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Abstract: This paper proposes a target vector modification method for the all-transfer deep learning
(ATDL) method. Deep neural networks (DNNs) have been used widely in many applications;
however, the DNN has been known to be problematic when large amounts of training data are not
available. Transfer learning can provide a solution to this problem. Previous methods regularize all
layers, including the output layer, by estimating the relation vectors, which are then used instead
of one-hot target vectors of the target domain. These vectors are estimated by averaging the target
domain data of each target domain label in the output space. This method improves the classification
performance, but it does not consider the relation between the relation vectors. From this point
of view, we propose a relation vector modification based on constrained pairwise repulsive forces.
High pairwise repulsive forces provide large distances between the relation vectors. In addition,
the risk of divergence is mitigated by the constraint based on distributions of the output vectors of the
target domain data. We apply our method to two simulation experiments and a disease classification
using two-dimensional electrophoresis images. The experimental results show that reusing all layers
through our estimation method is effective, especially for a significantly small number of the target
domain data.

Keywords: deep neural network; transfer learning; proteomics; sepsis classification

1. Introduction

Deep learning has been widely used due to its advanced performance and automatic feature
extraction. Training deep neural networks (DNNs) requires a large amount of training data. In medical
image analysis fields where privacy and security concerns exist, the proper collection of training
data can be challenging. Conventional training methods address this problem by applying transfer
learning [1,2].

Transfer learning reuses source domain knowledge to solve a new task in the target domain [3].
Transfer learning can be divided into three approaches: supervised, semi-supervised, and unsupervised
learning. Unsupervised and semi-supervised learning approaches assume that the target domain
labels are the same as the source domain labels [4,5]. However, in the application to the medical field,
and in others as others as well, it is difficult to collect data where the source domain and target domain
use the same labels. In addition, many semi-supervised and unsupervised learning methods have to
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train DNNs by using the source and target domains at the same time. It is difficult to upload the target
domain data outside of a hospital and prepare a sufficient computer environment, especially for small-
and medium-sized hospitals. This paper addresses tasks to classify diseases using proteome data for
these small- and medium-sized hospitals. Therefore, we argue that the supervised transfer learning
approach fits the clinical demand in this target environment.

Supervised transfer learning has been widely used in the field of computer vision [6–8]. Given the
labeled source/target domain data, first, many methods train a DNN using the source domain data.
Then, a second DNN is constructed based on the target domain data by reusing the hidden layers of
the first DNN to set the initial values for the network structure and weights. This approach has the
advantages that the DNN for the source domain can be constructed prior to obtaining and preparing
the target domain data and it is not necessary to retain the source domain data. However, there is a
risk of poor classification performance owing to the random initial values of weights (and biases) that
are not reused. This can occur when these parameters are trained on a small amount of target domain
data. To avoid this problem, it is important to reuse all layers, including the output (last) layer [2].

To reuse all layers, Sawada et al. [2] proposed the all-transfer deep learning (ATDL) method. ATDL
trains the first DNN to solve the source domain task. It then averages the target domain data of each
target domain label in the output space, which has the same dimension as the number of source domain
labels. This computation is conducted in the output layer, which is thrown away by conventional
methods [6–8]. In [2], this vector is called the relation vectors (Section 2.2.1). Following that, the second
DNN is initialized by the first DNN and optimized using the estimated relation vectors instead of
the one-hot target vectors. By using this method, it is not necessary to throw away the output layer.
The main difference between the ATDL and other supervised transfer learning methods is that the
ATDL can use the first DNN to regularize all parameters of a second DNN. This means that the
ATDL can reduce the risk of the local optimal solution caused by the random initial values of the
non-transferred parameters. However, their estimation cannot consider the relation between the target
domain labels. To improve the classification performance, the appropriate configuration of relation
vectors must be considered in regard to this relation.

This paper proposes a relation vector modification based on constrained pairwise repulsive
forces. A strong pairwise repulsive force between the relation vectors is introduced to produce a large
distance (Section 3.1). In addition, to mitigate the risk of divergence, we constrain these vectors to
be close to the distributions computed on the target domain data in the output space (Section 3.2).
By using this modification, the distance between the relation vectors can be maximized without the
risk of divergence.

Our method was applied to an actual disease classification problem using two-dimensional
electrophoresis (2-DE) images [2,9]. These 2-DE images were used as principles of proteomics, which
is a field of study that has attracted much attention as a step beyond genomics. However, collecting
2-DE images of patients is still difficult due to privacy and security concerns. This clearly indicates the
need for a method that can succeed using only a small amount of training data.

The contributions of this paper are as follows:

• We propose a relation vector modification for ATDL with constrained pairwise repulsive forces
between relation vectors.

• Experimental results showed that our method is effective, especially when the target domain data
are significantly small.

• We also showed that the distance between the relation vectors relates to the classification
performance.
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2. Related Work

In supervised transfer learning, a two-phase approach has been widely used [6,8,10,11].
In [6], the first DNN was constructed based on the source domain. The second DNN, for the target

domain task, was constructed by reusing all the hidden layers from the first DNN as the initial values,
and all layers were then optimized. The performance of this method was better than the performance
of other methods, in which the reuse of a part of the hidden layers breaks their co-adaptation [10].
To improve this method, a two-phase know-how [12], where the first trains only the output layer and
all layers are then optimized, is proposed, although it has not been published yet.

In [11], the output layer of the second DNN was constructed by a linear SVM and all hidden
layers were frozen. In [13], the output layer of the second DNN was constructed by the pseudo-inverse,
which is a linear classification approach instead of a linear SVM. In [8], the output layer of the first
DNN was removed and two layers, an additional adaptation layer and a new output layer, were
added. The additional adaptation layer compensated for the different statistics of the source and target
domains. This method also froze the hidden layers.

These methods had to train the last parameters (the weights and biases connecting the output
layer and the highest hidden layer) of the second DNN from scratch [6,8,11]. On the other hand, in [14],
the authors proposed an all-layer transfer method that can execute when the source and target domain
data have the same label. However, their methods do not apply when the target domain labels have
meanings different from those of the source domain labels. ATDL [2] can solve this problem.

2.1. All-Transfer Deep Learning

In this section, we explain how to estimate the relation vectors according to the framework of
all-transfer deep learning (ATDL) [2].

2.2. Outline

The ATDL is one of the supervised transfer DNN learning methods that can reuse all layers,
including the output layer. An outline of the ATDL training process is shown in Figure 1. Given the
labeled source and target domain data, the ATDL trains a DNN to solve the task within the source
domain (Figure 1A). The ATDL then estimates the output vectors of each target vector by feeding them
into the DNN, which was trained on the source domain data (Figure 1B). Next, it estimates the relation
vectors of each target domain label by averaging. Finally, all parameters are optimized in such a way
that the variance between the output and relation vectors is sufficiently small (Figure 1C). By using the
steps in Figure 1B,C, a second DNN can be optimized with the regularization of all parameters. This
means that ATDL enables the second DNN to avoid the local optimal solution caused by the random
initial values of the non-transferred weights. Details are described in the following section.

2.2.1. The First DNN Construction (Figure 1A)

The ATDL constructs the first DNN by minimizing the following function:

Ls=
Ns

∑
i
||ys

i − φ(xs
i )||2 (1)

where Ns = Ns(1) + Ns(2) + · · ·+ Ns(Ds
y) is the amount of source domain data, Ds

y is the number of
source domain labels, ys

i is a Ds
y dimensional one-hot target vector of the i-th source domain data xs

i ,
and φ(xs

i ) is an output vector of xs
i .
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Figure 1. Outline of ATDL. (A) Training the first DNN using the labeled source domain data,
(B) estimating relation vectors of each target domain label by averaging, and (C) optimizing all
parameters to classify the target domain data using estimated relation vectors.

2.2.2. Relation Vector Estimation (Figure 1B)

Normally, the target vector of the target domain data, yt, is represented by the one-hot vector,
whose dimension is the number of target domain labels, Dt

y. However, this one-hot representation
does not apply to the ATDL where the target domain labels have meanings different from those of
the source domain labels. This frequently occurs in industrial applications. To address this problem
while achieving the reuse of all layers, the ATDL estimates a relation vector ml ∈ RDs

y (l = 1, 2, · · · , Dt
y)

instead of using the one-hot representation.

ml =
Nt(l)

∑
i

φ(xt
i,l) (2)

where xt
i,l denotes the i-th target domain vector corresponding to the l-th target domain label and Nt(l)

denotes the number of the target domain data of the l-th target domain label (Nt(1) + Nt(2) + · · ·+
Nt(Dt

y) = Nt).
As described in [2], relation vectors represent the relation between the source and target domains.

Namely, the k-th variable ml(k) indicates the strength of the relation between the k-th source domain
label and l-th target domain label. Examination of the values of relation vectors can indicate which
labels of the source domain data are similar to those of the target domain data.



Appl. Sci. 2019, 9, 128 5 of 13

2.2.3. Second DNN Construction (Figure 1C)

After estimating the relation vector ml (Section 2.2.1), the ATDL sets ml instead of the one-hot
target vector yt. Then, the ATDL minimizes the following main cost function, which was initialized by
the first DNN parameters.

Lt =

Dt
y

∑
l

Nt(l)

∑
i
‖ml − φ(xt

i,l)‖
2. (3)

By following these steps, we can construct the second DNN, which is to be used for the target domain.
In the classification step, it assigns the label of the nearest estimated target vector as the label of the
test data.

3. Target Vector Estimation with a Constrained Pairwise Repulsive Force

As described in Section 1, the previously described ATDL could not consider the relation between
the relation vectors. Figure 2 shows an example of the configurations of these vectors. As shown in
Figure 2A, relation vectors computed by the previous ATDL are close to each other (especially the
data of the 1st and 2nd target domain labels). In this case, the classification performance might not
be satisfactory. To address this problem, repulsion forces are introduced to provide large distances
between the relation vectors under constraints, as shown in Figure 2B. By solving the following
equation, we can obtain the l-th modified relation vector r∗l ∈ RDs

y .

{r∗l }
Dt

y
l=1 = arg max

{rl}
p({rl}

Dt
y

l=1) = arg max
{rl}

Dt
y

∏
l

p(rl) ∏
l 6=l′

p(rl , rl′). (4)

An explanation of each distribution is provided below.

Figure 2. Overview of the relation between relation vectors. (A) Previous ATDL and (B) our method.
By using our relation vector modification, the distance between the relation vectors increases without
the risk of divergence.

3.1. Repulsion Force

The joint distribution is represented by p(rl, rl′), which accounts for the distance between rl and rl′ .

p(rl , rl′) =
1
Z

exp
(
−

dl,l′

‖rl − rl′‖2

)
(5)
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where dl,l′ is a hyperparameter used to normalize the difference between the distances. In this study,
the average distance between φ(xt

i,l) and φ(xt
j,l′) was set.

3.2. Constraint

To mitigate the risk of divergence of rl , p(rl) is used. In this paper, p(rl) is set as follows:

p(rl) = N (rl | ml , Λl) (6)

where N (.) is the Gaussian, and Λl is the precision matrix obtained by the graphical lasso, which
is known to be able to estimate the precision matrix better than the empirical matrix when Nt(l) is
small [15].

3.3. Estimation

In this study, we used the following equation to maximize Equation (4), which is similar to Gibbs
sampling [16].

rα
l = arg max

zl

ln p(zl) ∑
l 6=l′

ln p(zl | rα
l′) (7)

where rα
l is the α-th sample of the l-th target domain labels (α = 1, 2, · · · ), r1

l = ml , and rα
1 , rα

2 , · · · are
given in advance except for rα

l . We iterate this procedure by cycling through all relation vectors and set

{r∗l }
Dt

y
l=1 = {rα

l }
Dt

y
l=1 after the termination. By using this estimation, we can modify the relation vector

from ml to r∗l which maximizes the distances under the constraint.

4. Experimental Results

We also compared the performances of conventional transfer learning methods [6,8,11],
the two-phase know-how [12], and previous ATDL [2]. These methods have been widely used in
the fields of computer vision and medical image recognition. In addition, the performances of the
following two methods were compared: full-scratch (termed “Full”) and without the minimization of
Equation (3) from our method (termed\“Tuning”).

4.1. Environment and Parameter Settings

We used one CPU (i7 core, 5930K) and one GPU (GeForce GTX TITAN X). Compared to the
conventional methods, the computation time of our method only increased by a factor of 1.12
(our method took about 2 h).

We used the grid search method to select hyperparameters. When we conducted the full-scratch
methods, combinations from the following hyperparameters provided better results while maintaining
the training speed. Therefore, the best parameters were selected as follows: The learning rate was
selected from {1.0× 10−3, 5.0× 10−3, 1.0× 10−2, and 5.0× 10−2}. The momentum was selected from
{0.7, 0.99}, and the size of the mini-batches was selected from {10, 100}.

The DNN was constructed using a stacked denoising autoencoder (SdA), as performed by
Sawada et al. [2]. That DNN was used for all comparisons in the results section, unless stated
otherwise. Stochastic gradient descent with momentum, inspired by [17], and Pylearn2 [18] were
used for all experiments, with the total iteration set to be the same as the total iteration of full-scratch
for all experiments. The numbers of epochs were set to 1000 (Section 4.2) and 200 (Section 4.3).
The first DNNs were confirmed to not overfit when using the test data (simulations) or ten-fold
cross-validation (sepsis classification) of the source domain in advance. It should be noted that these
settings described in this section are applied to all methods. In the two-phase know-how, the number
of epochs of the first phase were set to 50 (Section 4.2) and 10 (Section 4.3), and the learning rate was
set to be smaller than that of the second phase (e.g., 1.0× 10−3 in the first phase and 1.0× 10−2 in the
second phase).
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4.2. Simulation Experiments

To accurately grasp our novel method’s ability, it is important to start with a small scale
environment [19]. In this article, our method was applied to two simulation experiments with
respect to changing the size of the target domain data: (1) using CIFAR (Canadian Institute For
Advanced Research)-10 database [20] as the source domain and images of an automobile and pedestrian
crossings from ImageNet database [21] as the target domain and (2) using SVHN (Street View House
Numbers) database [22] as the source domain and MNIST (Modified National Institute of Standards
and Technology database) database [23] as the target domain. Task (1) is an example where the source
and target domain data comprise color images, while Task (2) is an example of multiclass classification.
For Task (2), since the labels of MNIST and SVHN have the same meaning, Mou et al.’s method [14]
was also used for comparison. This method, which is also a supervised transfer learning method, can
only function when the source and target domain data have the same label.

For Task (1), the number of hidden layers was set to H = 3; the numbers of dimensions of the
h-th hidden layer were set to Dh = 1000 (h = 1, 2, 3), Ds

y = 10, Dt
y = 2; the size of the source domain

data was set to Ns = 50,000. For target test data, 750 images of automobiles and 750 of pedestrian
crossings were used. For Task (2), parameters were set to H = 3, Ds

y = 10, Dt
y = 10, Dh = 100, and

Ns = 73,257, and the SVHN images were converted to gray-scale. For the target test data, 10,000 images
from MNIST were used. The target domain data dimensions of Tasks (1) and (2) were both set to
match the dimensions of the source domain data. In addition, these architectures were experimentally
determined beforehand.

Table 1 show the classification accuracies for different sizes of Nt. As shown in these tables, our
method outperformed other methods when Nt = 400, 800, and 1200 for Task (1) and Nt = 1000 and
5000 for Task (2). A comparison of \Tuning and [2] shows that the minimization of Equation (3) and r∗l
are necessary for improving the classification performance. The effectiveness of r∗l was also indicated
by a comparison with [14]. These tables also show that strong regularization by reusing all layers does
not necessarily improve the performance when the size of the target domain data is large (Nt = 1500
for Task (1) and Nt = 10,000 for Task (2)). These results indicate that reusing all layers with appropriate
relation vectors is effective when Nt is small.

To investigate the influence of our method, the distance was evaluated as follows:

d =
1

Nl,l′
∑
l,l′
‖r∗l − r∗l′‖

2 (8)

where Nl,l′ is the number of pairwise combinations. We also evaluated the variables of r∗l . Similar to
ml , the k-th variable r∗l (k) is expected to indicate the strength of the relation between the k-th source
domain label and the l-th target domain label. If r∗l exhibits this characteristic, it will be possible to
identify the instances where labels of the source domain are similar to those of the target domain.

Figure 3A shows the relation vectors of Task (1), and Figure 3B shows the comparison of d with a
conventional ATDL. As shown in these figures, the highest relation of “Automobile” of ImageNet is
“Automobile” and “Truck” of CIFAR-10, while “Pedestrian Crossings” is not substantially related to
CIFAR-10 (Figure 3A). In addition, by using our method, d became larger than the conventional
ATDL (Figure 3B). These results suggest that the r∗l computed by our method can account for
the relation between the target vectors while enabling the representation of target domain label
characteristics in the output space to be computed by the first DNN.
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Table 1. Classification performances of (A) automobile and pedestrian crossings and (B) MNIST.
The red bold is the best performance of each evaluation. The black bold is the second best performance.

(A)

Nt 400 800 1200 1500

[6] 0.753 0.778 0.790 0.781
[8] 0.763 0.775 0.784 0.789

[11] 0.740 0.763 0.787 0.806
[12] 0.755 0.779 0.793 0.791

ml [2] 0.763 0.775 0.786 0.797
Full 0.724 0.752 0.750 0.753

\Tuning 0.750 0.738 0.735 0.734
Ours 0.779 0.791 0.793 0.799

(B)

Nt 1000 5000 10,000

[6] 0.844 0.923 0.951
[8] 0.773 0.875 0.887

[11] 0.776 0.835 0.850
[12] 0.861 0.926 0.946
[14] 0.843 0.928 0.952

ml [2] 0.887 0.928 0.932
Full 0.854 0.926 0.945

\Tuning 0.859 0.863 0.862
Ours 0.893 0.936 0.938

(A) (B)

Figure 3. Results of relation vectors. (A) Example of relation vectors for Task (2) estimated by our
method. (B) The distance between relation vectors of conventional ATDL [2] and our proposed method.

4.3. 2-DE Images Classification

Experiments were conducted on actual sepsis classification using 2-DE images (All 2-DE images
were generated from actual hospitalized patients and were assessed by doctors using infectious disease
tests. This study was approved by the institutional review board, and informed consent was obtained
in writing from the patients). Sepsis is a disease caused by a dysregulated host response to infection,
which leads to a deadly septic shock and results in many minute protein changes [24]. Using 2-DE
images can address this issue because 2-DE images can account for the comprehensive changes in
proteins occurring simultaneously.

Focusing on sepsis data classification as the main task of this paper, we collected the following
numbers: sepsis data Nt(1) = 30 and nonsepsis data Nt(2) = 68. The performance was evaluated
by ten-fold cross-validation. For the source domain, 2-DE images were used with different labels
from the target domain sepsis and nonsepsis data. These images were generated from patients who
were diagnosed as normal. The source domain task comprised the classification of the differences
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between the protein extraction and refining protocols [2] (Ns = 180, Ds
y = 9), as shown in Table 2.

Meanwhile, the target 2-DE images were generated differently from the description in Table 2. They
were taken using serum, removing 14 abundant proteins. Figure 4 shows examples of sepsis, nonsepsis,
and source domain images. Since the source domain data included many spots, such as minute spot
changes, they were expected to also include the information for classifying sepsis.

In this study, 2-DE images were used as input to the DNN because valid spots for detecting sepsis
have not been fully clarified to date. The 2-DE images were downsized to 53 × 44 gray-scale pixels due
to the limited source and target domain data. This input size was determined in a manner to preserve
the information of large spots that were analyzed under the supervision of biologists.

Figure 4. Examples of 2-DE images. X- and Y-axes represent molecular weights and isoelectric
points, respectively, and black regions represent protein spots. The position of the same protein is
approximately the same for each patient because each axis represents an absolute physical quantity.
Left: sepsis; middle: nonsepsis; right: source domain 2-DE images.

Table 2. List of source 2-DE images (Ns = 180, Ds
y = 9) [2].

# of Images Type of Protocol

Ns(1) = 25 Change amount of protein
Ns(2) = 4 Change concentration protocol

Ns(3) = 30 Unprocessed
Ns(4) = 49 Removal of only the top two abundant proteins
Ns(5) = 11 Focus on the top two abundant proteins
Ns(6) = 15 Focus on 14 abundant proteins
Ns(7) = 12 Plasma sample instead of serum
Ns(8) = 19 Removal of sugar chain
Ns(9) = 15 Other protocols

4.3.1. Comparison with Conventional Methods

Table 3 lists the best classification accuracies (ACCs) with respect to changing H (=1, 2, 3, 4),
including two baselines, PCA (using 188 features) + linear SVM (L-SVM) and kernel SVM (K-SVM)
using a Gaussian kernel. In this study, due to the limited source domain data [2], a compact model
with D1 = 188 by PCA using xs and xt (a cumulative contribution of 188 features is over 99.5%), with
D1= D2 = D3 = D4, was used. The best Gaussian kernel parameter was selected from {1.0× 10−4,
1.0× 10−3, and 1.0× 10−2, 0.1}. The table also lists the positive predictive value (PPV), the negative
predictive value (NPV), the Matthews correlation coefficient (MCC), and the F1-score (F1) as references.
The MCC is used for evaluating the performance considering the imbalance of Nt(1) and Nt(2), while
F1 is the harmonic value computed by PPV and sensitivity.
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As shown in this table, our method outperformed other methods. The results also confirmed that
d, in our method, became about five times larger than d in the conventional ATDL (0.19→ 0.97). These
results suggest that our method is effective for performing sepsis classification.

Table 3. Performance of actual sepsis data classification. The red bold is the best performance of each
evaluation. The black bold is the second best performance.

PPV NPV MCC F1 ACC

[6] 0.962 0.944 0.879 0.912 0.949
[8] 0.931 0.957 0.879 0.915 0.949

[11] 1 0.932 0.880 0.909 0.949
[12] 0.931 0.957 0.879 0.915 0.949

ml [2] 0.931 0.957 0.879 0.915 0.949
L-SVM 0.871 0.956 0.833 0.885 0.929
K-SVM 0.931 0.957 0.879 0.915 0.949

Full 0.929 0.943 0.854 0.897 0.939
\Tuning 0.857 0.914 0.756 0.828 0.898

Ours 1 0.971 0.952 0.966 0.980

4.3.2. Classification Performance of CNN (Convolutional Neural Network)

To investigate the effectiveness of our method in comparison to other DNNs, we applied it to
a CNN and evaluated its performance by using 2-DE images as the source domain data. Figure 5A
shows the CNN structure, which was determined on the basis of the ten-fold cross validation while
changing the hyperparameters (the number of channels, strides, and layers) shown in this figure.

Table 4 lists the classification performance, which indicates that our method performed better
than the conventional ATDL [2] and the full-scratch method. These results suggest that our method
is applicable to CNNs as well as SdAs. The CNN is widely used in image recognition and achieves
high classification accuracy in terms of several standard sets of data [21,25,26]. Therefore, our method
appears to be comparable and can be applied to various image recognition problems.

(A) (B)

Figure 5. (A) CNN structure. (B) Distances of different source domains.

Table 4. Classification performance when using CNN. The red bold is the best performance of each
evaluation. The bold is the second best performance.

PPV NPV MCC F1 ACC

ml [2] 0.878 0.985 0.885 0.921 0.949
Full 0.963 0.944 0.879 0.912 0.949
Ours 0.966 0.971 0.923 0.949 0.969
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4.3.3. Comparison of Various Source Tasks

Investigating the difference in performance, we changed the source domain data, which were
obtained from Caltech-101 [27], CIFAR-10, and MNIST. The Ns of MNIST and CIFAR-10 was
50,000 (Ds

y = 10), while that of Caltech-101 was 9146 (Ds
y = 102). All images were resized to

Dx = 53× 44 = 2332 to ensure that they were aligned with the 2-DE images. The number of epochs for
Caltech-101/CIFAR-10/MNIST was set to 1000. H was selected from {1, 2, 3}, and Dh was selected
from {188, 500, 1000} to provide the best performance.

Table 5 lists the classification performance, which shows that the classification performance
was higher than that of Caltech-101/CIFAR-10/MNIST, although the number of 2-DE images was
smaller. An exception to this is the set of results for NPV, which was based on the use of 2-DE images.
However, these results indicate that information regarding the differences between protein extraction
and refining protocols can be useful for classifying sepsis.

Figure 5B shows the comparison of d between different source domains. As shown in this figure,
d became larger than the other domains when 2-DE images were used in the source domain. Notably,
the d of Caltech-101 became smaller than the other domains. These results are consistent with their
classification performance. Thus, the distance between the relation vectors is related to the classification
performance. Moreover, these results imply the possibility of selecting an effective first DNN before
the minimization of Equation (3). We will examine this in the future.

Table 5. Performance of our method in different source tasks. The red bold is the best performance of
each evaluation. The black bold is the second best performance.

PPV NPV MCC F1 ACC

Caltech-101 0.923 0.917 0.804 0.857 0.918
CIFAR-10 0.936 0.985 0.929 0.951 0.969

MNIST 0.936 0.985 0.929 0.951 0.969
2-DE images 1 0.971 0.952 0.966 0.980

5. Conclusions

We proposed a relation vector modification method to apply to the ATDL. Our approach was
based on a constrained pairwise repulsive force. Experimental results indicated that, by reusing all
layers, our method was effective for a small Nt. We also showed that the distance between the relation
vectors was related to the classification performance. These results indicate that the task-specific layer
can be reused by appropriately estimating the relation vectors.

In the future, we plan to investigate the generation of effective first DNNs, e.g., using ImageNet.
It is known that the classification performance decreases when there is no relationship between the
source and target domain [3]. Therefore, ImageNet, while providing better performance [28], is not
always valid for all target domain tasks. For successful transfer learning, these open problems need to
be solved. In addition, we will improve the classification performance by combining other methods,
such as [29,30]. Furthermore, collecting 2-DE images, performing weight analysis from a biological
perspective, and applying the method to other diseases are important for clinical environments and
will be included in future studies.
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