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Abstract: The stator inter-turn short circuit fault is one of the most common and key faults
in permanent magnet synchronous motor (PMSM). This paper introduces a time–frequency
method for inter-turn fault detection in stator winding of PMSM using improved wavelet packet
transform. Both stator current signal and vibration signal are used for the detection of short circuit
faults. Two different experimental data from a three-phase PMSM were processed and analyzed
by this time–frequency method in LabVIEW. The feasibility of this approach is shown by the
experimental test.

Keywords: stator inter-turn short circuit; fault detection; wavelet packet transform; PMSM; stator
current signal; vibration signal

1. Introduction

With the development of technology, Permanent magnet Synchronous Motors (PMSM) have
become some of the most important electric machines. In PMSM, the magnetic flux induced in the
stator windings is generated by rare-earth magnets located on the rotor [1]. As a result, PMSM has
some excellent features, such as high efficiency, high output to volume ratio, high power to weight
ratio and low noise emissions [2]. With these advantages, PMSM is widely used in some industrial
applications, such as robotic, automotive and electric traction.

However, a motor fault might cause production shutdowns. These shutdowns may lead to
wasting production time and raw resources. Therefore, it is necessary to focus on the condition
monitoring and fault diagnosis methods. PMSM usual faults include electrical faults, mechanical faults
and magnetic faults. Stator inter-turn short-circuit belongs to electrical faults [3], and it is one of the
most common motor faults in PMSM.

There are three common fault diagnosis methods: model-based, knowledge-based,
and signal-based. The model-based method requires an accurate mathematical model of the motor,
while knowledge-based method requires extensive expert experience. Thus, signal-based method
is widely used in the field of PMSM fault diagnosis, and the method is fast and does not need any
specific model.

Signal-based method detects fault by processing the signals collected from the motors to find
the difference between healthy PMSM and faulty PMSM. Current and vibration signals have long
been used in motor fault detection [4]. Current signals are the most commonly used, one reason
obeing that these signals are not disturbed acoustic signals [5]. Vibration signals are often used in
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the diagnosis of bearing faults [6]. As for signal processing tools, fast Fourier transform (FFT) is a
traditional tool to extract the frequency characteristics of the stator current signal [7]. However, it is
sometimes difficult to obtain obvious fault characteristics by only relying on the stator current signal.
Besides, due to loss of time information, FFT can only be used to process stationary signal. Therefore,
the time–frequency techniques have received more attention, such as short-time Furrier transform
(STFT), wavelet transform (WT) and the empirical wavelet transform (EWT) [8].

There have been some studies using signal processing method to diagnose motor faults. Stavrou
and Henao found that, when the stator inter-turn short-circuit fault occurs in the motor, an increased
fault harmonic occurs in the stator current [9,10]. Sdiri, F. et al. proposed a strategy based on a
motor fault model [11]. Using MATLAB/Simulink, the current characteristics in the fault condition
were found and the short circuit fault was detected. In [12], the PMSM stator current signal is
decomposed by wavelet packet transform, and the signal energy value of each frequency band is
calculated. The increase of energy is used as the basis of fault judgment. In [13], by analyzing the
harmonic components of the current and voltage of the motor with inter-turn short circuit fault, the FFT
transform is used to obtain the characteristics of the space vector spectrum to detect the fault. In [14],
wavelet analysis is used to extract the fault characteristics of the induction motor, which is better than
the Fourier transform. In [15,16], wavelet analysis is also used in PMSM fault diagnosis. A method
based on a variety of signals has been used in the fault diagnosis of induction motors [17]. Some
studies [18,19] adopt the method of fusion of stator current, vibration and noise signals, and detect the
short circuit fault based on the signal spectrum increment.

In this paper, both stator current signal and vibration signal are used for the detection of short
circuit fault. The two parameters are analyzed by the time–frequency method using improved wavelet
packet transform. Improved wavelet packet transform can eliminate spectrum aliasing and get accurate
fault characteristics. The feasibility of this approach is shown by the experimental test.

2. Materials and Methods

Stator inter-turn short circuit fault is a common fault in PMSM, which is due to the problems in
stator winding insulation. If not diagnosed in time, it will spread to more stator turns and even cause
other motor faults.

When short circuit occurs in the stator winding of a motor, the harmonic component in the
stator current will increase. According to some related research [20], the harmonic components at the
following frequencies will increase:

fitsc = fs

(
v

Z
p
± 1
)

(1)

where fs is the frequency of the source and v is a positive integer number, Z is the number of stator
slots and p is the number of pole pairs. In PMSM, the most obvious of these harmonic components is
the third harmonic component [21,22].

Furthermore, the stator inter-turn short circuit fault and the three-phase asymmetry of the motor
windings can bring magnetic field asymmetry, which can in turn create abnormal vibrations. When
the motor is running normally, the vibration frequency of the stator should be twice the frequency of
the source. However, these abnormal vibrations could cause the vibration signal to have the harmonic
components of 4fs and 8fs in addition to the fundamental frequency of 2fs.

As for the signal processing method, wavelet analysis can decompose signals into time and
frequency domain, simultaneously [23]. Wavelet analysis offers a windowing technique with
variable-sized regions, which is stable in FFT and STFT. Because of this, wavelet analysis has become
a commonly used time–frequency analysis method of signal processing. The most basic wavelet
transform is calculated as:

Wψ f (a, b) =
∫

f (t)|a|−
1
2 ψ(

t− b
a

)dt (2)
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where ψ(x) is a wavelet basis function, a is a scaling factor which represents the frequency component
of the signal, and b is a translation factor which represents the time position.

In wavelet analysis, wavelet transform can only analyze the low frequency part of the signal,
ignoring the high frequency part. However, the wavelet packet transform can further analyze all
frequency components. The flow of the fast algorithm for binary wavelet packet analysis is shown in
Figure 1.
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The fast algorithm for binary wavelet packet decomposition is:
p1

0(t) = f (t)

p2i−1
j = ∑

k
H(k− 2t)pi

j−1(t)

p2i
j = ∑

k
G(k− 2t)pi

j−1(t)

(3)

where t = 1, 2, . . . , 2J−j, i = 1, 2, . . . , 2j, and J = log2N. f (t) is a time signal. P(t) is called the wavelet
packet coefficient. H stands for wavelet decomposition low frequency filters and G for high frequency.

The fast algorithm for binary wavelet packet reconstruction is:

pi
j = 2

[
∑
k

h(t− 2k)p2i−1
j+1 (t) + ∑

k
g(t− 2k)p2i

j+1(t)

]
(4)

where j = J − 1, J − 2, . . . , 0, i = 2j, 2j−1, . . . , 1. h stands for wavelet reconstruction low frequency
filters and g for high frequency.

However, the above decomposition and reconstruction algorithms are also flawed because the
wavelet packet fast algorithm includes three operations: wavelet filter convolution, interlaced sampling
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and interleaved zero, which could cause frequency confusion. To solve this problem, the improved
wavelet packet transform was invented.

To eliminate the frequency aliasing, the improved wavelet packet decomposition and
reconstruction algorithms have two operators: C and D.

The formula of operator C is: X(k) =
Nj−1

∑
n=0

x(n)Wkn , 0 ≤ k ≤ Nj
4 or

3Nj
4 ≤ k ≤ Nj

X(k) = 0 , else
(5)

x̃(n) =
1
Nj

Nj−1

∑
n=0

X(k)W−kn (6)

The formula of operator D is: X(k) =
Nj−1

∑
n=0

x(n)Wkn ,
Nj
4 ≤

3Nj
4

X(k) = 0 , else
(7)

x̃(n) =
1
Nj

Nj−1

∑
n=0

X(k)W−kn (8)

where x(n) is the wavelet packet coefficients of low frequency subbands on 2j scale, Nj is the data
length, k = 0, 1, . . . , Nj−1, and n = 0, 1, . . . , Nj−1.

The experimental platform structure diagram is shown in Figure 2. It consists of a three-phase
permanent magnet synchronous motor, NI Data acquisition card (DAQ card), current sensors and
a vibration sensor. The data collected by the sensors were uploaded to a computer with LabVIEW
installed by DAQ card for processing and analysis.
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The experimental platform can be divided into hardware part and software part.
The hardware of the experimental platform for PMSM fault detection is shown in Figure 3.
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Figure 3. The experimental platform for PMSM fault detection.

Two permanent magnet low speed synchronous motors were used in the experiment. One is a
normal motor and the other is a motor that is artificially placed with a 15% inter-turn fault in the stator.
The motor is shown in Figure 4. This PMSM has 13 poles and 12 stator slots; its rated frequency is
50 Hz; and its rated power is 95 W.
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Figure 4. The 90TDY115-2B permanent magnet low speed synchronous motor.

The stator current of these motors was collected by current sensors, which were produced by
TAMURA Corporation in Tokyo, Japan in 2018. The measuring range of the sensor is 0–3 A, and the
output voltage is 0–4 V. This current sensor can convert the current signals into voltage signals,
which are easy for the computer to process.

The vibration signal was collected by piezoelectric accelerometer, whose voltage sensitivity is
100 mV/g, frequency response range is 0.5–6000 Hz and maximum output signal is 6 V. The sensor
was attached radially to the housing of the motor. A signal conditioner, YE3832, was used to condition
the sensor output and send it to the computer. Both the vibration sentor and the signal conditioner
were produced by Wuxi Shiao Technology Co., Ltd in Wuxi, China in 2018.

Data acquisition card was installed in the computer and connected to a junction box, to facilitate
the data input from the sensors. Both they were produced by National Instruments (NI) in Austin,
Texas, U.S. in 2017.

As for the software, LabVIEW 2017 is a program development platform developed by NI in
Austin, Texas, U.S. in 2017. It has become a versatile tool with a straightforward block diagram
language. In this study, LabVIEW was used to implement signal analysis algorithms, monitor the
collected data, and design time–frequency transform program.
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The fault detection system built on LabVIEW is shown in Figure 5. Data acquisition channels and
sampling parameters are set on the left side of the system, and the waveform and processing results
of the signal are displayed on the right side. The results of time domain analysis, frequency domain
analysis, and wavelet analysis are all displayed in different modules.
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The improved wavelet packet algorithm was imported using the MathScript node in LabVIEW,
as shown in Figure 6. The signal is decomposed, reconstructed and transformed by wavelet packet.
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3. Results

In the experiment, a stator winding motor with a single phase of 15% inter-turn short circuit fault
was compared with the normal motor. Both the current signal and vibration signal were analyzed to
extracting the fault features.

3.1. Current Signal

The three-phase stator current waveform of the motor with inter-turn short circuit fault is shown
in Figure 7. It can be seen in this diagram that the amplitude of the current in phase A, the phase with
short circuit fault, is obviously higher than that in the other two phases.
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Then, the signal of fault phase was extracted separately, and the improved wavelet packet
algorithm was used to decompose it into four wavelet packet nodes: (2, 0), (2, 1), (2, 2) and (2, 3).
The results of reconstructing these wavelet packet nodes are shown in Figure 8.
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Figure 8. Reconstruction signals of the current of the fault motor.

To observe the frequency distribution, the reconstructed nodes were transformed by FFT and
compared with the results of normal motor signals. As shown in Figure 9, the changes of the frequency
at (2, 0) and (2, 1) are obvious.
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It can be seen from (2, 0) that the amplitude of fundamental frequency, in other words, fs = 50 Hz,
increases. From (2, 1) it can be seen that the amplitude at the third harmonic frequency, in other words,
3fs = 150 Hz, of the normal motor signal is very small, but the third harmonic component of the fault
motor signal increases and even reaches about six times the normal motor signal.

The experimental results are in agreement with the theory that the current signal energy increases
and the third harmonic component increases in the fault PMSM.

3.2. Vibration Signal

The vibration signal of the fault motor was collected by the sensor, which, after conditioning,
is shown in Figure 10.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 11 

  
(a) (b) 

Figure 9. Spectrum diagrams of the current signal: (a) spectrum diagram of the normal motor; and (b) 

spectrum diagram of the fault motor. 

It can be seen from (2, 0) that the amplitude of fundamental frequency, in other words, fs = 50 

Hz, increases. From (2, 1) it can be seen that the amplitude at the third harmonic frequency, in other 

words, 3fs = 150 Hz, of the normal motor signal is very small, but the third harmonic component of 

the fault motor signal increases and even reaches about six times the normal motor signal. 

The experimental results are in agreement with the theory that the current signal energy 

increases and the third harmonic component increases in the fault PMSM. 

3.2. Vibration Signal 

The vibration signal of the fault motor was collected by the sensor, which, after conditioning, is 

shown in Figure 10. 

 

Figure 10. The vibration signal of the fault motor. 

Then, the improved wavelet packet algorithm was used to decompose the vibration signal into 

four wavelet packet nodes: (2, 0), (2, 1), (2, 2) and (2, 3). The results of reconstructing these wavelet 

packet nodes are shown in Figure 11. 

 

 

 

Figure 10. The vibration signal of the fault motor.

Then, the improved wavelet packet algorithm was used to decompose the vibration signal into
four wavelet packet nodes: (2, 0), (2, 1), (2, 2) and (2, 3). The results of reconstructing these wavelet
packet nodes are shown in Figure 11.
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Figure 11. Reconstruction signals of the vibration of the fault motor.

To observe the frequency distribution, the reconstructed nodes were transformed by FFT and
compared with the results of normal motor signals. As shown in Figure 12, the changes of the frequency
at (2, 0) are obvious.
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Figure 12. Spectrum diagrams of the vibration signal: (a) spectrum diagram of the normal motor; and
(b) spectrum diagram of the fault motor.

Compared with the frequency spectrum of the normal motor, the amplitude of the fault motor in
the fundamental frequency, 2fs = 100 Hz, is obviously increased. In addition, the amplitudes of the
harmonic components at the frequencies of 3fs = 150 Hz, 4fs = 200 Hz and 8fs = 400 Hz increased.

4. Discussion

With the fault characteristics extracted from current signal and vibration signal analyzed
synthetically, the fault of stator inter-turn short circuit of PMSM can be judged accurately. However,
after extracting fault features, human beings are still necessary to identify them. Artificial intelligence
technology needs to be used in the research of motor fault diagnosis in the future.

5. Conclusions

In this work, a detection method based on stator current and vibration signal has been presented
to stator inter-turn short circuit fault of PMSM. The increased harmonic components in the current
signal and vibration signal can be characterized to detect the fault of PMSM. These two fault features
are considered in this paper. At the same time, the improved wavelet packet analysis is used to get
the fault features, which can analyze the signal in time–frequency domain and has the advantage of
eliminating spectrum aliasing. The validity of this method is verified by experiments on the fault
diagnosis platform of motor.

In the future, artificial intelligence and deep learning will be used to diagnose motor faults, such
as the convolutional neural network (CNN). This does not require much prior knowledge and can
extract the fault characteristics that are more accurate.
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