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Abstract: The evolution of the transient liquid-phase sintered (TLPS) Cu–Sn skeleton microstructure
during thermal aging was evaluated to clarify the thermal reliability for die-attach applications.
The Cu–Sn skeleton microstructure, which consists of Cu particles connected with Cu–Sn intermetallic
compounds partially filled with polyimide resin, was obtained by the pressure-less TLP sintering
process at 250 ◦C for 1 min using a novel Cu-solder-resin composite as a bonding material in a nitrogen
atmosphere. Experimental results indicate that the TLPS joints were mainly composed of Cu, Cu6Sn5,
and Cu3Sn in the as-bonded state, where submicron voids were observed at the interface between
Cu3Sn and Cu particles. After thermal aging at 150, 175, and 200 ◦C for 1000 h, the Cu6Sn5 phase fully
transformed into Cu3Sn except at the chip-side interface, where the number of the submicron voids
appeared to increase. The averaged shear strengths were found to be 22.1 (reference), 22.8 (+3%),
24.0 (+9%), and 19.0 MPa (−14%) for the as-bonded state and specimens aged at 150, 175, and 200 ◦C
for 1000 h, respectively. The TLPS joints maintained a shear strength over 19 MPa after thermal
aging at 200 ◦C for 1000 h because of both the positive and negative impacts of the thermal aging,
which include the transformation of Cu6Sn5 into Cu3Sn and the formation of submicron voids at
the interface, respectively. These results indicate an excellent thermal reliability of the TLPS Cu–Sn
skeleton microstructure.

Keywords: transient liquid-phase sintering (TLPS); composite; microstructural evolution; intermetallic
compounds; thermal reliability; die attach

1. Introduction

The demand for high heat endurance bonding solutions is rising steadily because of next
generation power modules with wide bandgap semiconductor materials such as silicon carbide
(SiC) [1,2]. There is a strong need for power modules to operate at high powers and frequencies
with a high integration and miniaturization capability. Moreover, the SiC chips have lower power
losses and higher switching speeds, even at elevated temperatures. These applications provide higher
operation temperatures, which have recently exceeded 175 ◦C or reached 200 ◦C compared to the
conventional 150 ◦C. The bonding layers are exposed to high temperature operation atmospheres.
Therefore, high heat tolerance bonding technologies as alternatives to conventional Sn-based solders
are in high demand. Sinter bonding using nano- or micro-particles is one of the most promising
technologies and has been reported to provide outstanding thermal and electrical conductivity and
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reliable performance [3–6]. However, the sinter bonding technology requires complicated industrial
equipment and processing because of the necessity of the pressure-assisted bonding process, so it
cannot be widely applicable to industrial use. Another high-heat-tolerance bonding solution is strongly
required for these reasons.

In recent years, transient liquid-phase (TLP) bonding has been developed as a promising
packaging technique for next generation power modules [7–10]. Low melting point materials (Sn,
In) and high melting point materials (Cu, Ag, Ni) are provided as layers or mixed powders that
isothermally solidify during processing, which have higher re-melting points than the employed
bonding materials. The technique involving the mixed powders as the bonding material is called
transient liquid-phase sintering [11–13]. In a Cu–Sn system, the bonding layer is composed of Cu6Sn5

and Cu3Sn intermetallic compounds (IMCs), whose melting points are 415 ◦C and 640 ◦C, respectively.
The mechanical properties of the Cu–Sn IMCs indicate higher strengths and creep resistances compared
to conventional Sn-based solders [14]. These properties indicate that the Cu–Sn transient liquid-phase
sintered (TLPS) joints could be appropriate as a temperature resistant method for power electronics
applications; however, Cu–Sn IMCs have been generally used for the purposes of crack formation in
conventional soldering because of their quite brittle and stiff properties [15–17]. These mechanical
properties of the IMCs cause joint fracture during thermal stresses despite the higher melting point
of the TLP joints [18–20]. The authors proposed a novel approach for reducing the stiffness of TLPS
joints by controlling the microstructural morphology using a Cu-solder-resin composite as the bonding
material [21,22], where a skeleton shaped microstructure consisting of Cu particles connected with
Cu–Sn IMC bridges partially filled with polyimide resin was observed. In addition, the Cu–Sn skeleton
microstructure showed a superior thermal cyclic reliability to a conventional Sn-based solder owing to
the stiffness reduction effects of the joints. However, the precise study of the microstructural evolution
of the joints during high-temperature operation has not yet been investigated.

In the present study, the evolution of the TLPS Cu–Sn skeleton microstructure during thermal
aging was evaluated by shear strength tests, X-ray diffraction analysis, microstructure observation,
and a fractographical approach. From these results, the microstructural and mechanical evolutions of
the TLPS Cu–Sn skeleton joints are discussed.

2. Experimental Procedure

The Cu-solder-resin composite investigated in this work is a paste that mainly contains Cu
particles, Sn–3Ag–0.5Cu (SAC305) solder particles, and polyimide-type thermosetting resin, as shown
in Figure 1. The melting point of the solder is 220 ◦C. The cure temperature of the polyimide resin
is 230–240 ◦C. The sizes of the Cu particles and solder particles are approximately 10 and 3 µm,
respectively. The content of the copper in wt.% is approximately three times higher than that of the
solder, which is designed to consume the solder through the formation of Cu–Sn IMCs. The content of
the polyimide resin is approximately 20% in volume within the total of the Cu, solder, and polyimide
resin. The polyimide resin is chosen by a curing temperature close to the melting point of the solder
and by the soft mechanical properties, whose yield strength is approximately 1 MPa, which was
expected to easily deform while embedded within the microstructure of the Cu and IMCs.

Figure 2 shows a schematic of the die-attached specimen in this work. Properties were obtained
from the joints between the Kovar (Ni–Co–Fe alloy) chips and the directly bonded copper substrates,
composed of two 0.3-mm-thick copper electrodes bonded to a 0.6-mm-thick silicon nitride (Si3N4)
substrate. The chips had dimensions of 7× 7× 2 mm and a Ni/Au surface metallization. The thickness
of the Ni and Au metallization was 2.0 and 0.1 µm, respectively. Before bonding, the chips were
mounted onto the composite paste, which was printed on the substrate with a 100-µm thickness in
advance. After preheating at 100 ◦C for 60 min in air using a hotplate, the specimens were bonded at
250 ◦C for 1 min in nitrogen atmosphere using a reflow furnace (VSU28, Invacu, Ltd., Burgas, Bulgaria).
No pressure was applied in this heating process. Afterward, the die-attached specimens were subjected
to thermal aging testing at 150, 175, and 200 ◦C for 500 or 1000 h in air. Analyses of the cross-sections
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and fracture surfaces of the aged specimens were performed by field emission scanning electron
microscopy (FE-SEM; SU8000, Hitachi High-Technologies Corporation, Tokyo, Japan) and energy
dispersive X-ray spectrometry (EDX; EMAX Evolution, HORIBA, Ltd., Kyoto, Japan). The crystal
structure of each phase in the TLPS layer was identified by X-ray diffraction (XRD; D8 DISCOVER,
Bruker Corporation, Billerica, MA, USA) apparatus, as shown in Figure 3. The specimens for XRD
were prepared by a tilted cross-sectioning method for resin-molded specimens. The die-attached
specimens were subjected to shear tests with a cross head speed of 100 µm/s at room temperature by
a bond tester (CONDOR 150, XYZTEC). The average value of the two samples was regarded as the
shear strength. After the shear test, the fracture surfaces were analyzed using FE-SEM and EDX.
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3. Results

Figure 4 presents XRD results of the Cu-solder-resin composite paste and a bonding layer in
the as-bonded state. Sn, Ag3Sn, and Cu peaks are detected in the composite paste, while Cu6Sn5,
Cu3Sn, Ag3Sn, and Cu peaks are detected in the as-bonded state. In the as-bonded state, the Sn peaks,
which are detected in the composite paste, fully disappear, while the Cu6Sn5 and Cu3Sn peaks appear.
The disappearance of Sn and appearance of Cu–Sn IMCs could have occurred through isothermal
solidification reactions between the Cu particles and solder particles during bonding. A cross-sectional
SEM image of the as-bonded TLPS joint is shown in Figure 5, which indicates that the dark gray
Cu particles are connected with the light gray bridges of the Cu–Sn IMCs within a black polyimide
resin matrix. This shows the unique microstructure of the TLPS joint, which is a Cu-IMC skeleton
shaped microstructure partially filled with polyimide resin. Figure 6a shows the magnified structures
of the chip side interface. (Cu,Ni)6Sn5 is observed on the Ni/Au metalized chip surface, and no
intermediate layers are detected between them. An intermediate layer composed of Cu3Sn IMCs is
observed between the Cu particles and (Cu,Ni)6Sn5 IMCs. Figure 6b shows the substrate side interface,
where Cu6Sn5 IMCs are observed on the Cu electrode of the substrate with an intermediate layer of
Cu3Sn IMCs. These phases were confirmed by EDX results, as shown in Table 1. In addition, it should
be noted that submicron voids are observed in the Cu3Sn layer, as shown in Figure 6. The submicron
voids are observed in the Cu3Sn layer on the Cu particles but not on the Cu substrate.
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Table 1. Chemical composition (at.%) in the marked areas in Figure 6 measured by EDX spectroscopy.

Area Cu Sn Ni Au Phase

1 73.8 25.0 – 1.2 Cu3Sn
2 44.2 44.6 5.3 6.0 (Cu,Ni)6Sn5 + Au
3 75.6 24.4 – – Cu3Sn
4 56.0 44.0 – – Cu6Sn5

Cross-sectional SEM images of the TLPS joints aged at 150, 175, and 200 ◦C for 1000 h, which
are shown in Figure 7, show little change compared to the as-bonded state, as shown in Figure 5.
The XRD results of the TLPS bonding layer aged at 150, 175, and 200 ◦C for 1000 h, as shown in
Figure 8, show that Cu, Ag3Sn, and Cu3Sn peaks—and no Cu6Sn5 peaks—are detected in the aged
state. This indicates that the Cu6Sn5, which are detected only in the as-bonded state, fully transformed
into the Cu3Sn phase during the thermal aging for 1000 h. Focusing on the interfacial microstructure
on the chip side (Figure 9 and Table 2) surface and substrate side (Figure 10 and Table 3) surface,
both the Cu3Sn phase and residual (Cu,Ni)6Sn5 phase are observed at the chip side interface, whereas
only the Cu3Sn phase is observed at the substrate side interface. Although a small amount of the
(Cu,Ni)6Sn5 phase could remain because of the Ni dissolution from the chip metallization, it can be
concluded from these XRD and EDX results that the highest amount of the Cu6Sn5 phase, as seen in
the as-bonded state, transforms into Cu3Sn through the thermal aging. In addition, it should be noted
that the number of submicron voids at the interface between the Cu3Sn and Cu particles apparently
increases through the thermal aging, as can be seen from a comparison between Figure 6 (as-bonded)
and Figures 9 and 10 (aged).
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150, (b) 175, and (c) 200 ◦C for 1000 h.

Table 2. Chemical composition (at.%) in the marked areas in Figure 9 measured by EDX spectroscopy.

Aging Condition Area Cu Sn Ni Au Phase

150 ◦C 1000 h
1 74.2 24.7 – 1.0 Cu3Sn
2 46.9 42.0 4.1 7.1 (Cu,Ni)6Sn5 + Au

175 ◦C 1000 h
3 72.8 26.0 – 1.2 Cu3Sn
4 47.8 36.3 4.4 11.5 (Cu,Ni)6Sn5 + Au

200 ◦C 1000 h
5 71.7 26.6 – 1.7 Cu3Sn
6 47.6 38.4 5.8 8.1 (Cu,Ni)6Sn5 + Au
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Table 3. Chemical composition (at.%) in the marked areas in Figure 10 measured by EDX spectroscopy.

Aging Condition Area Cu Sn Ni Au Phase

150 ◦C 1000 h
1 75.7 24.3 – – Cu3Sn
2 73.1 26.9 – – Cu3Sn

175 ◦C 1000 h
3 73.6 26.4 – – Cu3Sn
4 78.7 21.3 – – Cu3Sn

200 ◦C 1000 h
5 75.5 24.5 – – Cu3Sn
6 76.1 23.9 – – Cu3Sn

Figure 11 illustrates the relationship between the shear strengths of the TLPS joints and aging
conditions. The shear strength of the as-bonded joints is approximately 22.1 MPa. During the aging
process, the shear strengths aged at 150 and 175 ◦C increase from 22.1 to 24.4 and 27.4 MPa in the
first 500 h, respectively; afterward, they decrease to 22.8 and 24.0 MPa, respectively, after 1000 h.
In contrast, that aged at 200 ◦C remains constant in the first 500 h and slightly decreases afterward to
19.0 MPa after 1000 h. The lowest shear strength of all the aged specimens is approximately 19 MPa,
which is quite high when compared to the requirement of MIL-STD-883, Method 2019.7 (>0.5 MPa,
7 × 7 mm in die-size). This indicates that the joints could be applied to high-temperature applications
with an excellent shear strength stability. The representative fracture surfaces of the as-bonded and
aged specimens are shown in Figure 12. The fractography of the as-bonded specimen shows a brittle
fracture surface on the Cu6Sn5, as shown in Figure 12a,b. The fractography of the aged specimens also
shows a brittle surface. However, a fracture clearly appears at the interface between Cu and Cu3Sn,
as shown in Figure 12c–h. The morphology of the fractured surface appears similar to a “boiled egg”
and “peeled eggshell”, which represents the Cu particle and Cu3Sn layer covering them. Such unique
fracture surfaces are observed only on the aged specimens. Based on the results, the change in the
fracture behavior could have occurred by the microstructural variation through thermal aging.
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4. Discussion

Cu6Sn5 was not detected in the joints aged at 150–200 ◦C for 1000 h except at the chip side
interface, as it was fully transformed to Cu3Sn. There are two possible reactions for the transformation
from Cu6Sn5 to Cu3Sn, as shown in Equations (1) and (2):

9Cu + Cu6Sn5 → 5Cu3Sn, (1)

Cu6Sn5 → 2Cu3Sn + 3Sn. (2)

The values of the Gibbs free energy changes of the two reactions calculated by Bao et al. [23]
are approximately −89 and 10 kJ/mol (150–200 ◦C), respectively. Thus, the reaction in Equation (1)
was the main pathway for the transformation from Cu6Sn5 to Cu3Sn under the aging conditions in
this study. The transformation from Cu6Sn5 to Cu3Sn could affect the joint strengths because of the
different mechanical properties of Cu6Sn5 and Cu3Sn. For example, numerical studies estimated the
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elastic moduli of Cu6Sn5 and Cu3Sn [24,25]. Some experimental studies evaluated Young’s modulus
of Cu6Sn5 at the macro-scale [26,27] and micro-scale [28–31]. Furthermore, Liu et al. evaluated the
mechanical properties of Cu3Sn and Cu6Sn5 through both experimental and modelling techniques
of micro-cantilever bending tests of the IMCs [32]. Although there is a wide variability in the values
of their mechanical properties, the Cu3Sn generally exhibits superior properties—including a high
strength, high elongation, and low elastic modulus—compared to those of Cu6Sn5. For instance, Liu et
al. reported the tensile strengths of Cu3Sn and Cu6Sn5 to be 2.15 and 1.13 GPa and the tensile strains
of Cu3Sn and Cu6Sn5 to be 0.016 and 0.010, respectively [32]. In addition, Lee et al. reported the
bonding strength of TLPS joints composed of Cu3Sn to be five times higher than that composed of
Cu6Sn5 [10]. Based on these studies, the transformation from Cu6Sn5 to Cu3Sn could have a positive
effect on improving the joint strengths through thermal aging.

Despite the fact that the transformation from Cu6Sn5 to Cu3Sn might have improved the
mechanical properties of the joints, the shear strengths of the TLPS joints showed little increase
(150 and 175 ◦C) or a slight decrease (200 ◦C) through thermal aging in this study, as shown in
Figure 11 in Section 3. The submicron voids observed in the Cu3Sn, as shown in the SEM images
(i.e., Figures 9 and 10 in Section 3), could adversely affect the TLPS joint strengths. Interestingly,
the submicron voids were observed in the Cu3Sn layer on the Cu particles, but not on the Cu substrate,
as shown in Figures 6, 9 and 10 in Section 3. Some studies demonstrated that submicron voids
could be formed because of Kirkendall voids within the TLP layers of Cu–Sn [23,33,34], Ni–Sn [35],
and Ag–Sn [23] systems. The Kirkendall voids were also observed in joints consisting of Sn-based
solders and Cu [15,36–38]. Yu et al. reported that the formation of Kirkendall voids as the diffusion
rate of Cu atoms is much higher than that of Sn atoms in the Cu3Sn layer between the Cu substrate and
SAC305 solder [36]. However, previous results on Kirkendall void formation in Cu/Sn systems are not
always consistent because of impurity atoms in the joints. Yu et al. [36] demonstrated that S segregation
to a Cu/Cu3Sn interface localized Kirkendall voids at the interface. Laurilla et al. [37] suggested
that impurity atoms (not identified) in an electroplated Cu film assisted void formation. Moreover,
Yang et al. [38] suggested that excess H in a Cu pad introduced during electroplating condensed into
voids in Cu3Sn. Although further studies are necessary, the submicron voids observed in the Cu3Sn
phase only on the Cu particles in this study might have occurred because of impurity atoms in the Cu
particles. Based on the observation results of the cross-section before/after thermal aging, the increase
in the amount of the submicron voids could negatively affect the TLPS joint strengths.

The microstructural evolution aged at 150–200 ◦C can be approximately described as the following
evolving model, as shown in Figure 13. First, the original metallurgical microstructure of the TLPS
layer was mainly composed of Cu6Sn5 (or (Cu,Ni)6Sn5 at the chip side interface), residual Cu particles,
and Cu3Sn layers in between the Cu6Sn5 and Cu particles, as shown in Figure 13a. Submicron voids
formed at the interface between the Cu3Sn and Cu particles due to the possible mechanisms of
the Kirkendall void. Secondly, with the increase in aging time, the transformation of the Cu6Sn5

(or (Cu,Ni)6Sn5 at the chip side interface) into Cu3Sn through the diffusion of Cu atoms from the
residual Cu particles and the formation of submicron voids at the interface between the Cu3Sn and
residual Cu particles occurred simultaneously, as shown in Figure 13b. Finally, with the increase in the
aging time, the residual Cu6Sn5, except for the small amount of (Cu,Ni)6Sn5 at the chip side interface,
fully transformed into Cu3Sn. In addition, the number of submicron voids gradually increased,
as shown in Figure 13c. The analysis of the thermal aging characteristics for the TLP sintering shows
that the joints aged at 150–200 ◦C for 1000 h maintained a shear strength exceeding 19 MPa on average,
as shown in Figure 11 in Section 3, because of both the positive and negative impacts of thermal aging
on the shear strengths, which include the transformation of Cu6Sn5 into Cu3Sn and the formation of
submicron voids at the interface between the Cu3Sn and residual Cu particles, respectively. In other
words, the TLPS layer could produce relatively stable strengths for die-attach applications through
metallurgical reactions during thermal aging.
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5. Conclusions

This study investigated the microstructural evolution and change in mechanical properties of
the TLPS Cu–Sn skeleton microstructure using a Cu-solder-resin composite during thermal aging
at 150–200 ◦C, and the mechanism of phase transformation and void formation was discussed.
The following conclusions can be made:

• In the as-bonded state, the Cu–Sn skeleton microstructure was identified as comprising Cu
particles connected with Cu6Sn5 and Cu3Sn IMCs partially filled with polyimide resin. In addition,
submicron voids were observed at the interface between the Cu3Sn phase and Cu particles.

• After aging at 150–200 ◦C for 1000 h, the Cu6Sn5 phase fully transformed into Cu3Sn except
for the small amount of (Cu,Ni)6Sn5 phase at the chip side interface. The phase transformation
from Cu6Sn5 into Cu3Sn could have a positive impact on the shear strengths owing to the better
mechanical properties of the Cu3Sn. Furthermore, the number of submicron voids at the interface
between Cu3Sn and Cu particles appeared to increase after aging, which should be because of the
Kirkendall effects between them. The formation of submicron voids could have a negative impact
on the shear strengths, suggesting a good agreement with the factography after aging.

• The averaged shear strengths were found to be 22.1 (reference), 22.8 (+3%), 24.0 (+9%),
and 19.0 MPa (−14%) for the as-bonded state and the specimens aged at 150, 175, and 200 ◦C for
1000 h, respectively. The TLPS joints maintained a shear strength over 19 MPa after the thermal
aging at 200 ◦C for 1000 h because of both the positive and negative impacts of the thermal aging,
as mentioned above. These results indicate an excellent thermal reliability of the TLPS Cu–Sn
skeleton microstructure.
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