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Featured Application: This research is a useful exploration to extend the generalization of deep
learning in 3D modeling and viewpoint estimation.

Abstract: The accuracy of 3D viewpoint and shape estimation from 2D images has been greatly
improved by machine learning, especially deep learning technology such as the convolution neural
network (CNN). However, current methods are always valid only for one specific category and
have exhibited poor performance when generalized to other categories, which means that multiple
detectors or networks are needed for multi-class object image cases. In this paper, we propose
a method with strong generalization ability, which incorporates only one CNN with deformable
model matching processing for the 3D viewpoint and the shape estimation of multi-class object
image cases. The CNN is utilized to detect keypoints of the potential object from the image, while a
deformable model matching stage is designed to conduct 3D wireframe modeling and viewpoint
estimation simultaneously with the support of the detected keypoints. Besides, parameter estimation
by deformable model matching processing has robust fault-tolerance to the keypoint detection
results containing mistaken keypoints. The proposed method is evaluated on Pascal3D+ dataset.
Experiments show that the proposed method performs well in both parameter estimation accuracy and
the multi-class objects generalization. This research is a useful exploration to extend the generalization
of deep learning in specific tasks.
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1. Introduction

Estimating the 3D geometry of an object from a single image is an important but challenging
task in computer vision [1]. Recent years have witnessed an emerging trend towards analyzing the
3D viewpoint and shape instead of merely providing 2D bounding boxes. Previously, 3D primitives
were fitted with the image to obtain viewpoint and shape parameters [2,3]. While these primitives can
provide detailed descriptions of objects, robustly matching them to real-world images was proven to
be difficult. Recently, the developments of machine learning especially deep neural networks such
as the convolution neural network (CNN), have contributed greatly to this field. Despite the good
performance gained by these methods, they share a common limitation: Each network or detector is
trained for only one specific category target generally.

For the 3D shape and the viewpoint estimation problem, most of the existing methods are
interested in reconstructing 3D model for category-specific objects [4–10]. In general, the deformable
model of the specific category, such as wireframe and mesh, is matched with the image to estimate the
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shape and the viewpoint. Although current methods using deep learning technology can output the
shape and viewpoint parameters in an end-to-end way and perform well in accuracy, most of them are
limited in one specific category and exhibit poor performance when generalized to other categories.
Consequently, multiple detectors or networks are needed for multi-class cases, which significantly
raises the training costs. Considering the fact that the sofas and the chairs have similar legs, as well as
that the cars and the bicycles all contain wheels, it is worth pointing out that different object categories
do share rich compositional similarities. Consequently, Zhou [11] took advantage of this characteristic
and constructed the Starmap network in 2018, which can extract the keypoints for multi-class objects.
However, this network cannot be directly adopted here due to its intrinsic disadvantage of lacking
semantic information for the extracted keypoints.

In this paper, the problem of 3D viewpoint and shape estimation for multi-class objects from
a single image is further investigated. Instead of producing multiple detectors or networks just
like category-specific methods, the proposed approach uses only one keypoint detection network
incorporating it with the deformable model matching processing. Firstly, the keypoint detection
network for multi-class objects is trained. Keypoint locations of multi-class objects can be obtained
through this network, but unlike the category-specific methods, the semantic meaning of each detected
keypoint is not provided. In the following, these extracted keypoints are utilized and explored for
deformable model matching, which can be divided into two stages: model selection and model
validation. In the first stage, the extracted 3D keypoints are utilized to match with different deformable
models corresponding to multi-classes objects for the selection of candidate deformable models. In
the second stage, these candidate models are further screened and validated by the matching with
the extracted 2D keypoints, which provides semantic meaning to each keypoint, and can be used to
conduct 3D wireframe modeling and viewpoint estimation simultaneously.

The main contributions of our research are as follows: Firstly, only one keypoint detection
network is adpoted for multi-class objects in the proposed method, which can not only reduce the
training cost, but also capture similarity across different categories. Secondly, the deformable model
matching processing is introduced to utilize and supplement results obtained from the network.
Besides, parameter estimation by the deformable model has robust fault-tolerance to the mistaken
keypoints. In conclusion, the method proposed combines the advantage of deep learning and priori
model. Compared with methods that depend only on a deep network, the proposed approach has
better generalization performance. This paper explores how to extend the generalization of deep
learning in a specific task.

2. Related Work

2.1. Viewpoint and Shape Estimation

In earlier days of computer vision, single objects, as well as entire scenes, were represented by
simple primitives, such as polyhedra [2] and generalized cylinders [3]. These approaches provided
rich descriptions of objects and could estimate the viewpoint and the shape parameters, but robustly
matching them to cluttered real-world images proved to be difficult at the time. With the advent
of computers and advances in machine learning, it has become feasible to detect objects and their
parts robustly. Currently, vision-based methods can be broadly classified into 2D image-based and 3D
model-based techniques [4].

Image recognition techniques are employed by 2D image-based methods to attempt to directly
restore pose information from the single image [5,6]. These methods usually work by a set of trained
model-views taken in a range around the known model with different locations and viewpoints,
which always suffer from intra-category variations. Pose estimation using 3D model-based methods
usually require a priori 3D model of the object, and the holistic cost function is defined when the
3D deformable model is fitted to the image features. Pepik [7] extended the deformable part model
(DPM) to 3D, and Xiang [8] introduced a separate DPM component corresponding to each viewpoint.
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These methods can estimate the viewpoint and the shape parameters simultaneously with different
representation including wireframe and 3D mesh. Lately, estimation accuracy and utility have been
greatly improved in the deep learning era. The single image 3D interpreter network (3D-INN) [9]
presented a sophisticated convolutional neural network (CNN) architecture to estimate a 3D skeleton
containing viewpoint and shape information. Chi Li obtained the 3D object structure by a deep
CNN architecture with domain knowledge in hidden layers [10]. However, these methods rely on
category-specific keypoint annotation and are not generalizable. When dealing with multi-class objects,
different networks need to be trained separately, which ignores inter-category structure similarities
and raises training costs significantly. This paper promotes a method to attain a generalization ability.

2.2. Keypoint Detection

Wireframe representation is a concise structure modeling form with strong description ability,
which can preserve the structural properties in 3D modeling. In order to extract the wireframe from
the image, keypoint detection is necessary. Researchers have made significant progress in detecting
keypoints. The traditional way is to train the classifier with the hand-craft feature that is used in
DPM [12]. Recently, there have been several attempts to apply CNN to detect keypoints.

Toshev [13] trained a deep neural network for 2D human pose regression. Xiang Yu optimized
deformation coefficients based on the principal component analysis (PCA) representation of 2D
keypoints to achieve state-of-the-art performance on the face and human body [14]. Despite the good
performance of these approaches, they share a common limitation: Each keypoint is only trained
for a specific type from a specific object. Xingyi Zhou [11] proposed a category-agnostic keypoint
representation, which combines a multi-peak heatmap (StarMap) for all the types of keypoints in
Pascal3D+ dataset [8] using the hourglass network [15]. This representation provides the flexibility to
represent varying numbers of keypoints across different categories. Despite the strong generalization
performance, this method cannot provide semantic information of the keypoints.

3. Method

The framework of the method proposed is shown in Figure 1, which consists of two parts: keypoint
detection and deformable model matching processing.
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Figure 1. Illustration of the framework. For an input image, 2D keypoints and their 3D coordinates are
obtained through the hourglass network. These keypoints are then matched with deformable models.
After that, the viewpoint and shape parameters are obtained.

In the first part, the hourglass network [15] is used to predict keypoints from an input image with
two components: 2D location and their 3D coordinates. Network training is illustrated in Section 3.1.
In the second part, the keypoints detected by the network are matched with deformable models, then
parameters of pose and shape are estimated. The formation of deformable model matching is shown
in Section 3.2.1. Priori structures of multi-class objects are used in the matching processing, which
are represented by the deformable wireframe models based on PCA. The building of deformable
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wireframe models is introduced in Section 3.2.2. Parameter estimation of pose and shape is introduced
in Section 3.2.3.

The rest of this section describes the keypoint detection and the deformable model matching
in detail.

3.1. Keypoint Detection Network

For keypoint detection, the most widely used way is to represent keypoints as multi-channel
heatmaps, which associate each keypoint with one channel on a specific object category. For these
methods, although each keypoint is semantically meaningful, they are limited in the specific category.
In other words, keypoints from different objects are completely separated. We aim to detect keypoints
across different categories, so a generalized network for multi-class objects can be obtained. This
approach is inspired by the category-agnostic keypoint detection approach network proposed by
Xingyi Zhou [11]. This method can locate all keypoints across different categories using only one
network, but keypoints obtained have no semantic meaning. For 3D viewpoint estimation, the semantic
meaning of each keypoint is needed to match with a priori model. As a result, keypoints, their 3D
location, and depth are needed to obtain the semantic meaning of keypoints in Zhou’s work. Network
in our method is similar to Zhou, while we only need 2D keypoints and their 3D location during
training. This is because the semantic meaning of each keypoint can be given by matching with a
deformable model behind. The network used is shown in Figure 2.
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Figure 2. Hourglass network for keypoint detection. The network of our method predicts 2D keypoints
and their 3D coordinates.

Training the network in our method requires annotations of 2D keypoints and their corresponding
3D locations. Annotations of 2D keypoints per image are widely available in many datasets. Annotating
3D keypoints of a CAD model is also not hard work with an interactive 3D UI, which has been done in
some dataset such as Pascal3D+ and ObjectNet3D dataset [16]. Compared with Zhou’s work, data
preparation for the network is more feasible. A 2-stacks hourglass network is used. The 2D keypoints
and their 3D locations are allocated by four-channel heatmaps. During training, the L2 distance is
minimized between the output four-channel heatmaps and their ground truth.

3.2. Deformable Model Matching

After the keypoint detection network, the next step is to estimate object parameters from keypoints.
The keypoints detected from the network have no semantic meaning. Thus, only the keypoints are not
enough to estimate pose and shape parameters for multi-object. Besides, the following parameters are
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needed for viewpoint estimation and 3D modeling: object category, semantic meaning of keypoint,
shape parameters, and 3D pose. It is difficult to obtain all the parameters simultaneously.

In order to solve these problems, we propose the deformable model matching method shown in
Figure 3. Deformable model matching can be divided into two stages: model selection and model
validation. In the first stage, the extracted 3D keypoints are utilized to match with different category
of deformable models for the selection of candidate deformable models. In the second stage, these
candidate models are validated by the matching with the extracted 2D keypoints, and shape and
viewpoint parameters can be obtained by optimization. The final object parameters are obtained from
the best fitting deformable model.
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Figure 3. Deformable model matching processing. Deformable model matching can be divided into
two stages: model selection and model validation. The object parameters are obtained from the best
fitting deformable model.

The formulation, model building, and optimization of the deformable model are described in the
following sections.

3.2.1. Formulation

The following demonstrates how to obtain object attribute parameters from keypoints including
C, S, and R. C indicates the object category, S is shape parameter vector defined in Equation (7), and
R indicates a rotation matrix of object pose. P(R, S, C) indicates the probability distribution of object
parameters. It is an optimal solution of target parameters by maximum the probability:

{R, S, C} = max
R,S,C

P(R, S, C) (1)

The deformable matching processing consists of model selection and model validation, which
correspond to the prior probability and the conditional probability respectively:

P(R, S, C) = P(C) · P(R, S|C) (2)

P(C) is the probability of selecting the deformable model that is defined as

P(C) ∝ e
−λ1·min

S
(
∑
i
‖MC

i (S)−Xi‖
2
)

(3)

where M indicates the node point coordinates of deformable wireframe model, which is defined in
detail in Equations (6) and (7). X represents 3D keypoint coordinates obtained by the network. λ1 is a
constant. The probability of belonging to a certain class target is related to the distance between the 3D
keypoints and deformable model point set.

P(R, S|C) is the probability distribution of object parameters under the deformable model of a
certain category, which is defined as
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P(R, S|C) ∝ e
−λ2·

∑
i
‖mi(S)−xi‖

2

(4)

where m indicates the projection points of M based on camera imaging model, and x represents 2D
keypoint coordinates obtained by the network. λ2 is a constant. Substituting Equations (2)–(4) into
Equation (1), we have

{R, S, C} = max
R,S,C

e
−λ1·min

S
(
∑
i
‖MC

i (S)−Xi‖
2
)
· e
−λ2·

∑
i
‖mi(S)−xi‖

2

(5)

It is worth mentioning that only the visible points are considered. Invisible points in M and m are
discarded in Equations (3)–(5). In our method, the visibility of one node point in M or m is related to
the distance with its nearest keypoint.

3.2.2. Model Building

In this section, the building of multi-class deformable models is illustrated. The deformable
model is expected to have the ability to capture intraclass variance. We model each object category as a
deformable 3D wireframe that is concise and expressive. During training, 3D keypoint coordinates
annotated in a CAD model are represented as a vector, and we perform PCA on these vectors for CAD
model library of a certain category. The geometry representation is based on the mean wireframe µ
plus a linear combination of r principal components pk with geometry parameters s, where sk is the
weight of the k th principal component:

M(S) = µ+
r∑

k=1

skpk (6)

The 3D wireframe can be determined by shape parameter S:

S = {sk}k=1...r (7)

r is set as 3 in this paper. An example of a 3D wireframe model is shown in Figure 4.
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Figure 4. Deformable representation of a 3D wireframe. Chair models of different shape parameters
are generated by PCA. Numbers indicated in the figure are weighting parameters of the first three
principal component directions, which are represented as S.

3.2.3. Optimization

We use random hill climbing to solve the optimization problems in Equation (5). The probability
distribution of Equation (5) consists of two relatively independent items. To make the results optimized
and escape from the trap of local minimum, stepwise optimization is our strategy. For the first item,
the probability of Equation (3) is obtained by matching 3D keypoints with each deformable model.
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Qualitative results are shown in Figure 5. From the result, we can see that keypoints are fitted well
with the deformable model through optimization.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 14 
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Figure 5. Qualitative results of matching 3D keypoints with the deformable model. It can be seen that
3D keypoints and corresponding deformable models are well fitted after matching.

The optimization of the second item in Equation (5) is sensitive to the initial value of viewpoint
parameters. We propose a method for determining the initial value by visible keypoints. Taking a car
as an example, Figure 6 illustrates the detailed procedure.
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Figure 6. Initial viewpoint determination method. The visibility of keypoints in the different viewpoints
is counted as a dictionary. For an input point set, the initial viewpoint can be obtained by matching
their visibility with the dictionary.

A discrimination mechanism is necessary for the objects that have different category than the
priori models. For the objects whose category is out of our priori models, the deviation of deformable
model projection and 2D keypoints would be larger compared with objects that have the same category
with the corresponding deformable model. Consequently, a threshold is set for the deviation to judge
whether it belongs to categories contained.

A summary of the method is shown in Figure 7.
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Figure 7. The summary of the method. At first, keypoints are detected from the image. The 3D keypoints
are then matched with each deformable model and 2D keypoints are matched with the projection of the
deformable model. After the matching process, the optimal parameters of pose and shape are obtained
from the best fit deformable model. Next step is to judge whether the target type belongs to the existing
models according to the matching deviation. Finally, the object parameters are obtained.
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4. Experiments

We evaluate the method proposed on Pascal3D+ dataset. In this section, we evaluate the approach
from two aspects: wireframe modeling and viewpoint estimation. It is important to note that these
two tasks are completed at the same time in our method. Our implementation is done in the PyTorch
framework and Matlab2014.

4.1. Wireframe Modeling

The qualitative results of the wireframe modeling are shown in Figure 8.
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Figure 8. Qualitative results of 3D wireframe modeling. Four columns in the figure are input image, 2D
keypoints detected, matching between 3D keypoints and deformable model, and wireframe projection.
In the fourth column, the red line represents the projection of wireframe, and its deviation with 2D
keypoints detected is shown as the yellow line.

The 3D wireframe models are generated after the deformable model matching. In order to test the
robustness, we artificially insert the error results in keypoints obtained by the network. The deviation
between the wireframe model projection and the ground truth of 2D keypoints is evaluated. Take the
case of a sofa, the results of which are shown in Figure 9.
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Figure 9. Fault tolerance test. We artificially added error keypoints to test the fault tolerance, as shown
in the first and second column. There is no error keypoint in (a). (b) and (c) show cases with error
keypoints added. Through the corresponding process presented in the second column, the method
proposed can identify the mistaken points shown as the third column. For the method proposed, the
deviation between wireframe model projection and ground truth of 2D keypoints does not change
with the increase of mistaken points as displayed in the fourth column. The last two columns compare
the fault tolerance of method in [11] and the method proposed on viewpoint estimation, which using
evaluation criteria in Equation (8).

It can be seen that the method proposed can tolerate incorrect keypoints well. Because of
the deformable model matching, the error results of the network do not seem to cause significant
negative effects.

4.2. Viewpoint Estimation

For viewpoint estimation, the angle error between the predicted rotation vector and the ground
truth rotation vector is measured as

∆
(
Rpred, RGT

)
=
‖log(RT

predRGT)‖
F

√
2

(8)

R is the rotation matrix along X, Y, and Z axis. We consider Median Error and Accuracy as two
evaluation criteria that are commonly applied in the literature. Median Error is the median of the
rotation angle error, and Accuracy at θ is the percentage of objects whose error is less than θ. θ is set as
π/6 in this paper.

Any image of multi-class targets can be processed by the method proposed with only one network
with the deformable model matching processing. For comparison purposes, the results of each category
are counted in Table 1.
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Table 1. Results of viewpoint estimation.

Car Chair Aero Bike Sofa Boat Bottle Bus Table Train Tv Motor Mean

Median
Error

Tulsiani [17] 9.1 14.8 13.8 17.7 13.7 21.3 12.9 5.8 15.2 8.7 15.4 14.7 13.6
Mousavian [18] 5.8 11.9 13.6 12.5 12.8 22.8 8.3 3.1 12.5 6.3 11.9 12.3 11.1

Zhou X 6.5 11.0 10.1 14.5 11.1 30.0 9.1 3.1 23.7 7.4 13.0 14.1 10.4
Method

proposed 6.3 10.8 10.4 14.6 10.9 23 8.9 3.2 14 7.1 12.2 13.9 10

Accuracy

Tulsiani [17] 0.89 0.80 0.81 0.77 0.82 0.59 0.93 0.98 0.62 0.80 0.80 0.88 0.806
Mousavian [18] 0.90 0.80 0.78 0.83 0.82 0.57 0.93 0.94 0.68 0.82 0.85 0.86 0.810

Zhou X 0.92 0.79 0.82 0.86 0.92 0.50 0.92 0.97 0.62 0.77 0.83 0.88 0.823
Ours 0.93 0.81 0.81 0.8 0.92 0.52 0.93 0.97 0.63 0.78 0.84 0.89 0.829

From Table 1 it can be seen that the method proposed performs as well as mainstream approaches
in viewpoint estimation. It should be noted that the first two methods are class-specific, while ours
and Zhou’s methods are designed for multi-class objects and have better universality.

From the result, the accuracy of the method proposed is similar to Zhou, but we take a completely
different solution. The 3D keypoints from the network are used to estimate viewpoint directly in [11],
while 3D keypoints are only used to obtain semantic meaning and shape initial value. Viewpoint
estimation is conducted in deformable model matching in our method. As a result, the method in [11]
relies heavily on 3D keypoints and is vulnerable to mistaken points, while the method proposed here
provides better fault tolerance ability. This conclusion is verified by the following two experiments.

Firstly, the ability to identify mistaken keypoints is compared in Figure 10. It can be seen that the
method proposed can distinguish mistaken keypoints by the optimization process, while it is difficult
for the method in [11].
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Figure 10. Identification of mistaken keypoints. (a) and (b) are two image cases. Keypoints from the
network are displayed as the first column, the mistaken points cannot be detected in [11]. The method
proposed can identify mistaken keypoints though optimization process in the second column. Mistaken
keypoints are shown as red points in the last column.

Next, we evaluate the fault tolerance ability of viewpoint estimation. As shown in the last two
columns in Figure 9, viewpoint estimation of the method in [11] is sensitive to mistaken keypoints,
while our method provides better fault tolerance. More quantitative results are shown in Figure 11.
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Figure 11. Comparison of viewpoint estimation with error keypoints using data from Car in Pascal3D+

dataset. We artificially add error keypoints to test the method’s fault tolerance.

It can be seen that as the number of error keypoints increases, the accuracy of [11] decreases faster
than the method proposed. This is because 3D keypoints are used to estimate the viewpoint directly
in [11], while our method conducts viewpoint estimation by deformable model matching, which is
more robust.

Finally, we test the performance of the method proposed for occluded object image cases.
In practice, it is impossible for objects to be always visible. To evaluate our method, we artificially
occlude the image of the car in Pascal3D+ dataset. The result is shown in Figure 12.
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image, 2D keypoints detected and wireframe projection. The last instance is a failure case.
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The median error is 9.5, which is larger than cases without occlusion. It can be seen from the
results that the method proposed can work with some keypoints missing caused by occlusion, although
we have some failure cases for large occlusion. Because of the priori deformable model, our approach
can tolerate the absence of some keypoints to a certain extent.

4.3. Computation

Table 2 presents the elapsed statistics of the method proposed.

Table 2. The elapsed time.

Class Number 2 4 6 8 10 12

Time (s) 1.1 1.3 1.5 1.7 1.9 2

To evaluate the effects of the category number, we test the time consumption in different object
category number. The results show that with an increase of the number of categories, time consumption
rises because the computation of point matching increases.

4.4. Discussion

The experimental results show that the method proposed has the following advantages. Firstly,
our method has a strong generalization ability. Compared with category-specific methods, there is
only one CNN with deformable model matching processing for the 3D viewpoint and the shape
estimation for all the types of objects in Pascal3D+ dataset. Secondly, the method proposed has a
robust fault-tolerant ability. Similar to many methods, we estimate the 3D viewpoint depending on the
detection of keypoints. Compared with methods such as [11], our method has better fault-tolerance
to mistaken keypoints, as shown in Section 4.2. This is a result of the priori object structure and
optimization mechanism in deformable model matching. Mistaken keypoints from the network can be
eliminated after the matching with deformable models.

5. Conclusions

In this paper, a 3D viewpoint and shape estimation method for multi-class objects is proposed.
The method proposed combines the advantages of the data-based method and model-based method and
conducts wireframe modeling and viewpoint estimation through maximizing probability distribution.
Compared with the methods limited in a specific category, our method only uses one keypoint detection
network with the deformable model matching processing for multi-class objects. Experiments on
Pascal3D+ dataset show that the method proposed performs well in accuracy and generalization.
Besides, due to the deformable model matching processing, the method proposed has robust
fault-tolerance to mistaken keypoints detected from the network. Our research is valuable in
exploration to extend the generalization of deep learning in specific tasks.
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