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Abstract: Fault detection and isolation are important tasks in statistical process control. A real-time
contrasts (RTC) control chart converts the statistical process-monitoring problem to the real-time
classification problem, thus outperforming traditional monitoring techniques. An RTC assigns a class
to reference data and the other class to a window of real-time contrasts. However, RTC control charts
often fail to detect abnormal states when both normal and abnormal data exist together in the window.
To enable more rapid detection of an improved RTC control chart, this paper proposes a multivariate
process monitoring system with an improved RTC control chart. Although previous RTC control
charts proposed by other studies outperform the original RTC chart, it is still difficult to detect an
abnormal state when normal and abnormal data exist together. To overcome this problem, this paper
proposes an RTC control chart using novelty detection and variable importance with random forests.
Novelty detection and variable importance were used so that fault can be detected when the control
limit could not be exceeded despite the abnormal state. The proposed method extracts representative
data in the sliding window and adds the extracted data to the window to quickly detect the abnormal
state. Experiments demonstrate the proposed method to outperform the original RTC chart.

Keywords: real-time contrasts (RTC); control chart; novelty detection; variable importance; fault
detection; multivariate exponentially weighted moving average (MEWMA)

1. Introduction

Recently, developments in manufacturing have led to an increase in the amount of multivariate
data collected from the manufacturing processes. Because of the importance of multivariate data,
multivariate statistical process control (MSPC) is nowadays essential to enable the simultaneous
monitoring of multivariate variables [1,2]. The multivariate exponentially weighted moving average
(MEWMA) control chart [3], multivariate cumulative sum (MCUSUM) control chart [4], and T2 control
chart [5] are examples of representative multivariate process controls. Typical multivariate process
control charts assume a normal distribution of data, estimate the parameters in the normal state,
and use them as a statistic for control charts. However, in actual manufacturing processes, hardly
any data satisfy the normal distribution. If the normal distribution is assumed, the performance is
degraded. To overcome these problems, several approaches have been proposed to classify the state
of multivariate process control charts as normal or abnormal by using machine-learning techniques.
Although the performance is better than that of a conventional multivariate process control chart,
once the model learned in phase I is generated, the decision boundary does not change, and the
performance may deteriorate. To improve this problem, there have been some studies to generate
artificial contrasts [6–8] and a method called real-time contrasts (RTC) has been proposed [9]. RTC
learns a new classifier as the sliding window progresses. This method calculates the statistics based
on sequential classifications. Because it learns a new classifier in real time, it offers the advantage
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of better reflecting the characteristics of the observations in Phase II in the control chart. RTC uses
random forests as the classifier to calculate the statistics. This classifier offers the advantage of being
able to check variables that are considered the cause of abnormal observations in real time. However,
a problem associated with RTC is that the monitoring statistics of the original RTC have discrete value
because these monitoring statistics are computed based on the binary classification probabilities of
several decision trees [10].

To overcome these limitations, distance-based RTC has been proposed. This method uses a
support vector machine (SVM) and kernel linear discriminant analysis (KLDA) as a classifier to
calculate the statistics [11]. Attempts have been made to improve the performance of the classifier by
applying weighted voting to random forests to improve the performance of RTC while using random
forests to maintain the advantage of being able to identify anomalous cause variables in real time [10].
Most previous attempts to improve RTC performance have used other classifiers instead of random
forests. However, these studies could not identify the abnormal cause variable in real time. Some
studies have attempted to use random forests to improve the detection ability of the control chart by
improving the performance of the classifier. RTC creates contrasts using a sliding window. However,
when both normal and abnormal data exist together in the sliding window, the sensitivity to detect
abnormalities is decreased. In addition, in an abnormal state, when some normal observations are input
to the sliding window, they can act as noise and degrade the RTC performance. Also, although the
process is out of control, when normal and abnormal data are mixed and normal data is intermittently
observed in the sliding window, the out-of-control state cannot be detected quickly. Therefore, in this
study, we suggest a means of improving the performance of the RTC control chart. We improved the
classification performance of the RTC control chart by enhancing it with a variable importance chart
using random forests, novelty detection using SVM, and MEWMA.

The proposed method consists of two phases. In Phase I, novelty detection is performed using the
reference data. Through this novelty detection, it is possible to determine the extent of the real-time
contrasts from the reference data. We also check the variable importance of the reference. We set the
maximum value of the variable importance of the reference data as the threshold of the contrasts.
Second, in Phase II, if the contrast variable importance value is higher than the threshold of variable
importance, it can be assumed to be in an abnormal state even though the monitoring statistics do
not exceed the threshold of the monitoring statistics. In this case, to increase the statistics of the RTC
control chart in the abnormal state, we use the novelty detection to determine the location of the data
in the contrasts that vary from the normal state. Using novelty detection, we align the data in the
contrasts near the boundary with the initial direction of the contrasts. Conversely, we align the data far
from the boundary with the recent direction of the contrasts. Then, we use MEWMA to obtain data
that is representative of the sliding window. The existing MEWMA method assigns a greater weight
to recent data. However, in this paper, it was used to assign a greater weight to suspected abnormal
data. If the extracted data are attached to the contrasts, an abnormality can be detected more quickly
than with the conventional method. This paper consists of the following sections. Section 2 introduces
the original RTC control chart and then Section 3 describes the newly proposed method. In Section 4,
we compare the performance of the original RTC control chart with that of the newly proposed method.
Section 5 concludes this paper and discusses further studies to be undertaken in the future.

2. Real-Time Contrast Control Chart

In this section, we describe the original RTC control chart [9] that uses random forests as a classifier.

2.1. Real-Time Contrast (RTC)

The characteristics of RTC control chart differ from those of a traditional control chart, specifically,
in the application of the sequential hypothesis test. An RTC control chart is a type of sequential
classification. This method defines reference data and real-time contrasts to classify each other in
real time. The RTC control chart generates monitoring statistics by comparing reference data S0 and
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real-time contrasts Sw. S0 consists of the normal state of Phase I. The size of S0 is N0, while Sw(t) is the
contrasts containing the most recently observed data. Sw(t) is constructed by applying the concept of
a moving window. This involves setting the window size Nw and constructing a contrast by moving
the window to include the most recent observations. In the RTC control chart, S0 is set to class 0 while
Sw(t) is set to class 1 to learn the classifier. The classifier learns whenever the new Sw(t) is created.
If Sw(t) consists of the normal state observations, it is difficult to classify each class. However, when
Sw(t) is composed of abnormal state observations, it utilizes the feature whereby the classification of
decision boundary is clear and easy to classify. The probability that an arbitrary observation xi until
time t is classified as class k (k = 0, 1) is expressed as p̂k(xi).

p(S0, t) =
∑xi∈S0

p̂0(xi|t)
N0

, for xi ∈ S0 (1)

p(Sw, t) =
∑xi∈Sw(t) p̂1(xi|t)

Nw
, for xi ∈ Sw(t) (2)

It can be seen that Equations (1) and (2) are affected by the size of the reference data and the
size of the sliding moving window, respectively. Furthermore, N0 should be set such that it is much
larger than Nw. Consequently, p(S0, t) is sensitive and its stable detection performance is better than
p(Sw, t). For this reason, in this study, we used only p(S0, t). Figure 1 illustrates the process of the RTC
control chart.
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Figure 1. Framework for real-time contrast (RTC) control chart.

2.2. Control Limit

In a MSPC chart, the control limit is used to distinguish between normal and abnormal states. First,
the control limit is set through statistics in the normal state after determining an acceptable type-I error
(α). Second, the type-II error (β) in the abnormal state and the abnormal detection ability are determined
by the control limit. Therefore, to minimize the type-I and type-II errors, it is important to set a highly
efficient control limit to ensure abnormality detection. In the process control chart, RLk (run length) is
the amount of data observed prior to the control limit first being exceeded. The average run length
(ARL) is expressed by the following equation.

ARL =
1
R

R

∑
k=1

RLk (3)

ARL0 =
1
α

(4)
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ARL1 =
1

1− β
(5)

R in Equation (3) is the number of repetitions. In this study, a performance evaluation was carried
out by fixing ARL0 and the control limit was set to ARL0 ∼= 200.

2.3. Random Forests

The random forests algorithm is very effective and useful for both prediction and classification
problems. It was originally developed by Breiman [12–14]. A decision tree-based random forests is a
robust model for outliers and is able to handle various data types, interaction between variables, and
nonlinearity. It is also used in RTC control charts because of its ability to effectively obtain a probability
estimation. Random forests should set two parameters as a classifier that constructs an ensemble
using the bagging (bootstrap aggregation) of a large number of decision trees. First, the number
of decision trees constituting an ensemble should be determined. Second, the number of randomly
chosen variables should be determined. In the case of decision trees, the overfitting problem does
not occur even if a sufficiently large number of decision trees is set. For this reason, in this study,
the number of decision trees was set to 500. Also, the number of randomly selected variables was
set to the square root of the number of variables [9–11]. Observations that are not used for bagging
in the learning process of an individual decision tree are called out-of-bagging (OOB) observations.
These are used to estimate the probability of anomalies and enable the fault identification of anomalies.
The probability of the OOB observations for each observation xi belonging to class k being correctly
predicted by the original class is defined as

p̂k(xi) =
∑j∈OOBi

I[ŷ
(
xi, tj

)
= k]

|OOBi|
, k = 0, 1 (6)

In addition, the predicted class is 0 when p̂0(xi) less than control limit and 1 otherwise.
An indicator function I(·) returns 1 for true or 0 for false for the argument and ŷ

(
xi, tj

)
represents

the predicted class. Here, tj is the jth decision tree among the decision trees in the random forests.
OOBi is the set of decision trees that do not use observation xi in the learning process using bagging.
An additional consideration is the class-imbalance problem. Because N0 is set such that it is very
large compared to Nw when the classifier learns, there is the problem of predicting the class of all the
observations to the class of N0. To overcome this problem, the downsampling of N0 can be applied.
If downsampling is performed in the process of learning an individual decision tree, it is possible to
improve the classification speed of random forests by improving the computation speed and decreasing
the correlation between decision trees [12–14]. In this study, the size of the downsampling is the same
as the sliding window size.

2.4. Fault Isolation Using Variable Importance

In the original RTC control chart, the cause of a fault can be analyzed by evaluating the importance
of variables in the classifier when a fault detection alarm occurs [9]. In this section, we introduce
a method for determining the importance of variables proposed by Breiman [12–14]. The Random
forests algorithm is used to measure the significance contained in the decision tree. A thorough search
of every node of every tree in the random forests scored m selected variables. As a result, we can
implicitly consider the importance of each variable to the model with impurity reduction as a measure
of relative importance. Variable importance is the degree of impurity reduction. Breiman [12–14]
proposed the application of variable importance by using the Gini index of impurity. Equation (7) is
described in terms of the Gini index in a random forest.

Gini(v) =
c

∑
i=1

ri(1− ri), (7)
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where c is the number of classes, v is a variable as a node, ri is the ratio of the total data to class i and sv

means split in node v. The impurity reduction ∆Gini(sv, v) at each node v reflects the ratios wL and
wR in that they are proportional to the number of the data for each child node from the parent node v.

∆Gini(sv, v) = Gini(v)− (wLGini(vL) + wRGini(vR)) (8)

The impurity reduction ∆Gini(sv, v) is the difference between the impurity score of node v and
the weighted average of impurity scores of children nodes of node v. Then, in variable Xk, the variable
importance V(Xk) is the average of the impurity reduction ∆Gini(sv, v) for all trees.

V(Xk) =
1

ntree

ntree

∑
t=1

∑
v∈Dt

∆Gini(Xk, v) (9)

3. Proposed Method

We propose an improved RTC control chart with novelty detection and variable importance. In the
case of the original RTC control chart, the reference data defined as normal state was used only as a
comparison group for the contrast data. However, in this study, we not only used the reference data as
a comparison group, but also took the reference data’s maximum value of the variable importance as
the control limit of the real-time variable importance. The proposed method consists of Phases I and II,
as shown in Figures 2 and 3.

In Phase I, there are three steps: deciding the variable importance threshold of the real-time
contrasts, deciding the decision boundary using novelty detection, and deciding the RTC control limit.
We use the reference data to determine the novelty detection’s decision boundary, extract the variable
importance of the real-time contrast’s threshold, and set the control limit. In this paper, SVM is used to
perform novelty detection. Especially, the radial basis function (RBF) kernel is known to perform well
in novelty detection, so this study used the RBF kernel [15].

As shown in Figure 4, we have confirmed that the distribution of the contrasts differs from the
reference data. Figure 4 shows when an abnormal state is caused by X2. As shown in Figure 4, some
data are separated from the normal state distribution. However, it can be seen that there are data that
are very close to the distribution of the normal state even though it is in an abnormal state. For this
reason, when an abnormal state occurs in the RTC control chart, abnormal and normal data may be
mixed in the contrasts. In such a case, the performance of ARL1 may deteriorate.
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Figure 5 shows how the data is shifted to the variable X2, which differs from the other variables.
Unlike in Figure 4, Figure 5 shows that the cause of the abnormality can be clearly detected. For this
reason, we set the threshold for the variable importance of the reference data as a criterion for
determining whether the proposed algorithm works. However, monitoring statistics will often be
falsely replaced with variable importance charts. Therefore, we try to set the threshold and improve
the performance by using the variable importance chart of normal data. In Phase II, the information
obtained from Phase I is utilized as soon as the variable importance of the contrast exceeds the threshold.
We introduce an improved real-time contrast using novelty detection and variable importance and
describe the proposed method in Sections 3.1 and 3.2 in more detail.
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3.1. Phase I

In this paper, the proposed method consists of two phases. In Phase I, we performed novelty
detection, checking the variable importance using the reference data, and deciding the RTC control limit.
Novelty detection involves modeling the normal state, thus enabling the detection of any divergence
from normality. In other words, if any data conflicts with the decision boundary based on the normal
data, we calculate the distance whether it is inside or outside the boundary. This distance information
will be used in Phase II. In this study, the algorithm to be used for novelty detection is SVM. SVM
can be used as a nonlinear decision boundary for classification. To perform nonlinear classification,
it is necessary to map the given data to the high-dimensional feature space. With the development of the
multivariate control chart, several studies used the kernel distance to reflect the high dimension [16–19].
Previous studies have used a kernel distance to create a multivariate control chart [18]. There have
been attempts to apply not only high-dimensional data using kernel distances but also control charts.
The RBF kernel exhibits good performance in one-class classification [18]. In this paper, SVM was used
because of its good ability to handle nonlinear data as well as high-dimensional data using the RBF
kernel. As shown in Figure 5, we can see that we can quickly identify the anomalies with the variable
importance chart. For this reason, we set the maximum value of the variable importance of reference
data to the threshold of the variable importance of real-time contrasts, thus triggering the proposed
method. Finally, we set ARL0 ∼= 200 to fix the RTC control limit as described in Section 2.2. In Phase II,
the proposed method is implemented when the variable importance in the sliding window exceeds
the maximum value obtained in Phase I.

3.2. Phase II

In Phase II, the proposed method is implemented when the variable importance exceeds the
threshold value. However, if it does not exceed the threshold, it will perform the same real-time
monitoring as the original RTC control chart. First, if the variable importance is exceeded, we check
the distance between the contrasts and the boundary obtained through the novelty detection. Then,
we align the data in the contrasts. Finally, we use MEWMA to create data that represent the contrasts.
MEWMA is a logical extension of the univariate EWMA and is defined as follows:

Zi = θxi + (1− θ)Zi−1, i = 0, 1, 2, . . . (10)
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Z0 is applied as the target or starting value. Hunter [20] proposed a guideline value for θ (where
θ is the weight given to the most recent observation xi) of 0.2 to 0.3 for data processing. MEWMA was
designed to be capable of weighting the data by time [21–23]. However, we converted MEWMA to
weighted data far from boundary of novelty detection. In this paper, we gave more weight to data that
is close to the abnormal state as a result of sorting data in the novelty detection by using MEWMA.
Then, we attached the extracted data to real-time contrasts. We attempted to solve the problem of the
performance of ARL1 being deteriorated by the slowing of the fault detection despite the occurrence
of the abnormal state by adding the extracted data to the contrasts.

4. Experiments

In this section, we compared the performance of the proposed method with the existing method.
To verify the performance, we changed the experimental conditions such as the dimensions and shift
sizes. We generated normal and abnormal observations to compare the detection performance of the
original RTC control chart with the ARL1 for a given ARL0 ∼= 200. The results of the previous study
show that the best performance is obtained when the window size = 10 [8]. Therefore, we did not
compare the performance based on the window size.

4.1. Data Description and Experimental Design

The experiment was performed by generating the data for a normal distribution with mean of 0
for which the covariance matrix is the identity matrix. The size of the comparative group data was
set to 2000 (N0 = 2000), consisting of normal observations, and Nw. is the size of the sliding window.
The data size of the comparative group was set to 2000 and consisted of normal observations. In the
case of abnormal state data, data with a mean shift of the normal data was generated. The data used to
evaluate the experimental results consisted of 20 normal observations and 20 abnormal observations.
The performance index of the multivariate process control chart, ARL, was used as the evaluation index.
We used ARL1 as the performance measure where ARL0 is 200, with the normal data being repeated
1000 times. Abnormal observations were set as mean changes, and experiments were conducted
for one variable (Case 1) and three variables (Case 2) as the causative variables. The shift size was
computed by the non-centrality parameter λ, defined as follows.

λ =
√

δTΣ−1
X δ (11)

where δ is the magnitude vector of the mean change. Σ−1
X is a diagonal matrix where the diagonal

elements corresponding to the shifted variable are 1 and the remaining elements are 0. Table 1
summarizes the conditions used in the experiment.

Table 1. Experiment condition.

Description Parameter Value

Size of reference data N0 2000
Window size Nw 10

Non-centrality parameter λ 1.0, 2.0, 2.5, 3.0
Weighting constant of MEWMA θ 0.3

Dimension of observation vectors p 10, 50, 100

4.2. Experimental Result

The experimental results are shown in Tables 2–4. Table 2 represents the result obtained when the
size of dimension was fixed to 10, and we compared the performance of the proposed method according
to the shift size. Table 2 lists the values of ARL1 and the standard deviation. Tables 2–4 indicate that,
as the amount of the shift decreases with the proposed method, the level of the performance increases.
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In addition, in both cases, we can see that an improvement in the performance is attained with the
proposed method.

In Tables 2–4, we fixed the window size and compared the performance by different shift size and
dimensions. We found that the performance improvement increases with the dimensions.

Table 2. Experimental results, dimension size = 10, window size = 10.

Shift Size

ARL1 (Std. Error)

Case 1 Case 2

Original RTC Proposed RTC Original RTC Proposed RTC

1.0 9.03
(0.27)

8.11
(0.18)

9.94
(0.1)

8.81
(0.13)

2.0 8.64
(0.36)

7.90
(0.41)

8.79
(0.42)

8.07
(0.33)

2.5 7.92
(0.29)

7.29
(0.33)

7.99
(0.24)

7.58
(0.27)

3.0 7.12
(0.3)

6.86
(0.33)

7.37
(0.21)

6.92
(0.28)

Table 3. Experimental results, dimension size = 50, window size = 10.

Shift Size

ARL1 (Std. Error)

Case 1 Case 2

Original RTC Proposed RTC Original RTC Proposed RTC

1.0 10.88
(0.33)

9.72
(0.19)

11.22
(0.24)

10.17
(0.17)

2.0 9.95
(0.47)

8.81
(0.41)

10.57
(0.42)

8.49
(0.33)

2.5 9.20
(0.18)

8.55
(0.18)

9.18
(0.19)

8.71
(0.11)

3.0 8.54
(0.38)

8.04
(0.11)

8.39
(0.47)

8.25
(0.27)

Table 4. Experimental results, dimension size = 100, window size = 10.

Shift Size

ARL1 (Std. Error)

Case 1 Case 2

Original RTC Proposed RTC Original RTC Proposed RTC

1.0 12.70
(0.09)

10.31
(0.16)

12.66
(0.37)

11.98
(0.12)

2.0 12.09
(0.36)

10.01
(0.41)

12.27
(0.42)

10.05
(0.33)

2.5 11.78
(0.56)

10.12
(0.26)

11.52
(0.49)

9.97
(0.18)

3.0 11.25
(0.13)

9.90
(0.14)

11.30
(0.15)

9.02
(0.41)

Figure 6 shows the monitoring statistics for the original and proposed RTC control charts. We set
the normal and the abnormal states for 20 times. This is an excerpt from one of the experiments
(dimension size = 100, shift size = 2, window size = 10) in Case 1. From the instant that the abnormal
state was established, the monitoring statistics were found to increase, and it was confirmed that the
proposed method can detect the fault more quickly than the existing method.
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5. Conclusions

In this study, we proposed an improved real-time contrasts method using novelty detection and
variable importance. The proposed method used the variable importance chart and novelty detection.
In the variable importance chart, we used the maximum value of the variable importance in the
reference data as a threshold. When the threshold of the variable importance in the real-time contrasts
is exceeded, we use novelty detection to sort the data in the contrasts. In this sorting of the contrasts,
weighted data is extracted through MEWMA. The extracted data is added to the contrasts and then
the RTC control chart is activated. We proposed a method that improves the performance of ARL1

when both normal and abnormal data exist together in the contrasts. In other words, when the process
is in an abnormal state, the performance degradation problem, which had an inflow of data similar to
normal state data in the contrasts, was resolved through the proposed method. Experimental results
show that the performance of the proposed method is better than that of the original RTC control chart.
In the future, we will examine how to make the proposed method operate flexibly, depending on the
dimensions of data, the degree of data shift, and the window size.

Author Contributions: K.-S.S. proposed the idea and carried out the experiments. I.-s.L. assisted with the
numerical modeling and analysis. J.-G.B. validated the proposed method and guided the research. All the authors
have read and approved the final manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korean government (MSIT) (NRF-2016R1A2B4013678). This work was also supported by the BK21 Plus program
(Big Data in Manufacturing and Logistics Systems, Korea University) and by Samsung Electronics Co., Ltd.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, C.; Tsung, F.; Zou, C. A general framework for monitoring complex processes with both in-control
and out-of-control information. Comput. Ind. Eng. 2015, 85, 157–168. [CrossRef]

2. Bersimis, S.; Sgora, A.; Psarakis, S. The application of multivariate statistical process monitoring in
non-industrial processes. Qual. Technol. Quant. Manag. 2018, 15, 526–549. [CrossRef]

3. Lowry, C.A.; Woodall, W.H.; Champ, C.W. A Multivariate Exponentially Weighted Moving Average Control
Chart. Digit. Signal Process. 2014, 27, 159–166. [CrossRef]

http://dx.doi.org/10.1016/j.cie.2015.03.007
http://dx.doi.org/10.1080/16843703.2016.1226711
http://dx.doi.org/10.2307/1269551


Appl. Sci. 2019, 9, 173 11 of 11

4. Crosier, R.B. American Society for Quality Multivariate Generalizations of Cumulative Sum Quality-Control
Schemes. Technometrics 1988, 30, 291–303. [CrossRef]

5. Hotelling, H. Multivariate Quality Control. In Techniques of Statistical Analysis; McGraw-Hill: New York, NY,
USA, 1947; pp. 111–184.

6. Hwang, W.; Runger, G.; Tuv, E. Multivariate statistical process control with artificial contrasts. IIE Trans. Inst.
Ind. Eng. 2007, 39, 659–669. [CrossRef]

7. Hu, J.; Runger, G.; Tuv, E. Tuned artificial contrasts to detect signals. Int. J. Prod. Res. 2007, 45, 5527–5534.
[CrossRef]

8. Hwang, W.Y.; Lee, J.S. Shifting artificial data to detect system failures. Int. Trans. Oper. Res. 2015, 22, 363–378.
[CrossRef]

9. Deng, H.; Runger, G.; Tuv, E. System monitoring with real-time contrasts. J. Qual. Technol. 2012, 44, 9–27.
[CrossRef]

10. Jang, S.; Park, S.H.; Baek, J.G. Real-time contrasts control chart using random forests with weighted voting.
Expert Syst. Appl. 2017, 71, 358–369. [CrossRef]

11. Wei, Q.; Huang, W.; Jiang, W.; Zhao, W. Real-time process monitoring using kernel distances. Int. J. Prod. Res.
2016, 7543, 1–15. [CrossRef]

12. Breiman, L. Random forests. Mach. Learn. 2012, 9. [CrossRef]
13. Breiman, L. Bagging predictors. Mach. Learn. 1996, 140, 123–140. [CrossRef]
14. Breiman, L. Manual on Setting Up, Using, and Understanding Random Forests v3.1; Statistics Department,

University of California: Berkeley, CA, USA, 2002; pp. 1–33.
15. Sch, B.; Sung, K.; Burges, C.J.C.; Girosi, F.; Niyogi, P.; Poggio, T.; Vapnik, V. Comparing Support Vector

Machines with Gaussian Kernels to Radial Basis Function Classifier. IEEE Trans. Signal Process. 1997, 45,
2758–2765. [CrossRef]

16. Hayton, P.; Schölkopf, B.; Tarassenko, L.; Anuzis, P. Support vector novelty detection applied to jet engine
vibration spectra. Adv. Neural Inf. Process. Syst. 2001, 13, 946–952. [CrossRef]

17. Mitiche, I.; Morison, G.; Nesbitt, A.; Hughes-Narborough, M.; Stewart, B.G.; Boreham, P. Classification of
EMI discharge sources using time—frequency features and multi-class support vector machine. Electr. Power
Syst. Res. 2018, 163, 261–269. [CrossRef]

18. Gardner, A.B.; Krieger, A.M.; Vachtsevanos, G.; Litt, B. One-Class Novelty Detection for Seizure Analysis
from Intracranial EEG. J. Mach. Learn. Res. 2006, 7, 1025–1044. [CrossRef]

19. Sun, R.; Tsung, F. A kernel-distance-based multivariate control chart using support vector methods. Int. J.
Prod. Res. 2003, 41, 2975–2989. [CrossRef]

20. Hunter, J.S. The Exponentially Weighted Moving Average. J. Technol. 1986, 18, 203–210. [CrossRef]
21. Hassan, M.M.; Huda, S.; Yearwood, J.; Jelinek, H.F.; Almogren, A. Multistage fusion approaches based on a

generative model and multivariate exponentially weighted moving average for diagnosis of cardiovascular
autonomic nerve dysfunction. Inf. Fusion 2018, 41, 105–118. [CrossRef]

22. Tran, K.P.; Castagliola, P.; Celano, G.; Khoo, M.B.C. Monitoring compositional data using multivariate
exponentially weighted moving average scheme. Qual. Reliab. Eng. Int. 2018, 34, 391–402. [CrossRef]

23. Harrou, F.; Sun, Y.; Taghezouit, B.; Saidi, A.; Hamlati, M.E. Reliable fault detection and diagnosis of
photovoltaic systems based on statistical monitoring approaches. Renew. Energy 2018, 116, 22–37. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/00401706.1988.10488402
http://dx.doi.org/10.1080/07408170600899615
http://dx.doi.org/10.1080/00207540701325330
http://dx.doi.org/10.1111/itor.12047
http://dx.doi.org/10.1080/00224065.2012.11917878
http://dx.doi.org/10.1016/j.eswa.2016.12.002
http://dx.doi.org/10.1080/00207543.2016.1173257
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1109/78.650102
http://dx.doi.org/10.1145/1279740.1279829
http://dx.doi.org/10.1016/j.epsr.2018.06.016
http://dx.doi.org/10.1016/j.cmpb.2004.10.009
http://dx.doi.org/10.1080/1352816031000075224
http://dx.doi.org/10.1080/00224065.1986.11979014
http://dx.doi.org/10.1016/j.inffus.2017.08.004
http://dx.doi.org/10.1002/qre.2260
http://dx.doi.org/10.1016/j.renene.2017.09.048
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Real-Time Contrast Control Chart 
	Real-Time Contrast (RTC) 
	Control Limit 
	Random Forests 
	Fault Isolation Using Variable Importance 

	Proposed Method 
	Phase I 
	Phase II 

	Experiments 
	Data Description and Experimental Design 
	Experimental Result 

	Conclusions 
	References

