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Abstract: Soil stabilizer can enhance the soil properties, which can improve ecological environmental
problems such as soil erosion and slope instability. This study investigates the water-related and
mechanical properties of soil stabilization using a polymer soil stabilizer solution synthesized from
vinyl acetate polymer. The water properties test, mechanical properties test, durability test and
seed growth test were carried out in the laboratory. Also, the effect of vinyl acetate polymer was
verified by field tests. The results revealed that vinyl acetate polymer can enhance the water-retaining
property, anti-erosion resistance, strength property and durability of soil, all of which increase with
the increase of polymer concentration. At the same time, the polymer also has a certain promoting
effect on vegetation growth. In addition, field tests proved that vinyl acetate polymer has good effects
on soil engineering. These results could be applied as a reference for vinyl acetate polymer-improved
soil engineering.

Keywords: vinyl acetate polymer; soil improvement; topsoil; water property; mechanical property;
durability; field test

1. Introduction

With the development of the social economy, human engineering activities are having a greater
and greater impact on the ecological environment, which leads to a series of ecological environmental
problems, such as water and soil loss, landslides, dust emission, and so on [1–3]. According to some
investigations, the average loss of soil in the United States is 8.7 × 106 kg/km2 every year [4]. Due to
large-scale engineering construction, many bare soil slopes have been formed. These slopes are prone
to slope erosion, soil erosion, and other disasters. Therefore, adopting various physical and chemical
methods to prevent soil erosion and other geological and environmental problems has always been a
hot research topic globally.

Soil stabilizer, as a new environmentally friendly soil improvement material, was advanced in
developed countries such as the United States and Japan in 1970s. According to the main components,
soil stabilizers can be divided into five major categories: lime cement soil stabilizer [5–8], slag silicate
soil stabilizer [9–12], ionic soil stabilizer [13–16], bio-enzyme soil stabilizer [17,18] and polymer soil
stabilizer [19–23]. Polymer soil stabilizer has become a hot spot of research in soil stabilization
materials, because of advantages that include less incorporation, stable curing effect and ecological
environmental protection. Naeini et al. [24] used self-developed hydrophilic polymers to strengthen
the soil. The polymer can significantly increase the compressive strength of soil. Zezin et al. [25]
developed an electrolyte polymer that can effectively solve the problem of radioactive soil particle
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diffusion. Collins et al. [26] found that a high molecular polymer can reduce the thickness of the
hydrated film around the soil particles, which makes the connection of soil particles more compact.

In the present study, polymer soil stabilizer solution is synthesized from vinyl acetate polymer as
a chemical treatment material of soil. The water properties test, including water-retaining property
test and rainfall erosion test, mechanical properties test, including unconfined compression test and
direct shear test, durability test and seed growth test were carried out in the laboratory. Also, the effect
of vinyl acetate polymer was verified by field tests. These results could be applied as a reference for
vinyl acetate polymer-improved soil engineering, especially for the surface protection of slopes.

2. Materials and Methods

2.1. Vinyl Acetate Polymer

Vinyl acetate polymer, which was synthesized in the laboratory, is a white emulsion (Figure 1).
The active ingredient of vinyl acetate polymer is latex particles, which contain a large number of
polymer chains. There is a mass of hydrophilic carboxyl groups (-COOH) and hydroxyl groups (-OH)
in the polymer chain. The basic physical and chemical properties of vinyl acetate polymer were
measured in the laboratory. The measured results are shown in Table 1.
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Table 1. The basic physical and chemical properties of vinyl acetate polymer.

pH Viscosity
(MPa·s)

Relative
Density (Gs) Solid Content (%) Water

Absorption (%) Gel Rate (%)

6–7 400–3000 1.05–1.07 41–45 34–38 1.48–1.53

The basic synthetic material of vinyl acetate polymer is vinyl acetate. Other functional modifier
monomer and auxiliary materials are also added in the synthesis formulation. According to the
functional requirements of the polymer, several protective colloids, emulsifiers, buffers, stabilizers,
plasticizers and anti-ultraviolet materials are added to improve the function of the polymer.

The polymerization process is described as follows. The water was first mixed with the polyvinyl
alcohol. Persulfate and vinyl acetate were added to the mixture. After that, the mixture was loaded
into a reaction still for 20 min to do the polymerization. Then the proportion of vinyl acetate, methyl
methacrylate and acrylate were mixed. The mixture was dripped into the existing reaction system over
2–3 h. After finishing the dripping, the reactants were reacted at 60–73 ◦C for 30–60 min. Subsequently,
the reaction temperature was reduced to 50–55 ◦C and the emulsifiers, buffers, stabilizers, plasticizers
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and so on were added into the reaction system. Finally, the mixture was fully stirred and cooled to
room temperature to obtain vinyl acetate polymer.

2.2. Modified Mechanism of Vinyl Acetate Polymer

Vinyl acetate polymer is a kind of polymer emulsion with strong water resistance. It exhibits
negative electricity due to the adsorption of a large amount of anions. When the polymer is in contact
with soil particles, it is adsorbed onto the surface of the soil due to electrostatic attraction (Figure 2a).
With the diffusion and volatilization of water, the polymer chains are extended.
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hydrogen bonds; (c) cation substitution reaction.

The carboxyl groups on the polymer chains form hydrogen bonds with hydroxyl groups on the
surface of the soil particles (Figure 2b). With the increase of polymer concentration, the number of
hydrogen bonds becomes greater and greater. Due to the existence of a large number of hydrogen
bonds, the structure of the soil becomes more stable. The hydrogen ions in the hydrophilic group of
polymer chains replace the alkali metal ions on the surface of the soil particles (Figure 2c). This can
reduce the thickness of the electric double layer of clay particles, by which the increasing attraction
energy between soil particles promotes soil aggregation. Due to the presence of hydrophobic long
chains in the molecule, a reticular membrane structure is formed on the particle surface and in the
gaps of soil particles via diffusion, infiltration and winding, leading to the bonding forces between soil
particles being further enhanced. The whole volume of soil becomes a solid space net structure system
with stabilized characteristics.

The improved soil was subjected to scanning electron microscopy to obtain the microscopic state.
Figure 3 is the SEM micrographs of improved soil in different magnifications. From Figure 3a,b it can
be seen that a part of the polymer permeates the interior of the soil and fills the pores between most of
the particles, which enhances the connecting force between the particles, after the polymer is in contact
with soil. The reticulated membrane formed on the surface of soil particles by vinyl acetate polymer
is shown in Figure 3c. It can be found that the connection between reticulated membrane and soil
particles is very close. The reticulated membrane has good hydrophobicity, toughness and strength.

2.3. Soil Characterization

The soil used in the laboratory experiments was obtained from Nanjing, Jiangsu Province, China,
which is also the location of field test in Section 4. The soil was dried at 105 ◦C, crushed and sieved
to 2 mm to remove the gravels. The Atterberg liquid limit of the soil was found to be 52.6, and the
plasticity index was 17.3. The maximum dry density (ρmax) and the optimum water content of the
soil were determined as 1.73 g/cm3 and 15.4%, respectively, which were determined by the standard
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Proctor test. It belongs to the clay based on the ASTM standard (ASTM D2487-00). The content of
0.015–1 mm soil particles is 73%. The soil is free of organic matter and pollutants. In addition, the main
mineral composition of soil is quartz, mica, feldspar, illite and calcite, which account for more than
96% of the mineral composition.
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2.4. Water Property Test

2.4.1. Water-Retaining Property Test

Water-retaining property is one aspect of soil improvement by soil stabilizer. It refers to the
relative stability of water in the soil. It prevents the soil from hardening and allows the vegetation to
absorb sufficient moisture and nutrients. The purpose of this test is to understand the effect of vinyl
acetate polymer on soil water-retaining property.

In this experiment, 500 g of soil was put into an evaporating box with 20 cm length, 10 cm width
and 5 cm height. The box was shaken so that the soil was evenly distributed. Then, five locations were
selected to measure the height of the soil. When the difference between the five heights is less than
0.1 cm, the soil can be considered uniform. Otherwise, the soil is removed and reloaded. The soil can
be considered evenly distributed. The density and the porosity were 1.73 g/cm3 and 0.57. 300 mL of
polymer diluents with the concentrations of 0%, 10%, 20% and 30% (S1, S2, S3 and S4) was sprayed
on the surface of the soil. The average thickness of spray on topsoil was 3 cm, which was controlled
by the density of soil, the concentration of polymer diluent and the volume of spraying. Then the
evaporation box was placed in a curing box with a temperature of around 40 ◦C for test. After 24 h,
the soil in the evaporation box was weighed until the difference in weight between the two was no
greater than 1 g. The evaporativity was given by:

Ee =
M1 − M2

M0
× 100%, (1)

where Ee (%) is defined as the evaporativity of soil; M1 (g) is the weight of soil at beginning; M2 (g) is
the weight of soil after a period of time of evaporation; M0 (g) is the weight of the dried soil.

2.4.2. Rainfall Erosion Test

The purpose of rainfall erosion test is to test the anti-erosion resistance of soil improved by vinyl
acetate polymer. This experiment is carried out using self-designed rainfall erosion test simulator.
The schematic diagram of the test simulator is shown in Figure 4.

The size of the tray used in the experiment is 16 cm × 16 cm × 3 cm. In the experiment, the tray
is full of dried soil, the weight of which is 2000 g. The tray was shaken so that the soil was evenly
distributed. Then, five locations were selected to measure the height of the soil. When the difference
between the five heights is less than 0.1 cm, the soil can be considered uniform. Otherwise, the soil is
removed and reloaded. The soil can be considered evenly distributed. The density and the porosity
were 1.73 g/cm3 and 0.57. After finishing compaction, the weight of the whole tray was weighed.
The polymer diluents with concentrations of 0%, 10%, 20% and 30% (S5, S6, S7 and S8) were evenly
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sprayed on the surface of the soil. The spray amount was 3 L/m2. The average thickness of the spray
on the topsoil was 3 cm, which was controlled by the density of soil, the concentration of the polymer
diluent, and the volume of spraying. The tray was placed on a slope with 30◦ gradient, which is also
the gradient of the slope in the field test, after curing at 20 ◦C for 24 h. The intensity of rainfall was
2.7 L/min, which is the maximum annual precipitation intensity in Nanjing. For unreinforced soil, soil
failure occurred after 30 min erosion. Therefore, the rainfall time was 30 min in this test. In addition,
a collecting bucket was used to collect sediment loss. The weight of the soil in the collecting bucket
was weighted after being dried for 24 h. The erosion rate was given by:

Ep =
∆m

m1 − m0
× 100%, (2)

where Ep (%) is defined as the erosion rate of soil; ∆m (g) is the weight of dried soil in the collecting
bucket; m1 (g) is the weight of soil and the tray; m0 (g) is the weight of the tray.
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2.5. Mechanical Property Test

2.5.1. Unconfined Compression Test

To determine the unconfined compression strength of the improved soil, unconfined compression
tests were performed. In the unconfined compression test, the soil was mixed with the vinyl acetate
polymer dilution by an agitator. Four-layered compaction was adopted to test specimens with 39.1 mm
diameter and 80 mm height. The specimen was statically compressed by a jack with a customized
mold. The optimal values (for full mass stabilized soil) were used for all specimens, and were 15.4%
in water content and 1.73 g/cm3 in density. The concentrations of the polymer were 0%, 10%, 20%
and 30% (S9, S10, S11 and S12) in the test. After the specimen preparation, the specimens were cured
at 20 ◦C for 24 h. In the test, the YYW-2 unconfined compressional strain control device (Nanjing
Nantu Instrument Equipment Co. Ltd., Nanjing, China) was used, and the controlling strain rate was
2.4 mm/min [27]. The test was based on the ASTM standard (ASTM D2166-00). For the specimens at
each relevant parameter, the test was repeated three times.

2.5.2. Direct Shear Test

To determine the cohesion and internal friction angle of the improved soil, direct shear tests were
performed. The direct shear strength of the 61.8-mm-diameter and 20-mm-height specimens was
measured at 50 kPa, 100 kPa, 200 kPa and 300 kPa vertical stress, for which a ZJ type strain controlled
direct shear apparatus (Nanjing Nantu Instrument Equipment Co. Ltd., Nanjing, China) was used.
The specimen was statically compressed by a jack with a customized mold. The optimal values (for full
mass stabilized soil) were used for all specimens, and were 15.4% in water content and 1.73 g/cm3 in
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density. The concentrations of the polymer were 0%, 10%, 20% and 30% (S13, S14, S15 and S16) in the
test. After the specimen preparation, the specimens were cured at indoor temperature for 24 h. In the
test, the direct shear rate was 0.8 mm/min [28]. The test was based on the ASTM standard (ASTM
D3080-98). The cohesion and internal friction angle were calculated by the experimental data based
on Coulomb’s law. Four normal pressures, which include 50 kPa, 100 kPa, 200 kPa and 300 kPa in
present study, and four corresponding peak shear stresses were used to fit a straight line. The intercept
and slope of the straight line are cohesion and the tangent value of the internal friction angle. For the
specimens at each relevant parameter, the test was repeated three times.

2.6. Durability Test

The durability of the soil mainly includes frost resistance, drying and wetting resistance,
ultraviolet radiation resistance, and so on. This experiment mainly studies the effect of vinyl acetate
polymer on frost resistance and light resistance of soil. The durability of soil is a major property related
to climate conditions.

In the durability test, the dried soil was mixed with the vinyl acetate polymer dilution.
The unconfined compression strength increased with the increasing polymer concentration. When the
polymer concentration was more than 20%, the unconfined compression strength tended to be stable.
Therefore, the concentration of the polymer was 20%. The optimal values (for full mass stabilized soil)
were used for all specimens in this test, and were 15.4% in water content and 1.73 g/cm3 in density.
After the preparation, the specimens were kept in a curing box with a temperature of around 20 ◦C for
24 h.

To test the frost resistance of the improved soil, the specimens were first kept in a −20 ◦C
environment for 12 h. In addition, they were then placed in a drying box with a temperature of around
20 ◦C for 12 h. This is a freeze-thaw cycle. The indoor temperature is 20 ◦C. The annual temperature
range of Nanjing is 40 ◦C, so the temperature cycle of −/+20 ◦C was chosen. In the test, the number of
freeze-thaw cycles was set at 0, 2, 4, 6, 8 and 10 (S17, S18, S19, S20, S21 and S22). After the freeze-thaw
cycles, the unconfined compression test was carried out with a YYW-2 unconfined compressional
strain control device to evaluate the durability of improved soil with different cycles. The loading rate
of the unconfined compression test is 2.4 mm/min. The unconfined compression test was based on the
ASTM standard (ASTM D2166-00). For the specimens at each relevant parameter, the test was repeated
three times.

To test the light resistance of improved soil, the specimens were kept in an artificial climate box
with a temperature of around 40 ◦C because the annual maximum temperature in Nanjing is about
40 ◦C, and 22,000 Lx intensity of light. In the experiment, the illumination time was set at 0 h, 120 h,
240 h, 480 h, 600 h and 720 h (S23, S24, S25, S26, S27 and S28), respectively. After that, the specimens
were also tested for the unconfined compression strength to evaluate the durability of improved soil
with different illumination time. For the specimens at each relevant parameter, the test was repeated
three times.

2.7. Seed Growth Test

Many existing soil stabilizers have adverse effects on plant growth. To understand the effect of
vinyl acetate polymer on plant growth, a seed growth test was carried out.

Bahiagrass was selected as the experimental vegetation in this test. Equal numbers of seeds were
sown into a petri dish, which was filled with 200 g of soil in advance. Subsequently, 3 L/m2 of polymer
solution with polymer concentrations of 0%, 10%, 20% and 30% (S29, S30, S31 and S32) was sprayed on
soil surfaces. The petri dishes were kept in an artificial climate box with a temperature of around 28 ◦C,
because the average temperature of Nanjing in September is 28 ◦C. The soil was watered regularly,
and the germination and growth of vegetation could be observed. The quantity of water sprayed on
the specimen is 100 g.
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3. Results and Analysis

3.1. Water Property Test

3.1.1. Water-Retaining Property Test

Figure 5 shows the data results of water-retaining property test. It can be seen from Figure 5 that
as the concentration of polymer increases, the evaporation of soil decreases within 80 h. This implies
that the water-retaining property of soil increases with the concentration of polymer. To be specific,
the water-retaining property of soil with polymer concentration of 10% is similar to that of water until
48 h. After 48 h, there are differences between the two. When the concentration of polymer is high,
the water-retaining property of soil can be significantly improved. Spraying 30% polymer solution can
reduce soil evaporation by 13.16% compared with water.
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Hydrophilic groups in vinyl acetate polymer form a close bond with soil particles through
hydrogen bonds and cation exchange. The long hydrophobic C-C chain on the main chain forms
a layer of elastic and ductile reticular membrane on the surface of soil particles through diffusion,
infiltration and winding. The reticular membrane structure has good water absorption and can absorb
more water. Compared with the quality of the specimen, the quality of the membrane can be neglected.
In addition, the presence of reticular membrane structure provides more storage space for water
(Figure 6). Due to the increase of water content in soil, the specific heat capacity of soil increased.
When soil is heated, evaporation occurs and water content decreases slowly [29,30].

3.1.2. Rainfall Erosion Test

The data results of the rainfall erosion test are shown in Table 2. As shown in Table 2, the addition
of polymer can obviously enhance the soil erosion resistance. When the polymer concentration is
0%, the soil erosion rate is 70.2%. The erosion and failure phenomena of the soil surface are obvious,
and a large number of gullies are developed. The erosion rate of soil decreases with the increase
in polymer concentration. The soil structure is basically intact, and the surface gully is not obvious.
When the polymer concentration reaches 20% and 30%, the erosion rates of soil are only 5.5% and
1.1% respectively.
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Table 2. The rainfall erosion test results.

Specimens Reference Polymer Concentration (%) ∆m (g) Ep (%)

S5 0 1404.2 70.2
S6 10 260.3 13.0
S7 20 110.8 5.5
S8 30 22.5 1.1

When the stabilizer is sprayed on the soil, the hydrophilic groups in the stabilizer are connected
to the soil particles by hydrogen bonding and cation exchange. Hydrophobic C-C long chains form
reticular membrane structures in soil through diffusion, winding and inclusion. Therefore, the integrity
of the soil has been greatly improved. With the continuous improvement of soil integrity, the erosion
resistance of soil surface is gradually enhanced.

3.2. Mechanical Property Test

3.2.1. Unconfined Compression Test

Table 3 shows the effect of concentration on the unconfined compression strength of soil. It can be
seen from Table 3 that the trend of the unconfined compression strength increases with the increase
in polymer concentration. The unconfined compression strength of soil increases from 76.3 kPa
to 205.4 kPa with the polymer concentration increase from 0% to 30%, which indicates that the
water-based organic polymer contributed to a significant improvement in soil on the unconfined
compression strength.

Table 3. Effect of polymer concentration on unconfined compression strength of soil.

Specimens Reference Polymer Concentration (%) Unconfined Compression
Strength/Standard Deviations (kPa)

S9 0 76.3/0.58
S10 10 189.3/1.34
S11 20 198.2/3.88
S12 30 205.4/8.8

After 24 h of curing, a series of physical and chemical reactions took place between the polymer
and the soil particles. Through phase diffusion, permeation and winding, the polymer forms reticular
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membrane structure between soil particles, which enhances the bonding force between the soil particles
and enhances the strength of samples. With the increase of the polymer concentration, the interaction
between the polymer and the soil particles is also strengthened; so, the strength of the sample increases
with the increase in polymer concentration.

3.2.2. Direct Shear Test

The data results of the direct shear test are shown in Table 4. As observed, the cohesion of soil
increases with the increase in polymer concentration. The cohesion of soil increases rapidly with the
polymer concentration between 0% and 10%. Between 10% and 30% concentration, the cohesion of soil
rises very slowly. Table 4 also shows that the internal friction angles of soil with polymer and without
polymer are almost similar (about 29◦–30◦). This implies that the addition of polymer to the soil does
not influence the internal friction angle. The increase in shear strength of the soil is attributed to the
improvement in inter-particle cohesion.

Table 4. Cohesions and internal friction angles of polymer improved soil.

Specimens Reference Polymer Concentration (%) Cohesion/Standard
Deviations (kPa)

Internal Friction
Angle/Standard Deviations (◦)

S13 0 56.0/1.36 29.5/1.03
S14 10 365.23/5.58 29.1/1.16
S15 20 373.17/18.63 30.0/0.96
S16 30 384.9/18.59 30.1/1.20

Because of the increase in the connection force between soil particles and the reticulated membrane
structure created by the polymer, the cohesion of soil increased. In contrast, the cohesion and internal
friction angle of the soil without polymer and curing were 56 kPa and 29.5◦, respectively. After 24 h of
curing, the water content of the sample decreased. The thickness of hydration film and the distance
between soil particles were all reduced. With the increase of contact area, the surface tension of
capillary water between soil particles increased significantly. These changes lead to a sharp increase in
cohesion and internal friction angle of soil. The connection force between soil particles increases with
the increase in the polymer concentration, which causes the cohesion of soil to gradually increase with
the increase in the polymer concentration. The internal friction angle of soil is mainly related to the
strength of soil particles. Because the polymer did not affect the strength of soil particles, the internal
friction angle of the soil changed very little.

3.3. Durability Test

Figure 7a illustrates the relationship between the number of freeze-thaw cycles and the unconfined
compression strength of the improved soil. It can be clearly observed that as the number of freeze-thaw
cycles increases, the unconfined compressive strength of soil gradually decreases. After four
freeze-thaw cycles, the trend of strength decline slowed down.

Figure 7b illustrates the relationship between illumination time and unconfined compression
strength of the improved soil. As shown in Figure 7b, the unconfined compressive strength of soil
initially increases with the increase in illumination time. The unconfined compressive strength reaches
maximum (i.e., 5.05 MPa) at about 360 h. As the illumination time continues to increase, the strength
of the soil decreases gradually at a slower rate.

The reticular membrane structure formed by vinyl acetate polymer was able to improve the
anti-aging property and anti-freezing property of soil. The membrane structure itself has certain
characteristics of water loss and water absorption. After water loss, the membrane structure is
hardened, and the strength is increased. Whereas, after water absorption, it is softened to a certain
extent, and the strength is decreased. In the freeze-thaw cycle, the hydrated film on the surface of
the soil particles causes the phenomenon of frost expansion, which weakens the reticular membrane
structure and the strength of the soil. After several cycles of frost heave, the reticular membrane
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structure reaches a stable state again, so the trend of strength decline shows down. Under strong
light irradiation, the reticular membrane structure itself produces a certain amount of water loss,
and the strength is enhanced. Meanwhile, the soil particles also lose water. Therefore, the strength
of the improved soil tends to increase [31]. However, due to long exposure, the shrinkage of soil
particles exceeds the optimal range of the reticular membrane structure. Therefore, its strength shows
a weakening trend after reaching the maximum.
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3.4. Seed Growth Test

Table 5 shows the results of the seed growth test. In addition, Figure 8 illustrates the seed growth
with different polymer concentrations after 30 days. It is observed that the vinyl acetate polymer has
no adverse effect on plant vegetation. The vegetation grows and develops well after spraying with
polymer. The germination in soil with 30% polymer is one day earlier, and the germination rate is
also high. The structure and physical properties of the soil, such as water-retaining property and
strength, were improved after the addition of polymer to the soil according to the water-retaining
property test and the mechanical property test. This played a role in heat and moisture preservation
for the germination and growth of vegetation. Therefore, vinyl acetate polymer has no adverse effect
on vegetation growth, and will promote vegetation growth to a certain extent.

Table 5. The results of the seed growth test.

Specimens
Reference

Polymer
Concentration (%)

Germinating
Time (day)

Status of Vegetation Growth
Development of
Surface Cracks 3Germination

Rate 1
Growth

Situation 2

S29 0 6 0.6 0.7 0.7
S30 10 6 0.7 0.8 0.4
S31 20 6 0.8 0.9 0.1
S32 30 5 1 1 0

1 A big number means a high germination rate; 2 A big number means a better growth situation; 3 A big number
means more cracks.

Vinyl acetate polymer was synthesized without the use of formaldehyde, halogen solvent or
aromatic hydrocarbons, and also without mercury and other heavy metal elements and compounds.
It will not adversely affect the survival of aquatic organisms and plant growth. The leachate of polymer
reinforced soil in accordance with relevant Japanese standards, and the results show that the leachate
is non-toxic. It is an ecological polymer.



Appl. Sci. 2019, 9, 208 11 of 15

Appl. Sci. 2019, 9 10 

extent, and the strength is decreased. In the freeze-thaw cycle, the hydrated film on the surface of the 
soil particles causes the phenomenon of frost expansion, which weakens the reticular membrane 
structure and the strength of the soil. After several cycles of frost heave, the reticular membrane 
structure reaches a stable state again, so the trend of strength decline shows down. Under strong light 
irradiation, the reticular membrane structure itself produces a certain amount of water loss, and the 
strength is enhanced. Meanwhile, the soil particles also lose water. Therefore, the strength of the 
improved soil tends to increase [31]. However, due to long exposure, the shrinkage of soil particles 
exceeds the optimal range of the reticular membrane structure. Therefore, its strength shows a 
weakening trend after reaching the maximum. 

3.4. Seed Growth Test 

Table 5 shows the results of the seed growth test. In addition, Figure 8 illustrates the seed growth 
with different polymer concentrations after 30 days. It is observed that the vinyl acetate polymer has 
no adverse effect on plant vegetation. The vegetation grows and develops well after spraying with 
polymer. The germination in soil with 30% polymer is one day earlier, and the germination rate is 
also high. The structure and physical properties of the soil, such as water-retaining property and 
strength, were improved after the addition of polymer to the soil according to the water-retaining 
property test and the mechanical property test. This played a role in heat and moisture preservation 
for the germination and growth of vegetation. Therefore, vinyl acetate polymer has no adverse effect 
on vegetation growth, and will promote vegetation growth to a certain extent. 

Table 5. The results of the seed growth test. 

Specimens 
Reference 

Polymer 
Concentration 

(%) 

Germinating 
Time (day) 

Status of Vegetation Growth 
Development of 
Surface Cracks 3 Germination 

Rate 1 
Growth 

Situation 2 
S29 0 6 0.6 0.7 0.7 
S30 10 6 0.7 0.8 0.4 
S31 20 6 0.8 0.9 0.1 
S32 30 5 1 1 0 

1 A big number means a high germination rate; 2 A big number means a better growth situation; 3 A 
big number means more cracks. 

 
Figure 8. The picture and schematic diagram of seed growth with different polymer concentrations 
after 30 days: (a) 0%; (b) 30%. 

Figure 8. The picture and schematic diagram of seed growth with different polymer concentrations
after 30 days: (a) 0%; (b) 30%.

4. Field Test

4.1. Area Overview

The site area is located in Ninghuai highway, Jiangsu, China (Figure 9). Also, the soil used in
the laboratory experiments was obtained here. The soil slope on the site was the same chosen in the
rainfall erosion test, i.e., 30◦. The erosion of the slope surface was very serious. Although seeds had
been sprayed on the surface of the soil after the construction of the slope, they were washed away
before germinating, which seriously affected road safety and ecological vegetation greening.
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4.2. Field Test Scheme

In this experiment, the application effect and economic cost were taken into account.
The concentration of polymer was 20% and the spray volume was 3 L/m2, which was determined by
comprehensive consideration of indoor test results, field test conditions and economic costs. According
to the relevant price standards in China, the price of the technology used on the slope was about
$30/m2 (¥208/m2). The specific experimental procedures are as follows:

(1) Level the slope surface: As the slope was excavated manually, the slope is not smooth. To carry
out the subsequent experiments smoothly, the slope surface needs to be leveled.

(2) Sow the seeds: Organic fertilizers and other compound fertilizers are applied to make the
vegetation grow in a better environment. Seeds for slope planting were also sown. Considering the
characteristics of soil quality and climatic factors in the Nanjing area, three plant species, including
bahiagrass, cynodon dactylon and trifolium repens, were selected for the field test, which all have the
characteristics of root system development, heat resistance, cold resistance and drought resistance.

(3) Spray polymer: Dilute the vinyl acetate polymer to 20% concentration and spray it onto the
surface of the slope with a spray amount of 3 L/m2.

(4) Maintenance and evaluation: Because the germination of seeds requires specific temperature,
water, sunlight and other aspects of the natural environment, the slope should be regularly sprayed
with water conservation for the process of germination and growth of seeds. In addition, the vegetation
growth and state of the slope were observed and recorded regularly. Also, the effect of vinyl acetate
polymer was comprehensively evaluated.

4.3. Field Test Effect Evaluation

The results of comprehensive evaluation show that vinyl acetate polymer is effective for improving
the erosion resistance of the topsoil on the slope by reducing the soil loss and protecting the vegetation
growth. The state of the slope two months after the completion of spraying is shown in Figure 10a.
As shown in Figure 10a, the surface structure of the slope, which was sprayed vinyl acetate polymer,
was complete, without any obvious erosion marks. Moreover, the vegetation grew luxuriously, playing
a good role in green slope protection. By comparison, the vegetation growth of the slope that was not
sprayed with vinyl acetate polymer was very uneven, and the effect of ecological greening was poor.
The surface gullies of the slope were very developed, and soil erosion was serious (Figure 10d).
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The state of the slope seven months after the completion of spraying is shown in Figure 10b. As it
was early spring, some of the plants had not yet sprouted. However, evergreen plants grew well,
playing a better role in green slope protection. The vegetation did not have the effect of stabilizing the
slope or greening at the slope that was not sprayed with vinyl acetate polymer. The surface gullies of
the slope were highly developed, and soil erosion was serious (Figure 10e). The state of the slope ten
months after the completion of spraying is shown in Figure 10c, and the state of the slope that was
not sprayed with vinyl acetate polymer is shown in Figure 10f. As shown in Figure 10c,f, the states
were the same as the states shown in Figure 10a,b,d,e. The surface structure of the slope with vinyl
acetate polymer was complete, without any obvious erosion marks, and the surface gullies of the slope
that was not sprayed with vinyl acetate polymer were highly developed, and soil erosion was serious.
The vegetation grew well on the slope with vinyl acetate polymer compared with that without vinyl
acetate polymer.

The surface soil of the untreated slope was washed away after precipitation. A part of the seeds
was washed away with the runoff on the surface of the slope, causing soil erosion and a decrease in the
amount of vegetation. After spraying polymer diluent on the surface of the slope, the strength, erosion
resistance and durability of soil were improved. Seeds were not washed away by runoff. In addition,
polymer was also able to improve the water-retaining property of soil, which can promote the growth
of vegetation.

5. Conclusions

To test the water-related and mechanical properties of soil stabilization using a polymer soil
stabilizer solution synthesized from vinyl acetate polymer, a water properties test, mechanical
properties test, durability test and seed growth test were carried out in the laboratory. Also, the effect
of the vinyl acetate polymer was verified by field tests. Based on the results obtained, the following
conclusions can be drawn.

(1) In the water property test, the water-retaining property and the erosion resistance of soil
can be improved effectively by spraying vinyl acetate polymer diluent onto soil surface under
laboratory conditions. The evaporativity of the soil decreases gradually with the increase in stabilizer
concentration. Soil can maintain a higher moisture content, which can promote the growth of
vegetation. The erosion resistance of the soil can be improved effectively when the soil surface
is sprayed with vinyl acetate polymer diluent. As the concentration of stabilizer increases, the erosion
resistance of soil surface also increases.

(2) The mechanical properties test showed that the vinyl acetate polymer has a significant
influence on the mechanical properties of soil under laboratory conditions. With the increase of
polymer concentration, the unconfined compressive strength and cohesion of the soil increased greatly.
The internal friction angle of the soil is relatively stable. However, the shear strength of the soil
increases as the polymer concentration increases.

(3) In the durability test, the durability of the soil improves with the addition of vinyl acetate
polymer under laboratory conditions. After 720 h of illumination or 10 freeze-thaw cycles, the soil
still exhibits relatively high strength, which means it has a good durability in 720 h of illumination
or 10 freeze-thaw cycles. The results of the seed growth test show that vinyl acetate polymer has no
adverse effect on plant vegetation under laboratory conditions. The vegetation grows and develops
well after spraying with the polymer.

(4) The results of the field test show that vinyl acetate polymer is effective for improving the
erosion resistance of the topsoil on the slope by reducing the soil loss and protecting the vegetation
growth. The slope surface treated with vinyl acetate polymer underwent much less erosion, and had
well-grown vegetation.
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