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Abstract: Texture classification is an important topic for many applications in machine vision and
image analysis, and Gabor filter is considered one of the most efficient tools for analyzing texture
features at multiple orientations and scales. However, the parameter settings of each filter are crucial
for obtaining accurate results, and they may not be adaptable to different kinds of texture features.
Moreover, there is redundant information included in the process of texture feature extraction that
contributes little to the classification. In this paper, a new texture classification technique is detailed.
The approach is based on the integrated optimization of the parameters and features of Gabor filter,
and obtaining satisfactory parameters and the best feature subset is viewed as a combinatorial
optimization problem that can be solved by maximizing the objective function using hybrid ant lion
optimizer (HALO). Experimental results, particularly fitness values, demonstrate that HALO is more
effective than the other algorithms discussed in this paper, and the optimal parameters and features
of Gabor filter are balanced between efficiency and accuracy. The method is feasible, reasonable,
and can be utilized for practical applications of texture classification.

Keywords: texture classification; Gabor filter; parameter optimization; feature selection; hybrid ant
lion optimizer

1. Introduction

Texture [1,2] is a core property of object appearance in natural scenes, ranging from large-scale
samples to microscopic ones. It is also active visual information that is used to describe and recognize
objects in the real environment. Texture classification is one of the key problems in texture analysis,
and it has been a long-standing research topic because of its importance in understanding the process
of texture classification by humans and its extensive applications in computer vision and image
analysis [3]. The main applications of texture classification include understanding medical images,
extracting visible objects, retrieving content-based images, inspecting industrial faults [4–7], and so on.

In general, the primary focus of studies on texture classification has been the determination
of methods to extract texture features. It is generally believed that the extraction of powerful
texture features is more important than that of weak texture features since they do not lead to good
classification results, even when using excellent classifiers [8]. However, texture features can be
found in various orientations and at different scales, and these cannot be characterized effectively by
commonly used methods [9–12]. Gabor filter has been used for this purpose and performs better in
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the discrimination of individual texture features, especially those with similar descriptions. However,
a single filter is difficult to apply to multi-orientation and multiscale texture features. Thus, a bank of
Gabor filters with the ability to extract multi-orientation and multiscale texture features was proposed
to address the issue. Gabor filter has been extensively used for texture feature extraction and texture
classification [13]. Li [14] captured the dependence of Gabor filter on different channels, and had
better performance results than that of state-of-the-art approaches. Younesi [15] proposed a palm print
recognition method that used a bank of Gabor filters to extract texture features from images, and the
method achieved higher accuracy than texture classification approaches based on single Gabor filter.
Huang [16] proposed a new technique of identifying group-housed pigs on the basis of Gabor filter,
and the experimental results demonstrate that the accuracy outperformed the compared approach by
91.86%, and PCA parameter drifted in the range of 0.85–0.9. Lu [17] presented a texture classification
method for fracture risk estimation based on Gabor filter combined with the total T-score, and the
shape texture features could be measured in a wider area compared with other methods. Kim [18]
proposed a novel texture classification technique with directional statistical (DS)-Gabor filter and had
satisfactory rotation invariance owing to the combination of a number of directional statistics. However,
the parameters of the above method need to be set by experience, thus it may not be adaptable to
different types of texture features. Furthermore, the parameter settings of each Gabor filter are crucial
to classification accuracy.

On the other hand, the process of obtaining the optimal parameters of Gabor filter can be
seen as a combinatorial optimization problem that can be tackled by swarm intelligence algorithms.
For example, Khan [19,20] presented a technique for the optimization of each filter individually via
particle swarm optimization (PSO) and cuckoo search (CS) algorithm, and the approach successfully
represents local texture changes at multiple scales and orientations from mammograms with
an effective improvement in classification accuracy. Tong [21] proposed a defect detection technique
via Gabor filter to inspect flaws in woven fabrics in the fashion industry, and the differential evolution
(DE) algorithm was utilized to obtain the optimal parameters of the filter bank. The method achieved
high successful detection and low false alarm rates. However, the optimization ability of PSO, DE,
and CS algorithms is mainly based on a random search, which cannot ensure convergence toward the
optimal solution. Moreover, because of the multi-orientation and multiscale nature of the filter bank,
there is redundant information in the process of texture feature extraction, and it contributes little to
the classification [22]. Thus, numerous feature selection approaches based on Gabor filter have been
proposed to reduce the data dimension [23,24], but the previous works have ignored the relevance of
parameter optimization and feature selection. In essence, parameter optimization and feature selection
are both considered combinatorial optimization problems, and the integrated optimization of the
parameters and features of Gabor filter could be obtained by swarm intelligence algorithms at the
same time.

Ant lion optimizer (ALO) [25] is a novel swarm intelligence algorithm. Nowadays, ALO has
been applied in various fields, such as power system design, fault detection, schedule planning, path
searching and so on [26–29]. The optimization ability of ALO does not rely on any parameters, and it
is more likely to obtain the satisfactory solution. However, feature selection is considered a discrete
optimization problem and is difficult to solve using ALO with decimal coding. Mafarja [30] presented
a binary coded ALO (BALO) to select the optimal feature subset for some well-known datasets from
the UCI repository. BALO obtained superior results by searching for the best feature subset, and the
performance was independent of the step-length and classifier. Hence, in this paper, a new texture
classification method is proposed that blends the use of Gabor filter and a hybrid binary-decimal coded
ALO (HALO) to, respectively, solve the problems of parameter optimization and feature selection.

The rest of this paper is structured as follow. The basic principle of HALO is illustrated in Section 2.
In Section 3, the proposed method to obtain the integrated optimization of the parameters and features
of Gabor filter is detailed. Section 4 displays the experimental results and discussion. Finally, the paper
is concluded in Section 5.
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2. Overview of HALO

2.1. ALO for Parameter Optimization

In 2015, Mirjalili introduced a swarm intelligence algorithm called ALO, which imitates the
hunting behavior of antlions and has no parameters to be set [25]. In nature, an antlion larva digs
a cone-shaped pit in the sand by moving along a circular path and throwing out sand with its massive
jaw, and the larva then hides underneath the bottom of the cone and waits for ants to be trapped in the
pit. The exploratory behavior of ALO is similar to an antlion’s digging in a circular path. Additionally,
the exploitation behavior of ALO is similar to the boundary adjustment of antlions’ traps. As each
ant in ALO moves randomly in the solution space, its strategy is similar to that of spinning a roulette
wheel and is represented below:

Xt = [0, cumsum(2r(t1)− 1), cumsum(2r(t2)− 1), ...,

cumsum(2r(tn)− 1)]
(1)

where Xt is the position of ants after a random walk, n is the number of ants in the population,
cumsum represents the cumulative sum, t is the iteration number, and r(t) is a stochastic distribution
function as defined below:

r(t) =

{
1 i f rand > 0.5

0 i f rand ≤ 0.5
(2)

where rand is a random number taken from a uniform distribution in the interval of [0,1].
To maintain the random walk in the scope of the search space, the positions of each ant are

normalized by min-max normalization as defined by the following:

Xt
i =

(Xt
i − ai)(bi − ct

i)

dt
t − ai

+ ct
i (3)

where ai is the minimum of the random walk of ith variable, bi is the maximum of the random walk
of ith variable, ct

i is the minimum of ith variable at iteration t, and dt
i indicates the maximum of ith

variable at iteration t.
Antlions build traps that are proportional to the size of the solution space, and the ants move

stochastically. Moreover, antlions shoot sand outward from the center of the pit once they realize
that an ant is in the trap to keep the ant trapped as it tries to escape. To mathematically define this
behavior, the radius of an ant’s random walk on a hypersphere is reduced adaptively, and the process
of trapping can be described as follows:

ct =
ct

I
(4)

dt =
dt

I
(5)

where I = 10ω t
T , T is the maximum number of iterations, and ω is a constant variable that is defined

based on the current iteration ( ω = 2 when t > 0.1 T, ω = 3 when t > 0.5 T, ω = 4 when t > 0.75 T,
ω = 5 when t > 0.9 T, and ω = 6 when t > 0.95 T). Basically, ω is utilized to adjust the optimization
level of exploration.

2.2. Binary Coding for Feature Selection

In general, feature selection is regarded as a discrete combinatorial optimization problem and is
difficult to solve directly by decimal coding. In the binary coding environment, moving through each
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band means that the position of each individual changes from 0 to 1 or vice versa [31]. To introduce a
binary coding form of ALO, the coding process of each ant can be seen as continuous optimization
of similarity. The major difference between the decimal and binary coding form is that ants are
characterized by a realistic value or by switching to “0” or “1” in the transform function. That is to say,
the position of each ant calculated by Equation (3) is set to either 0 or 1 with a certain probability and
calculated with a conditional function, as shown in Equation (6):

Rt
i =

{
1 i f rand ≤ | tanh(Xt

i )|
0 otherwise

(6)

where tanh(·) is the hyperbolic tangent function and Rt
i is the form of binary coding for the position of

each ant that is utilized to solve the problem of feature selection.
To summarize, in this paper, HALO is proposed with the combination of binary and decimal

coding to, respectively, solve the problems of parameter optimization and feature selection using
an ant, and the aim of this approach is to obtain the optimal classification accuracy for different texture
features. The overall operating process of the proposed texture classification method is expressed in
the following section.

3. The Proposed Method

An efficient texture classification method that applies the integrated optimization of the
parameters and features of Gabor filter using HALO is presented in this section. The main goal
of texture classification is to precisely classify several texture features in each sample.

3.1. Fundamental of Gabor Filter

Gabor filter is calculated by a convolutional kernel function, which has been utilized in
image processing applications, especially for texture classification. To represent multiscale and
multi-orientation texture features, a filter bank is structured with a number of parameters in different
orientations and scales. The essential variable g(x, y) of a 2-D Gabor filter is expressed by a Gaussian
kernel and adjusted by a complex sinusoidal wave: [32]:

g(x, y) =
(

1
2πσxσy

)
exp

(
−1

2

(
x̄2 + ȳ2

σ2
x + σ2

y

)
+ 2π jWx̄

)
(7)

x̄ = xcosθ + ysinθ ȳ = −xsinθ + ycosθ (8)

where σx and σy are the parameters that describe the spread of the current pixel in the neighborhood in
which weighted summation occurs, W is the central frequency of the complex sinusoid, and θ ∈ [0, π)

is the orientation of the horizontal to vertical stripes in the equation above.
A bank of Gabor filters includes multiple individuals and can be adjusted for different orientations

and frequencies. Gabor filter considered here is GS5O8 (including 40 filters: 5 scales S × 8 orientations
O with an initial max frequency equal to 0.2 and an initial orientation set to 0. The parameter settings
of the orientations and frequencies for a bank are tuned by the following formulas [33]:

Orientation(i) =
(i− 1)π

O
, where i = 1, 2, ..., O (9)

Frequency(i) =
fmax√
(2)i−1

, where i = 1, 2, ..., S (10)

where O and S are, respectively, the orientations and scales in total, and fmax is the maximum value of
the frequency and is set to fmax = 0.2.
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3.2. Encoding Schema of Parameter Optimization and Feature Selection

The key objective of the proposed texture classification method is to achieve satisfactory
parameters and features of Gabor filter and create a reasonable mapping between the solution and
HALO. The parameter optimization process needs O + S bits to apply coding to the parameters,
which are the orientations θ and frequencies W in Equations (9) and (10). The former O bits represent
each orientation, the latter S is each scale, and the ranges of the parameters are, respectively, set to
(0, 1) and (0, 0.2] with decimal coding. For feature selection, the length of coding is equal to the total
number of features in the database, and here it is set to O× S. For binary coding, every bit is expressed
by the fixed value “0” or “1” by Equation (6), where “1” illustrates that the current feature will be
chosen for classification, and “0” illustrates that the current feature will be abandoned. Thus, the total
coding length of an ant is equal to O× S + O + S. The encoding form of an ant for Gabor filter with O
orientations and S scales is shown in Figure 1. The entire code simultaneously indicates the solution of
the parameter settings and the feature subset of Gabor filter.

Figure 1. The encoding form of an ant for Gabor filter.

3.3. Definition of Objective Function

To evaluate the optimization ability of HALO and other evolutionary algorithms, it is necessary
to choose a suitable objective function. Because the process of training can be considered prior
knowledge, each texture feature is a category. The Fisher criterion has good performance in the
calculation of heuristic knowledge. The Fisher criterion aims to maximize the inter-class difference and
minimize the intra-class difference, and it is usually applied to assess binary classification problems
[34]. For multi-classification problems, the objective function should be improved to synthetically
weight the differences between each category. Therefore, it is defined as shown in Equation (11):

f it =
∑l−1

i=1 ∑l
j=i+1 |µi − µj|

∑l
i=1 σ2

i

(11)

where µi and σi are, respectively, the average and the standard deviation of the eigenvalues for ith
category of texture features, and l is the number of classes. A larger value resulting from the above
equation demonstrates better-quality parameters and features for Gabor filter.

3.4. Implementation of the Proposed Technique

The overall scheme of the proposed texture classification technique is shown below. First,
it performs encoding for each ant of HALO, and the process of parameter optimization and feature
selection is then constructed by binary and decimal encoding. The result constitutes a feature vector
that is input into a classifier and yields a final label for each sample.

The value of the feature vector is composed of different orientations and frequencies of Gabor
filter, and each feature vector is normalized to a uniform magnitude in the range of [0,1]. In general,
the process of texture classification has two stages: training and testing. The former stage provides
a certain extent of prior knowledge for classification, and the latter stage verifies the availability of the
current model [35].

Training samples with different scales and rotations are utilized to avoid overfitting for fair
performance evaluation. However, at the same time, the volume of the training dataset is increased by
the 40 filters. As a result, interval sampling [36] with a length of 8 pixels and max-pooling with a 4× 4
window is utilized for each sample to decrease the data volume in the process of convolution.
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• Step 1: Extract the training and testing samples from each database.
• Step 2: For each ant, generate the decimal coding for parameter optimization, and the binary

coding for feature selection.
• Step 3: Perform convolution between each training sample and the filter bank.
• Step 4: Reduce the data dimension via interval sampling and max-polling, and compute the

fitness value by using Equation (11).
• Step 5: Operation of HALO:

Step 5-1: Trap ants in antlion’s pits by using Equations (4) and (5).
Step 5-2: Random walk ants by using Equation (3).
Step 5-3: Change the encoding of feature selection to the binary form by Equation (6);

• Step 6: Perform convolution between each training sample and the filter bank and build the
feature subset according to the binary encoding.

• Step 7: Reduce the data dimension via interval sampling and max-polling, and compute the
fitness value by using Equation (11).

• Step 8: If the solution is better, replace the position of the current ant; otherwise, do not change
the position and find the current global best solution.

• Step 9: Judge whether the terminal criterion is satisfied: if it is, go to Step 10; otherwise, go to Step 5.
• Step 10: Output the optimal feature subset, and conduct classification for testing samples.

4. Experimental Results and Discussion

The proposed method was implemented in the language of MATLAB 2014b on a personal
computer with a 2.30 GHz CPU and 8.00 GB RAM on a Windows 8 operating system. To assess the
quality of the proposed technique, public databases were utilized to extract features based on Gabor
filter with several orientations and frequencies, as described in this section.

4.1. Databases Description

To evaluate the performance of the proposed texture classification method optimized by HALO,
three public texture databases were used in the experiment. The first database CGT [37] offers digital
pictures of all sorts of materials with the pictures of fabric, wood, metal, bricks, plastic, and these
texture images can be used for graphic design and visual effects. In the experiments, 18 homogeneous
texture images from the database were as shown in Figure 2, all chosen texture images without any
rotation and 10 images for each class were utilized as training samples, while the other 50 images were
used as testing samples.

Figure 2. Samples of the 18 categories randomly selected from the CGT database.

The second database Kylberg [38] was imaged under only one light setting from one direction
on the same distance. Textured surfaces are arranged, such as oatmeals, linseeds, lentils, the texture
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samples with the same category have 12 different angles of rotation with 30 degrees increment.
In the experiments, 20 homogeneous texture images from the database were as shown in Figure 3,
and images without any rotation were utilized as training samples with the number per category set
as 15, and 60 images with other angles of rotation per category were used as testing samples.

Figure 3. Samples of the 20 categories randomly selected from the Kylberg database.

The third database is Brodatz [39] with different background intensities, and the figure below
gives an example of 40 different texture features organized into 5 columns. For example, D6 has a black
background, whereas D10 has gray and white backgrounds, and D101 is a regular texture, whereas
the texture type of D111 is irregular. In the experiments, 30 homogeneous texture images from the
database were as shown in Figure 4, all of the images were rotated with a 20◦ step, images with 20◦

rotation were utilized as training samples with the number set as 6 for each class. The rest of the 48
images were utilized as testing samples.

Figure 4. Samples of the 30 categories randomly selected from the Brodatz database.

4.2. Parameters Setting for Different Algorithms

As detailed in Section 2, the optimization ability does not rely on any parameter settings in HALO,
thus it is prevented from becoming trapped in the local optimal solution to a great extent. In addition,
some commonly used swarm intelligence algorithms, such as PSO algorithm [40], DE algorithm [41],
CS algorithm [42] and gray wolf optimizer (GWO) [43], were used for an intuition comparison between
the optimization abilities. All of these algorithms are based on hybrid decimal and binary coding.
Moreover, other types of Gabor filter were used for further comparison. For a relatively fair comparison,
the number of function evaluations was used as the terminal criterion; that is, all algorithms stopped
when the iteration number reached 20 combined with part of experimental results as the fitness value
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did not improve, and all algorithms performed 30 independent operations. Our primary interest was
the integrated optimization of parameters and features of Gabor filter, and this was shown by the
fitness value of the objective function and the classification accuracy for the testing samples in each
database. Table 1 shows the parameter settings of the above algorithms.

Table 1. Parameter settings for different algorithms.

Parameters Value

Population size 8
Dimension 40 + 13
Number of runs for each technique 30
c1, c2 Acceleration coefficient in PSO algorithm 2.0
fm Mutation factor in DE algorithm 0.6
CR Crossover rate in DE algorithm 0.9
G0 Initial of gravitational variable in GSA 100
α User specified constant in GSA 10
pa Detecting probability in CS algorithm 0.25
β Parameter in CS algorithm 1.5
a Correlation coefficient in GWO [2,0]
r1, r2 Random vectors in GWO [0,1]

4.3. Experiments for Different Swarm Intelligence Algorithms

A preliminary test of the proposed texture classification approach on three public texture
databases, namely CGT, Kylberg, and Brodatz, was conducted, as described here. The size of the
training samples was extracted as 128× 128 with different angles of rotation. In Table 2, Fiv is the
average fitness value calculated by Equation (11) using the integrated optimization for each filter
bank handled by different swarm intelligence algorithms, and Fn and Time, respectively, indicate the
selected number of features and CPU time, on average, for each training process.

Table 2. Result of different algorithms for public texture databases.

Database Meas. PSO DE CS GWO HALO

CGT
Fiv 15.3503 16.1756 16.9323 17.5238 18.3323
Fn 20.7667 20.3333 19.8667 19.5000 19.0333

Time 11.2552 10.9532 10.8711 11.0332 10.6732

Kylberg
Fiv 15.9803 16.8198 18.1516 19.2445 19.7469
Fn 20.8667 20.4333 20.2000 19.6667 19.2000

Time 15.3124 14.9997 14.9056 15.1336 14.6008

Brodatz
Fiv 13.2545 14.2234 14.9204 16.0043 16.9607
Fn 18.7333 18.4000 17.8333 17.2667 16.9000

Time 25.2872 24.9488 24.8150 25.0316 24.5248

As shown in Table 2, the average fitness value using the proposed method was the highest for
all databases, proving that the optimization ability of HALO was superior to that of PSO, DE, CS,
and GWO. The discrimination ability of each category was enhanced since the fitness value exceeded
16. More importantly, the process of ALO is based on the hunting behavior of antlions and has
no parameters to be set. Hybrid decimal and binary encoding qA utilized to conduct integrated
optimization of the parameters and features of Gabor filter; this strategy improved the exploitation
ability compared with the use of only one ant encoding. Moreover, the selected number of features
was the lowest among all of the algorithms involved: the number was higher than 20 for the CGT
and Kylberg databases using PSO and DE algorithms, and HALO abandoned more than 50% of the
redundant features from Gabor filter. From the aspect of operating efficiency, HALO had a faster
convergence rate because it had fewer multiplications compared with the other algorithms. The
difference in CPU time reached 0.7 s for the Kylberg and Brodatz databases, and HALO only needed
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10.6732 s to select the best feature subset by obvious distinction for the CGT database. Overall, it can
be deduced that the optimization ability and operating efficiency are improved by using HALO, which
has the desired adaptability to obtain suitable parameters and features of Gabor filter.

4.4. Application for Texture Classification

Next, each texture sample was classified by using the optimal parameters and features of Gabor
filter. Figures 5–7 indicate the difference in the average eigenvalues between the training and testing
samples for the categories with the highest classification accuracy using the selected parameters
and features of Gabor filter. Tables 3–5 show the classification accuracy using the newly proposed
Log-Gabor filter [44], DS-Gabor filter [18], the only parameter optimization-based Gabor (OP-Gabor)
filter, and the proposed method. In the tables, OA and Kappa are the overall classification accuracy and
Kappa coefficient, respectively, obtained by using different texture classification methods. The Kappa
coefficient is defined below:

k =
Po − Pe

1− Pe
(12)

where Po is the relative observed agreement, and Pe is the hypothetical probability of chance agreement.

Table 3. Overall classification accuracy and Kappa coefficient for CGT database.

Category Log-Gabor DS-Gabor OP-Gabor Proposed Category Log-Gabor DS-Gabor OP-Gabor Proposed

Fabric 96.00 96.00 96.00 100.00 Brick 48.00 54.00 86.00 86.00
Leather 92.00 90.00 94.00 92.00 Vegetation 86.00 80.00 88.00 90.00
Wicker 64.00 90.00 96.00 96.00 Window 94.00 94.00 94.00 96.00
Metal 94.00 94.00 96.00 96.00 Tree 70.00 60.00 70.00 90.00
Plastic 98.00 98.00 98.00 100.00 Wood 96.00 94.00 98.00 96.00
Wheel 46.00 66.00 78.00 86.00 Soil 100.00 100.00 100.00 100.00
Road 88.00 74.00 92.00 90.00 Wool 96.00 96.00 96.00 100.00
Paper 100.00 100.00 100.00 100.00 Water 98.00 98.00 100.00 100.00
Decoration 60.00 98.00 98.00 100.00 Tile 94.00 76.00 96.00 98.00

OA(%) 84.44 86.56 93.11 95.33
Kappa 0.8353 0.8576 0.9271 0.9506

Table 4. Overall classification accuracy and Kappa coefficient for Kylberg database.

Category Log-Gabor DS-Gabor OP-Gabor Proposed Category Log-Gabor DS-Gabor OP-Gabor Proposed

Blanket 96.67 83.00 96.67 96.67 Rice 75.00 81.67 86.67 90.00
Canvas 91.67 91.67 91.67 93.33 Rug 66.67 75.00 95.00 96.67
Ceiling 93.33 88.33 95.00 96.67 Sand 55.00 71.67 86.67 93.33
Cushion 86.67 81.67 88.33 91.67 Scarf 96.67 96.67 98.33 98.33
Floor 83.33 86.67 90.00 91.67 Screen 93.33 93.33 95.00 100.00
Grass 70.00 58.33 76.67 90.00 Seat 96.67 96.67 96.67 98.33
Lentils 73.33 76.67 88.33 95.00 Sesameseed 81.67 93.33 100.00 100.00
Linseed 73.33 90.00 95.00 96.67 Stone 78.33 86.67 90.00 91.67
Oatmeal 65.00 80.00 91.67 95.00 Stoneslab 35.00 38.33 56.67 73.33
Perlsugar 83.33 90.00 91.67 91.67 Wall 90.00 91.67 95.00 96.67

OA(%) 79.25 82.58 90.25 93.83
Kappa 0.7816 0.8167 0.8974 0.9351
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Table 5. Overall classification accuracy and Kappa coefficient for Brodatz database.

Category Log-Gabor DS-Gabor OP-Gabor Proposed Category Log-Gabor DS-Gabor OP-Gabor Proposed

D1 87.50 97.92 97.92 97.92 D49 100.00 100.00 100.00 100.00
D3 75.00 97.92 97.92 97.92 D52 85.42 93.75 97.92 97.92
D6 97.92 95.83 97.92 97.92 D56 95.83 89.58 95.83 95.83
D10 100.00 100.00 100.00 100.00 D64 85.42 87.50 97.92 97.92
D11 97.92 97.92 100.00 100.00 D66 89.58 97.92 97.92 97.92
D14 97.92 93.75 97.92 97.92 D74 95.83 95.83 95.83 95.83
D18 81.25 91.67 93.75 93.75 D83 95.83 97.92 97.92 97.92
D20 91.67 95.83 95.83 95.83 D87 89.58 87.50 95.83 95.83
D25 95.83 95.83 95.83 95.83 D88 83.33 89.58 95.83 95.83
D31 70.83 85.42 91.67 91.67 D93 87.50 91.67 93.75 93.75
D37 85.42 95.83 95.83 95.83 D94 62.50 81.25 89.58 89.58
D41 97.92 97.92 97.92 97.92 D99 83.33 87.50 91.67 91.67
D46 93.75 95.83 95.83 95.83 D101 91.67 97.92 100.00 100.00
D47 93.75 95.83 95.83 95.83 D104 93.75 89.58 95.83 95.83
D48 85.42 95.83 95.83 95.83 D111 85.42 87.50 93.75 93.75

OA(%) 89.24 93.61 96.32 96.32
Kappa 0.8886 0.9339 0.9619 0.9619

Figure 5. Difference of average eigenvalues between training and testing samples for CGT database.

Figure 6. Difference of average eigenvalues between training and testing samples for Kylberg database.

Tables 3–5 reveal that the classification accuracy was increased, with a difference of more than
2%, by removing some redundant features of Gabor filter. In addition, more than 40 samples were
misclassified for the Kylberg database. Although the classification accuracy for the Leather, Road, and
Wood classes in the CGT database was relatively high, misclassification still had a certain influence on
the overall process. Moreover, the Kappa coefficient was more than 0.93 for all databases, illustrating
that the precision could adapt to a number of application demands. The difference in the average
eigenvalues between the training and testing samples was lower than 0.03, and the change trend was
similar to that shown in Figures 5–7, thus proving the discriminability and identity of each Gabor filter.
The overall classification accuracy of the Log-Gabor filter and DS-Gabor filter was unsatisfactory: it
was lower than 85% for the CGT database and only 86.56% and 82.58%, respectively, for the Kylberg
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database. With these two methods, very few samples were correctly classified for the Wheel, Brick,
Sand, and Stone slab categories, thus it was difficult for them to extract texture features from the whole
database. In brief, the proposed approach is a reliable, efficient, and reasonable method for texture
classification.

Figure 7. Difference of average eigenvalues between training and testing samples for Brodatz database.

5. Conclusions

This paper details a texture classification method based on the integrated optimization of the
parameters and features of Gabor filter using HALO. Three public texture databases with different
types of texture features were utilized for its evaluation. The experimental results were firstly compared
with those of some commonly used swarm intelligence algorithms, such as PSO, DE, CS, and GWO. In
general, it was demonstrated that swarm intelligence algorithms are well coded to solve parameter
optimization and feature selection problems at the same time. Among them, HALO with hybrid
binary-decimal coding has great optimization ability, and its fitness value is distinctly higher than that
of the other algorithms. Thus, the proposed method is more appropriate for texture classification, and
it is fast enough to meet real-time application needs. Moreover, for a more comprehensive comparison,
Log-Gabor, DS-Gabor filter, and the only parameter optimization-based Gabor filter were also utilized.
It was observed that the proposed texture classification method is robust, and the classification accuracy
is satisfactory for multi-classification problems, especially those based on texture features. In sum,
the multi-orientation and multiscale nature of Gabor filter can enhance the discrimination of texture
features. Further, the disadvantage of high time complexity can be overcome to a great extent with
HALO. The proposed texture classification method has an excellent balance between efficiency and
accuracy, making it a good candidate to deal with practical applications. In the future, we will collect
some geological texture samples and use them for the classification of more texture features.
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