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Abstract: In the uncooled infrared imaging systems, owing to the non-uniformity of the amplifier in
the readout circuit, the infrared image has obvious stripe noise, which greatly affects its quality. In this
study, the generation mechanism of stripe noise is analyzed, and a new stripe correction algorithm
based on wavelet analysis and gradient equalization is proposed, according to the single-direction
distribution of the fixed image noise of infrared focal plane array. The raw infrared image is
transformed by a wavelet transform, and the cumulative histogram of the vertical component is
convolved by a Gaussian operator with a one-dimensional matrix, in order to achieve gradient
equalization in the horizontal direction. In addition, the stripe noise is further separated from the
edge texture by a guided filter. The algorithm is verified by simulating noised image and real
infrared image, and the comparison experiment and qualitative and quantitative analysis with the
current advanced algorithm show that the correction result of the algorithm in this paper is not only
mild in visual effect, but also that the structural similarity (SSIM) and peak signal-to-noise ratio
(PSNR) indexes can get the best result. It is shown that this algorithm can effectively remove stripe
noise without losing details, and the correction performance of this method is better than the most
advanced method.
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1. Introduction

Infrared imaging has been widely used in military, agricultural, and medical applications.
However, owing to the defects of focal plane array materials and manufacturing limitations [1], the
response of the infrared focal plane array unit is inconsistent, and serious spatial fixed pattern noise
(FPN) is generated in the infrared image [2]. In engineering applications, people usually use traditional
methods to correct FPN noise, in addition to FPN, random noise is also a part of the noise of the
infrared image, and its energy is usually smaller than FPN. Random noise is composed of 1/f noise,
thermal noise, bias voltage noise and so on. After the system is subjected to traditional non-uniformity
correction, the FPN will be reduced, and random noise will become the main noise [3]. For uncooled
infrared focal plane array (FPA), the FPA usually consists of a detector array, readout circuit and an
analog-to-digital converter as shown in Figure 1a, where the non-uniformity of the readout circuit
will also generate column FPN. Without certain noise compensation, the column FPN will appear as
obvious vertical strips in a raw infrared image, as shown in Figure 1b [4]. To improve the quality of
infrared images, stripe non-uniformity correction is required.
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Currently, the mainstream non-uniform correction (NUC) methods are calibration correction [5,6]
and scene-based correction [7,8]. The calibration correction requires periodic interruption of the
system’s operation to eliminate the effects of temperature drift and then the calibration parameters
cannot be updated in real time. The calibration correction generally handles non-uniformities caused by
differences in response units and is not suitable for correcting stripe noise. By contrast, the scene-based
correction does not require black body calibration, and extracts parameters based on scene information.
As a result, it has attracted considerable attention.

Appl. Sci. 2019, 9, 1993 2 of 21 

readout circuit will also generate column FPN. Without certain noise compensation, the column FPN 
will appear as obvious vertical strips in a raw infrared image, as shown in Figure 1b [4]. To improve 
the quality of infrared images, stripe non-uniformity correction is required. 

Currently, the mainstream non-uniform correction (NUC) methods are calibration correction 
[5,6] and scene-based correction [7,8]. The calibration correction requires periodic interruption of the 
system’s operation to eliminate the effects of temperature drift and then the calibration parameters 
cannot be updated in real time. The calibration correction generally handles non-uniformities caused 
by differences in response units and is not suitable for correcting stripe noise. By contrast, the scene-
based correction does not require black body calibration, and extracts parameters based on scene 
information. As a result, it has attracted considerable attention. 

Scene-based correction may be either multi-frame or single-frame. The single frame method has 
a high convergence rate and can correct the stripe non-uniformity from the first frame. Currently, a 
single frame algorithm with better effect of removing stripe noise has been proposed by Sui et al. 
namely an NUC algorithm based on grayscale inheritance [3]. However, it is difficult to determine 
an appropriate threshold; moreover, the algorithm is complex, which limits its applicability. Tendero 
et al. proposed a midway histogram equalization [9]. However, this method does not consider stripe 
noise characteristics, and thus the details and edge information of the image are blurred to some 
extent when the stripes are removed. Therefore, if the raw infrared image has low contrast, fuzzy 
results are obtained. Cao et al. proposed a wavelet stripe correction algorithm [1], which performs a 
three-level size decomposition on the image and filters on each level. The algorithm is complex and 
the denoising effect is not ideal. Qian put forward a method that minimizes the mean square error 
[10]. Although stripe noise is removed well, loss of image details often occurs. 

 
 

(a) (b) 

Figure 1. Readout circuits in infrared focal plane array (FPA) have different characteristics and such 
non-uniformity will generate column fixed pattern noise (FPN). (a) Block diagram of Uncooled Long-
Wave infrared. (b) A raw infrared image which contains obvious stripe noise (The image is available 
under the Creative Commons Attribution (CC-BY) license [9]). 

To resolve these issues, a new destriping algorithm that minimizes the horizontal gradient of the 
image is proposed in the present study. First, a wavelet transform is applied to the raw infrared image, 
and a Gaussian operator is used to convolve the cumulative histogram of the vertical component with 
a one-dimensional matrix to achieve gradient equalization in the horizontal direction. In addition, 

 

Figure 1. Readout circuits in infrared focal plane array (FPA) have different characteristics and
such non-uniformity will generate column fixed pattern noise (FPN). (a) Block diagram of Uncooled
Long-Wave infrared. (b) A raw infrared image which contains obvious stripe noise (The image is
available under the Creative Commons Attribution (CC-BY) license [9]).

Scene-based correction may be either multi-frame or single-frame. The single frame method has
a high convergence rate and can correct the stripe non-uniformity from the first frame. Currently,
a single frame algorithm with better effect of removing stripe noise has been proposed by Sui et al.
namely an NUC algorithm based on grayscale inheritance [3]. However, it is difficult to determine an
appropriate threshold; moreover, the algorithm is complex, which limits its applicability. Tendero et al.
proposed a midway histogram equalization [9]. However, this method does not consider stripe noise
characteristics, and thus the details and edge information of the image are blurred to some extent
when the stripes are removed. Therefore, if the raw infrared image has low contrast, fuzzy results are
obtained. Cao et al. proposed a wavelet stripe correction algorithm [1], which performs a three-level
size decomposition on the image and filters on each level. The algorithm is complex and the denoising
effect is not ideal. Qian put forward a method that minimizes the mean square error [10]. Although
stripe noise is removed well, loss of image details often occurs.

To resolve these issues, a new destriping algorithm that minimizes the horizontal gradient of the
image is proposed in the present study. First, a wavelet transform is applied to the raw infrared image,
and a Gaussian operator is used to convolve the cumulative histogram of the vertical component with
a one-dimensional matrix to achieve gradient equalization in the horizontal direction. In addition, the
vertical component is used as an input and a guided filter is used for double filtering, thus removing
noise and simultaneously retaining image details.

The main contribution of this research is to propose a multi-scale correction method. Firstly, the
algorithm is based on the single frame image NUC algorithm, and thus does not need to process
multiple frames of images and cause unnecessary “ghosting” problems. Secondly, the algorithm
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directly denoises the vertical component, which can accurately remove the stripe noise and preserve
the details of the image. Experiments show that our algorithm is superior to the current advanced
stripe correction algorithm on both simulated images and raw infrared images.

This paper is organized as follows: in the Section 2, the related work of non-uniform correction
algorithm is introduced. In the Section 3, a new infrared image non-uniform stripe correction algorithm
is proposed and the implementation details of the algorithm are given in the Section 4. The experimental
results of the correction algorithm are given in the Section 5. Finally, the conclusion is drawn in the
Section 6.

2. Related Work

The spatial non-uniformity of infrared FPA detector arises from the defects of the focal plane array
material and manufacturing process, which leads to the inconsistent response of the infrared focal
plane array unit. Generally, this can be corrected by calibration method, but the calibration method is
not applicable to stripe noise. The most fundamental NUC technology is based on radiation calibration.
For instance, the two-point correction method enables the detector to calculate a set of independent
correction factors (gain and offset) through radiation correction at the same temperature. The model
is simple and the calculation is convenient. However, this method requires periodic interruption
of the system’s operation and real-time correction of the system cannot be achieved. In order to
overcome this shortcoming, a large number of NUC algorithms based on time–domain filtering and
scene information are proposed [7,11–13]. However, the limitation of this type of scene algorithm
is that it requires stable correction factors for multi-frame images, so it is difficult to implement the
algorithm in hardware. Moreover, the scene-based NUC algorithm requires the image to have sufficient
scene motion; otherwise the image will be rendered with “ghosting” problems.

Recently, a large number of single-frame NUC algorithms have been proposed [14,15]. These
algorithms usually divide the image into high-frequency parts and smooth parts, and denoise the
high-frequency parts. However, in reality, if the texture information of the image is insufficient,
it is very difficult to separate the noise and the texture of the image. In general, in the denoising
method of filtering (bilateral filtering and guided filtering) [16–18], a threshold value should be set
to distinguish the edge and noise, to achieve the effect of edge preservation. However, when the
image texture information is weak, the algorithm may erroneously remove the texture information
as noise or save the stripe noise with large amplitude as texture information. In the statistical gray
correction algorithm [9,19,20], it assumes that the histograms of adjacent columns are the same, and the
histogram information of the columns is modified by the adjacent histogram relationship. Conversely,
in the constrained optimization method [21,22], it is assumed that the stripe noise affects the horizontal
direction gradient and has little effect on the vertical direction gradient, so, the problem is converted
to minimizing the energy function. With the application of convolutional neural networks in image
processing in recent years, Kuang et al. [23] proposed a deep convolutional neural network (CNN)
model to correct the non-uniformity of infrared images, which can accurately remove stripe noise.

3. Stripe Correction New Algorithm Based on Wavelet Analysis and Gradient Equalization

The proposed algorithm includes the following three steps: (1) Wavelet decomposition of the
original image to extract high-frequency components, and then the stripe noise is concentrated in
the vertical component of the high-frequency component. (2) Small-window column equalization
of vertical components. (3) Taking the approximate component as the guidance image, and the
equalization vertical component as the input image, then using the guided filter for the second filtering,
and finally carrying out the wavelet reconstruction. The complete flow chart of the algorithm is shown
in Figure 2. The details of the proposed method are presented in the following subsections.
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3.1. Wavelet-Based Image Decomposition

Wavelet analysis is a rapidly developing area in mathematics and engineering. It has been
successfully applied in several fields. Originating in Fourier analysis, the wavelet transform has the
characteristics of multi-scale analysis and the ability to represent the local characteristics of signals
in both time and frequency domains. Thus, it can effectively extract information from signals [1,24].
In image denoising algorithms, the wavelet transform can generate multi-scale representation of the
input image. One of the most important properties of the wavelet transform is that the information in
different directions of the image can be decomposed into corresponding components. Zhe et al. [25,26]
proposed an image cartoon-texture decomposition and sparse representation algorithm, which
decomposes the image into cartoon parts and texture parts, and uses sparse representation in the
texture part of the image, which can preserve the texture information of the image well. But the noise
of the infrared stripes mainly exists in the vertical direction, and so therefore, we choose wavelet
decomposition to represent the information of different directions of the image.

In image denoising, continuous small waves and their wavelet transform should be
discretized [8,24]. Mathematically, this is defined as:

ψm,n =
1
√

2m
ψ(

1
2m − nTs). m, n ⊂ Z (1)

where nTs represents the sampling interval, m represents the sampling scale. m and n take integers.
Formula (1) is the discrete wavelet function. Then the discrete wavelet transform [1,8] of g(t) is:

W f (m, n) =
∫
R

g(t)ψ∗j,k(t)dt (2)

In order for the wavelet transform to capture the variability of spatial and frequency resolution, a
dynamic sampling grid is adopted, and a binary wavelet is commonly used to realize the function of
signal zoom analysis. In Formula (3), n corresponds to nTs in Formula (1):

Ym,n(t) =
1
√

2m
ψ(

1
2m − n) (3)

The wavelet transform extracts high frequency components U(i) from the original image Y(i),
and the formula is:

Y(i) = X(i) + U(i) = X(i) + N(i) + V(i) (4)

According to Formula (4), the high-frequency components not only contain stripe noise N(i), but
also vertical texture information V(i). After wavelet decomposition, the signal U(i) is expressed as:

U(i) = {Ai, Hi, Vi, Di} (5)
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where Ai represents the approximate component, Hi the horizontal component, Vi the vertical
component, and Di the diagonal component. It can be clearly observed from Figure 3 that stripe noise
is concentrated in the vertical component. According to this experimental conclusion, stripe noise can
be eliminated directly in the vertical component. We tested three different wavelet bases: db1 wavelet,
haar wavelet, and sym8 wavelet. Our proposed method chooses three wavelet basis functions for
experiments, and the results are shown in Figure 4. It can be seen from the highlighting in the figure
that the haar wavelet and the sym8 wavelet cause “ghosting” problems. The db1 wavelet preserves
the vertical texture information of the image well.
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3.2. Small Window Column Equalization

Currently, the readout circuit of an uncooled infrared imaging system mostly adopts the CMOS
architecture. Different from the CCD structure in which all pixels share a common amplifier, the pixels
in each column of the CMOS readout circuit share an amplifier [27]. As amplifiers have different
electronic properties, the columns of the CMOS readout circuit are non-uniform and thus appear as
stripes in the image. In infrared image non-uniformity correction algorithms, the response of infrared
focal plane pixels is generally approximated by a linear model, as follows:

Yn(i, j) = an(i, j)Xn(i, j) + bn(i, j) (6)

where Yn(i,j) is the output of the detector, Xn(i,j) is the true response value of the detector, an(i,j) and
bn(i,j) are the gain and bias coefficients, and n is the number of frames in the image sequence.

Considering that the stripe noise in the image is a fixed additive noise, the infrared image model
can be simplified as follows:

Yn(i, j) = Xn(i, j) + E( j) (7)

where (i,j) are pixel coordinates, and Yn(i,j) represents infrared images containing vertical stripes
noise. E(j) is a one-dimensional vector whose elements correspond to the vertical stripe noise of each
column of the image. The effect of stripe noise on the image gradient is mainly concentrated in the
horizontal direction, whereas the gradient in the vertical direction is hardly affected. Based on the
above theoretical basis, infrared noise can be removed by reducing the horizontal gradient.
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Assuming that each column of a single infrared image contains sufficient information, and that the
image is continuous, the gray value between two adjacent columns does not change significantly, and
denoising can be achieved by equalizing the column histogram. Calculate the cumulative histogram
Hj of each column pixel Uj of the vertical component, and for the cumulative histogram data H(i,j) of
the entire image U, Formula (8) is used to perform horizontal convolution on the cumulative histogram
of the vertical component to achieve column equalization:

W(i, j) ∗H(i, j) =
N∑

s=1

N∑
t=1

W(s, t)H(i + s, j + t) (8)

where ∗ denotes convolution, and N is the operation range. A Gaussian kernel function is used to
generate the one-dimensional matrix W(i,j) with size 1 × (2N + 1), as follows:

W(i, j) =
1

2πφ2 exp(−
(i−N − 1)2 + ( j−N−1)2

2φ2 ) (9)

The value N for the window is selected as 1. The value of ϕ is only related to inherent detector
characteristics, and it can be obtained through pre-calibration. In this study, an optimized structure
is introduced to add a total variational regular term and adaptively determine the value of ϕ. The
formula is as follows:

ϕ∗ = argmin‖Hϕ‖TV∗ (10)

where Hϕ is the image after correction for a specific value of variance. The total variation of ‖Hϕ‖TV∗ is
defined as follows [22]:

‖Hϕ‖TV∗ =
∑
i, j

∣∣∣∣(∇I)i, j

∣∣∣∣ (11)

(∇I)i, j = (Ii, j+1 − Ii, j) (12)

The value of ϕ can be obtained as follows: First, the ϕ chooses a smaller value, and then increase
the value of ϕ, and constantly observes the quality of the image, when the image quality is the highest,
then the value of ϕ is the detector’s variance. When the value of window N is fixed at 1, as shown in
Figure 5, if ϕ is taken as a small value, there will be a large quantity of stripe noise residuals. When ϕ
is increased to a certain value, the image will appear blurred, and the experimental results show that
we choose the parameter ϕ = 5.
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3.3. Guide Filtering Removes Vertical Component Noise

Guided filter uses guidance image I to destriping the input image P. Local linear model of guided
filter assumes that filtered output q is a linear transform of the guidance I. Therefore, guidance image I
directly affects the output [18,28]. The formula defined between the two is as follows:

qi = akIi + bk, ∀i ∈ wk (13)

where ak and bk are continuous linear constant coefficients in window Wk. I is the guidance image, Wk
is a window centered at pixel k, The constraint equations for ak and bk in window Wk are:

E(ak, bk) =
∑
i∈wk

(
(akIi + bk − pi)

2 + εak
2
)

(14)

where ε is a regularization parameter, the purpose is to make ak converge.
By minimizing the constraint equation to minimize the deviation between the input image and

the output image, the coefficients ak and bk are:

ak =

1∣∣∣w∣∣∣ ∑
i∈wk

piIi − pkuk

σ2
k + ε

, (15)

bk = pk − akuk; (16)

where uk and σ2
k are the mean and variance of the guidance image I in the window Wk, pk is the mean

of the input image p in window Wk. |w| is the number of pixels in window Wk.
According to the formula, if the regularization parameter ε is given, the size of filtering window h

will affect the output of guided filtering. In this paper, H represents the height of the image. Figure 6
shows the results of using different window sizes. If we set the window sizes h to a low value, many
obvious stripes noise still remain visible in the smoothed output, as shown in Figure 6b. Conversely,
setting the value of h to a large value, there will be obvious fuzzy phenomenon in Figure 6d,e, as
highlighted in yellow. In our experiment, h = 0.3H was used, and the regularization parameter ε
was 0.22.
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4. Implementation Details

In this section, we provide the implementation details of the algorithm. First, the considerations
of wavelet decomposition, column gradient equalization, and guided filter are elaborated. Then the
entire procedure is used as a quick reference.

4.1. Detail Description

For the M × N size image (M and N default to an even number), after db1 wavelet base
decomposition, the image becomes half of the original image size (M/2 ×N/2). In the process of column
gradient equalization, to avoid losing image details, the window value is 1 and the one-dimensional
vector is adopted. The variance ϕ = 5 selected by the experiment. In the process of spatial filtering,
the approximate components of wavelet decomposition are taken as the guidance image, the output
after the equalization of the column gradient is taken as the input image of the guiding filter, the
regularization parameter ε is selected as 0.22 [28], and the filtering window h is also selected as a small
window to avoid image edge blur. In our implementation we set h = 0.3H.

4.2. Procedure

The pseudoalgorithom for our proposed is presented as Algorithm 1.

Algorithm 1: The proposed method for single infrared image stripe non-uniformity correction

Input: The raw infrared image U.
1 Wavelet decomposition original image.
Parameter: Use db1 wavelet base.
Initialization: Decompose the raw image U into approximate components A1, vertical components V1,
horizontal components H1, diagonal components D1.
2 Column gradient equalization
Parameter: Column equalization window value is 1. Column gradient equalization window size is N.
Column equalization: Generating a one-dimensional vector using Gaussian kernel function H. The variance
is 5. The cumulative histogram of V1 is M1.
for aj = 1: 2N+1
Correlate M1 with H to get the Output V1’
end for
3 Spatial filtering with guided filter
Parameter: Regularization parameter ε = 0.22. Filter window h = 0.3H. H represents the height of the image.
Filtration: V1’ as the input image of the guided filter, Approximate component A1 as guide image. Output
filtered image vk.
Output: The final corrected result I = A1 + vk + H1 + D1.

5. Experiment and Analysis

In this section, we test the algorithm on a simulated image and on a raw infrared image, and
give quantitative comparison and qualitative analysis. First, we compare three excellent stripe
non-uniformity correction algorithms, namely, midway histogram equalization algorithm (MHE) [9],
total variation algorithm (TV) [21] and CNN [23]. All free parameters for these comparison methods
are set to default values with the corresponding references. In addition, in the raw infrared image test,
we added the conventional filtering method (guided filtering [18] and Gaussian filter) for comparison.
The destriping ability of this algorithm is further illustrated.

5.1. Data Set

We conducted several experiments with these two types of images. The first one was grayscale
test image ceramic and cameraman, and artificially added stripe noise of different intensities. The
noise addition is according to model (6), and is assumed to be a one-dimensional random Gaussian
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process with a mean of 0, and a standard deviation of η. We adjust the value of η to produce five
images, as shown in Figures 7 and 8. The other one is three raw infrared images with stripe noise,
as shown in Figure 9. These raw infrared images are obtained by different sensors and are subject to
slight or severe stripe noise, as detailed in Table 1.
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people with stripe noise of η = 0.03, 0.05, 0.08, 0.14, 0.20, respectively. The input image is available
under the CC-BY license [28].
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Figure 9. Three raw infrared images for testing. (a) Suitcase from Tendero’s dataset [9]; (b) Leaves from
Tendero’s dataset [9]; (c) People from Tendero’s dataset [9]. All of these images are available at the
following link: http://demo.ipol.im/demo/glmt_mire/.

Table 1. The details of the test data.

Test Data Source Size Sensor Description
Simulated images

Ceramic
cameraman —— 512 × 512 ——

Widely used gray images,
add with different levels of

stripe noise.
Raw IR images

Suitcase Tendero’s
dataset 320 × 220 Thales Minie-D

camera

Simple scene, Obvious edge
information. Slight stripe
noise image, small details.

leaves Tendero’s
dataset 640× 440 Thales Minie-D

camera

Simple scene, small details,
small details and obvious

stripe nonuniformity.

people Tendero’s
dataset 640 × 480 Thales Minie-D

camera
Rich scene information, and
slight stripe nonuniformity.

5.2. Analog Noise Image Test

In the simulation image test, two common image quality metric parameters are applied to evaluate
the destriping performance, peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM)
of the algorithm [29]. PSNR can measures the pixel error between the output image and the reference
image, and a higher PSNR value means a smaller degree of image distortion. The formula is defined as:

PSNR = 10 log10
2552

MSE
(17)

where MSE represents the mean square error between the output image and the reference image. SSIM
provides the structural perception evaluation of filtering results within sliding window. The formula is
defined as:

SSIM(m, n) =
(2µmµn + k1)(2σmn + k2)

(µ2
m + µ2

n + k1)(σ2
m + σ2

n + k2)
(18)

where m and n represents the image block extracted from the filtered image and the reference
image by the sliding window, and σm, σn, µm, µn, σmn represents the standard deviation, mean, and
cross-correlation of m and n, respectively. k1 and k2 take constants to avoid the zero-denominator error
in division. In experiment, the values of k1 and k2 are usually set to 6.5025 and 58.5225 [29]. In actual
measurement results, the value of SSIM is usually between 0 and 1. The closer the SSIM value is to 1,
the better the structure retention effect after image filtering.

Tables 2 and 3 show the values of PSNR and SSIM for several methods respectively, which are
obtained through 10 different noise processes. Compared with the three methods, it can be found that
the PSNR value and SSIM value of the proposed method are the highest. It shows the superiority of
this algorithm.

http://demo.ipol.im/demo/glmt_mire/
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Table 2. Peak signal to noise ratio (PSNR) (dB) results for ceramic and cameraman.

η Ceramic Cameraman

Noise TV CNN MHE Ours Noise TV CNN MHE Ours

0.02 30.15 28.24 34.31 24.36 36.16 29.85 31.24 34.26 30.21 36.48
0.04 27.06 29.63 30.52 26.81 32.69 26.52 29.72 32.84 29.42 35.84
0.10 24.57 28.39 26.75 25.65 29.76 24.13 31.25 32.59 30.34 35.47
0.15 18.34 22.67 25.34 21.36 28.64 17.25 24.56 30.48 23.19 33.27
0.20 12.19 19.34 24.89 16.68 28.94 10.57 20.31 24.65 16.34 28.76

Table 3. Structure similarity (SSIM) results for ceramic and cameraman.

η Ceramic Cameraman

Noise TV CNN MHE Ours noise TV CNN MHE Ours

0.02 0.876 0.921 0.905 0.916 0.976 0.957 0.974 0.962 0.982 0.993
0.04 0.728 0.845 0.801 0.826 0.945 0.872 0.970 0.954 0.968 0.991
0.10 0.543 0.878 0.579 0.835 0.927 0.684 0.962 0.859 0.958 0.986
0.15 0.247 0.756 0.325 0.769 0.921 0.426 0.957 0.769 0.952 0.982
0.20 0.134 0.723 0.187 0.743 0.908 0.243 0.952 0.654 0.942 0.979

To illustrate the advantages of the algorithm in this paper, an example is given as shown in
Figure 10. It can be clearly seen that the raw image is contaminated by stripe noise with η = 0.17. The
results of CNN and TV processing by the algorithm also have obvious stripe noise. By contrast, the
results obtained by MHE algorithm are better, but there will be an obvious “ghost” problem. Our
proposed method achieves the best visual effect on the image, and the stripe noise is basically eliminated.

On the whole, our proposed method has achieved remarkable results in stripe correction through
objective indexes and observation effects. In the next section, we will use the raw infrared image to
evaluate the algorithm.
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(c) total variation algorithm (TV); (d) convolutional neural network (CNN); (e) midway histogram
equalization algorithm (MHE); (f) Ours.
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5.3. Infrared Image Test Evaluation

To better evaluate the denoising ability of the algorithm for infrared images, this section selects
two major types of algorithms for comparison. One is the commonly used filtering algorithm (guided
filtering with edge-preserving capability and commonly used smoothing filter), and the other is
the current advanced stripe correction algorithm, namely, total variation algorithm (TV), midway
histogram equalization algorithm (MHE) and CNN algorithm. Our proposed method is further
evaluated through a comprehensive comparison.

5.3.1. Common Filtering Algorithm Evaluation

In this section, to verify the performance of our proposed algorithm, first of all, two common
smoothing filters are applied to the infrared image. We selected infrared images with weak texture
information and severe stripe noise [9]. The algorithm includes 1D Gaussian filtering and Guide
filtering and then compare it with our proposed method.

We set the smoothing parameter of the 1D Gaussian filter to γ = 0.4, and the filtering window size
of the 1D Gaussian filter to 3. Since the window value of the single guided filter is small, there will
be a large amount of residual stripe noise, so the filter window for guided filtering is set to h = 0.5H
and the regularization parameter ε is set to 0.22. For our own method, the wavelet basis function
of wavelet decomposition is set as db1, the variance of vertical component column equalization is
ϕ = 5, the regularization parameter ε of guided filter is set as 0.22, and the filtering window h is set as
0.3H. The comparison results are shown in Figure 11. It can be clearly seen that the Gaussian filter
fails to distinguish the texture information from the noise, which reduces the gradient of the whole
image and results in image blurring. Guided filter has a better effect of striping, but it can also blur the
texture information. Our proposed method eliminates stripe noise while simultaneously retaining
image details.
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highlighted region. Note that visually insignificant but important targets (e.g., trees and leaves) are
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5.3.2. Stripe Correction Algorithm Comparison Evaluation

Three sets of image sequences with different scenes and noises are used for the specific
implementation. Corrected results for raw infrared image are shown in Figures 12–14. Observing
the image, it can be found that the processing effects of the four correction algorithms are obviously
different. The correction results based on TV algorithm can protect the details and edge information
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of the image to the maximum extent, but many obvious vertical strips are still visible in the image
(as shown in the red ellipse of the figure). The results obtained by MHE algorithm can better remove
vertical strips but will over-smooth important details in infrared images. The results obtained by CNN
algorithm have a good visual effect, but for the weak texture image, details will be lost (as shown
in Figure 13). For our own method not only removes the stripe noise without introducing the ghost
image, but also saves most of the edge details of the image.
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To further prove the above point, we calculated the column mean of the raw image and the
algorithm-corrected image. The result is shown in Figure 15. The effect of stripe noise can be regarded
as the rapid change in the column mean. Figure 15a shows the change curve of the column mean
value in Figure 14a. These changes are reduced after correction by the TV algorithm (Figure 15b), but
some small fluctuations can still be observed, indicating residual non-uniformity without correction.
MHE algorithm (Figure 15c) basically corrects these small fluctuations. However, the changes of
image details are also lost, owing to being overly smooth. The proposed algorithm (Figure 15e) and
CNN algorithm (Figure 15d) have similar results; small changes corresponding to image details are
preserved, with stripe noise being simultaneously smoothed.

In addition to the visual contrast, we applied two objective indicators to evaluate the algorithm,
image roughness index ρ and average vertical gradient error (AVGE) [30].

The image roughness ρ represents the richness of the image details. Its mathematical formula is
as follows:

ρ( f ) =
‖h ∗ f ‖ + ‖hT

∗ f ‖
‖ f ‖

(19)

where h represents a differential filter; symbol ∗ represents a convolution operation; ‖ · · · ‖ represents a
first-order norm. The lower the value of ρ, namely having low nonuniformity. Taking the raw infrared
image and the simulated image (artificially add different intensity noise) as the samples to be processed
through the TV, MHE, CNN and our proposed algorithm to obtain ρ values in different scenarios. It
can be found from Tables 4 and 5 that the value of ρ obtained by our proposed algorithm is the lowest,
indicating that compared with the other image destriping algorithms, our proposed algorithm has an
excellent ability to destripe noise.
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Table 4. ρ values of correction algorithms for raw infrared images.

Sequence/Method Suitcase Leaves People

TV 28.5 30.8 24.6
MHE 27.9 28.7 22.8
CNN 27.2 29.1 23.4

Proposed 25.4 19.7 20.2
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Table 5. ρ values of correction algorithms for simulated images.

η Ceramic Cameraman

Noise TV MHE CNN Ours Noise TV MHE CNN Ours

0.02 12.34 10.39 8.46 8.32 7.42 14.10 12.30 11.06 10.79 6.42
0.04 15.62 12.94 9.47 9.20 8.07 16.37 13.60 12.45 12.21 8.94
0.10 18.27 14.18 11.46 11.07 9.72 18.79 16.28 14.91 14.27 10.67
0.15 20.34 15.81 13.87 13.14 10.63 21.42 18.70 15.74 14.95 11.34
0.20 25.81 19.76 15.27 14.35 11.20 27.41 21.40 18.69 18.07 15.13

To evaluate the detail protection ability of the algorithm, we introduce the value of AVGE to
illustrate the detail protection ability of the algorithm. Its mathematical formula is as follows:

AVGE =
1
P

P∑
p=1

‖∇yΓ(Qp)
∣∣∣− ∣∣∣∇yQp ‖ (20)

where Qp is the noisy image with pixel p, Γ(·) is the denoising method, P is the number of pixels,
and ∇y is the vertical gradient operator. AVGE represents the change of the gradient between the
corrected image and the original image. The principle behind it is based on the understanding that
stripe non-uniformity is reduced while the vertical gradient should remain unchanged. So, the AVGE
value closer to 0 indicates that algorithm is better at preserving image detail. As can be seen from
Tables 6 and 7, CNN algorithm and the proposed algorithm get smaller AVGE values. However, as
shown in Table 6, for the image of leaves with weak texture, CNN gives bad results. In fact, the CNN
algorithm failed in this case. Overall, the experiment results reveal the advantage of the proposed
method in stripe correction and detail preservation.

Table 6. Average vertical gradient error (AVGE) values of correction algorithms for raw infrared images.

Sequence/Method Suitcase Leaves People

TV 0.053 0.036 0.028
MHE 0.287 0.424 0.124
CNN 0.183 0.228 0.019

Proposed 0.168 0.016 0.012

Table 7. AVGE values of correction algorithms for simulated images.

η Ceramic η Cameraman

TV MHE CNN Ours TV MHE CNN Ours

0.02 0.075 0.248 0.125 0.102 0.02 0.064 0.186 0.089 0.062
0.04 0.180 0.314 0.176 0.124 0.04 0.125 0.243 0.108 0.120
0.10 0.203 0.386 0.217 0.196 0.10 0.197 0.286 0.156 0.128
0.15 0.296 0.413 0.271 0.206 0.15 0.254 0.346 0.204 0.192
0.20 0.387 0.459 0.352 0.305 0.20 0.309 0.495 0.287 0.215

5.4. Time Consumption

We considered the time consumption of different correction methods to examine their computation
complexity. The experimental environment was Matlab 2016a, Intel core i5 CPU (3.40 GHz) and 8 GB
RAM. We have calculated the running time of different methods for correcting infrared images. The
statistical results are listed in Table 8. Compared with several other algorithms, the proposed method
requires a minimum computing time. When the complexity of the scene increases, the time required
for the proposed algorithm is basically stable at a very low level. This implies that our algorithm has
the potential to be applied in hardware circuit systems.
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Table 8. Computing time (s) of different methods for simulated and raw infrared images.

Sequence/Method Resolution TV CNN MHE Ours

Ceramic/Cameraman 512 × 512 0.045 1.462 0.031 0.247
Suitcase 320 × 220 0.029 1.028 0.021 0.012
Leaves 640× 440 0.062 1.634 0.051 0.039
People 640 × 480 0.065 1.642 0.059 0.042

5.5. Limitations of the Proposed Method

In this section, we added additional experiments to discuss the influence of a large amount of
vertical edge information in the images on algorithms, such as radiator and fence scenes. Figure 16
shows an example for Fence, in which stripe noise with η = 0.05 is added. The PSNR and SSIM
results are shown in Table 9. From the results, we can see that our proposed method still has good
ability to remove stripe in the scene with rich vertical information. In essence, stripe noise has its own
characteristics. It can be seen that the intensity of each column of stripe noise is about the same, and
the columns are significantly different between columns, and the shape is different from other types of
noise. Therefore, noise can be effectively processed. However, it can also be seen from the correction
image that the similarity between stripe and vertical edge will affect the correction result and produce
artifacts, which is also our next research direction.
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Figure 16. Filtered result for Fence (a) Clean; (b) Noisy; (c) Corrected.

Table 9. PSNR (dB) and SSIM results for Fence.

Noise Corrected

PSNR 27.56 30.21
SSIM 0.872 0.963

6. Conclusions

A stripe correction algorithm based on wavelet analysis and gradient equalization was proposed.
Its advantage is that a Gaussian operator is introduced to perform a one-dimensional matrix convolution
on the cumulative histogram of the vertical component and achieve gradient equalization in the
horizontal direction. This ensures that no image details are lost in the denoising process. Compared
with several algorithms with a better stripe effect, the experimental results show that the correction
results of the proposed algorithm have better visual effects, and that the SSIM and PSNR indicators
obtained by this algorithm are the best. It is shown that the proposed method can remove stripe noise
and simultaneously preserve edge details.

Future work will focus on the spectral analysis of stripe noise; developing an adaptive stripe noise
frequency detector is an interesting topic. Furthermore, additional prior knowledge of infrared images
will be considered for stripe nonuniformity correction.
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Abbreviations

The following abbreviations are used in this manuscript:

FPN Fixed Pattern Noise
FPA Focal Plane Array
NUC Non-Uniform Correction
CNN Convolutional Neural Network
MHE Midway Histogram Equalization
TV Total Variation
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity
AVGE Average Vertical Gradient Error
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