to eliminate any false findings and preserve the shape of
the segmented nuclei using morphological operations. A new combination of 16 geometrical and
10 textural features was extracted for each extracted nucleus region. A double-strategy RF algorithm
was applied to perform two tasks: ensemble feature selection to select the most relevant features,
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and an ensemble classifier to identify the presence of overlapped nuclei using selected features. RF
ensemble feature selection selected eight features out of a total of 26 features that were used as input to
the RF ensemble classifier. The proposed method was evaluated on 4000 nuclei from CPE images with
respect to six performance measures and AUC. It yielded 96.6% sensitivity, 98.7% specificity, 92.62%
precision, 94.6% F1 score, 98.4% accuracy, 97.6% G mean, and AUC 99.0%. Only 5.17 s of computation
time was required to run the entire algorithm. The performance from using RF’s selected features was
compared to the performance of all features by coupling with five different classifiers: NB, SVM, KNN,
DT, and RF. The comparison revealed that RF’s selected features were better in terms of generalization
capability and yielded significant improvements in accuracy for most classifiers, except NB. It is also
worth noting that the RF ensemble classifier provided favorable accuracy compared to other classifiers.
The synergy between the proposed features and a double-strategy RF achieved the promising results.
Furthermore, the achieved results were compared with the results obtained from previous works. The
results prove that the proposed algorithm yields superior results compared to previous works. It is our
finding that the combination of geometric and textural features is more effective than the features used
in previous studies. Due to its high accuracy and computational simplicity, the proposed algorithm can
be used as a new basis in developing algorithms for separating overlapping nuclei, and can also serve
as a new supportive tool in developing advanced automated cell analysis systems. Furthermore, the
proposed method has the potential to integrate with the existing separation algorithms of overlapping
nuclei to enhance separation accuracy by accurately locating the overlapping nuclei to be separated.
Separation of overlapping nuclei or extraction of the interregional contour of each nucleus has been
deferred for future study.
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