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Abstract: The dynamics of processes affecting the quality of stormwater removed through drainage
systems are highly complicated. Relatively little information is available on predicting the impact
of catchment characteristics and weather conditions on stormwater heavy metal (HM). This paper
reports research results concerning the concentrations of selected HM (Ni, Cu, Cr, Zn, Pb and Cd) in
stormwater removed through drainage system from three catchments located in the city of Kielce,
Poland. Statistical models for predicting concentrations of HM in stormwater were developed
based on measurement results, with the use of artificial neural network (ANN) method (multi-layer
perceptron). Analyses conducted for the study demonstrated that it is possible to use simple variables
to characterise catchment and weather conditions. Simulation results showed that for Ni, Cu, Cr, Zn
and Pb, the selected independent variables ensure satisfactory predictive capacities of the models
(R2 > 0.78). The models offer considerable application potential in the area of development plans,
and they also account for environmental aspects as stormwater and snowmelt water quality affects
receiving waters.
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1. Introduction

Urbanisation and increasingly frequent extreme weather events result in higher volumes of
stormwater flowing from catchments. That, together with the deterioration of air quality in urban areas,
leads to growing amounts of pollutants that are washed off surfaces in rainfall events. Consequently,
they negatively affect the aquatic environment of the receiving waters. Various mathematical models are
currently developed in order to predict negative stormwater impacts on the natural environment [1–3].
They are useful when making decisions, in adherence to sustainable development principles, which
concern land use and urban space management. To predict stormwater quality, these models primarily
take into account deposition of pollutants on surfaces [1], their runoff, and transportation by the
drainage system. The Stormwater Management Model (SWMM) software is commonly used; however,
simplifications [2] adopted in the model can make it difficult to fit simulation results to measurements.
Literature overview [4] shows that, in many cases, unsatisfactory prediction results can be caused
by the simplified model of pollutant deposition. The complex process of pollutant accumulation
on the catchment surface is influenced by numerous factors, including air quality, weather patterns,
and local conditions. Air quality and pollutant deposition conditions vary in time [5,6]; therefore,
their proper modelling is not easy and requires advanced tools. Consequently, statistical models are
more frequently used to account for the stochastic character of determinants that affect stormwater
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quality. In addition, empirical models are much cheaper and simpler to develop than physical ones [7].
Statistical models (e.g., artificial neural networks (ANNs)) allow simulation of strongly nonlinear
phenomena occurring in the natural environment [8]. However, the lack of physical interpretation
of the obtained model structure may be a disadvantage, which in some cases can produce errors in
computations. Physical and statistical models for stormwater quality prediction developed so far are
local in character; thus, they cannot be applied to catchments with different characteristics. In practice,
even for a single catchment model, development generates high costs of field studies, and may not
be economically viable. Consequently, it is necessary to look for and develop models that would be
global in character, and at the same time, account for variation in site factors.

The literature reports that artificial neural networks (ANNs) are frequently used to predict
phenomena where physical models are too complex. In addition, physical models are often not able to
produce reliable simulation results. Therefore, ANNs are generally applied to model phenomena that
are nonlinear in character. In addition, depending on their numerical values can have diversified effects
on the predicted dependent variable. The benefits offered by ANN have been utilised in many research
fields [9]. Among others, ANNs are employed to simulate stormwater quantity and quality [10],
and also to design and size sewage systems [11,12]. Although ANNs were used to predict heavy
metal (HM) concentrations in stormwater, the analysis dealt exclusively with small, highly impervious,
homogeneous catchments. ANN-based methods are also commonly employed to predict wastewater
quality [13,14] with respect to organic and inorganic compounds and HM. However, the method
was mainly applied to simulate HM concentrations in sewage for small urban catchments, where the
pattern of HM transportation is different from riverine catchments.

This study proposes a methodology for building a versatile ANN model that would capture a
range of the catchment’s physical and geographical characteristics, and also local weather conditions
that indirectly affect air quality. The approach makes it possible to examine interactions between
variables included in the model. It can also account for mechanisms (runoff, deposition), not
thoroughly investigated yet, which affect to stormwater quality flowing from the catchment. The
analyses conducted for the study produced an example of a model for simulating HM concentrations.
The simulation calculations were based on the results of stormwater quality measurements from
58 precipitation events for three urban catchments in the years 2009–2018.

2. Materials and Methods

2.1. Characteristics of the Study Area

The investigations into stormwater quality and quantity were conducted for three urban catchments
in the city of Kielce, Poland (Figure 1). In the catchments, which differ in land use, five characteristic
surface types with respect to runoff were identified (Table 1): asphalt and gravel road surfaces, roofs,
car parks, and green spaces. The first catchment, having a total area of 62 ha, is located in the
central-eastern part of the city. It holds main transportation routes, service sector areas, and high-rise
residential buildings. Overall, impervious areas with a high runoff coefficient (>0.8) constitute 51.5%
of the total area of the catchment, which indicates its typical urban character. The highest point of the
catchment is at 271.2 m above sea level and the lowest at 260 m a.s.l. The average slope of the land is
0.71% [15]. The stormwater from the catchment area is collected by the existing stormwater drainage
system and conveyed by a main sewer to the stormwater treatment plant (SWTP) in IX Wieków Kielc
Street (Figure 1a).

The Witosa SWTP catchment, which has an area of 83 ha, is located at the outskirts of the
city. On the east, and partially north side, the catchment is surrounded by an open ditch collecting
stormwater flowing from a dense forest area. The ditch turns into a ø 800 mm closed sewer, which is
connected to a sewer conveying effluent from the Witosa treatment plant (Figure 1b). All the stormwater
is piped (ø 1400 mm) to the receiving water of the river Silnica. Land development includes primarily
one- and multi-family housing, and the share of impervious surfaces is 25.9% of total catchment area
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(Table 1). The highest point in the catchment is 365.5 m a.s.l., and the lowest is 291.25 m a.s.l. The
average slope of the land is 8.2% [16].
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Figure 1. Study area—(a) location in the city of Kielce; (b) IX Wieków Kielc stormwater treatment plant
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Table 1. Land use characteristics.

Catchment
Area

A

Surface Type

Roads
Roofs Car Parks

Green
SpacesAsphalt Gravel

ha %

IX Wieków
Kielc 62 26.0 – 14.3 11.2 48.5

Witosa 83 8.5 1.6 9.4 6.4 74.1
Jesionowa 400 11.3 8.4 11.5 11.2 57.6

Jesionowa SWTP catchment occupies the largest area (400 ha). It is located in north-western part of
Kielce and includes highly urbanised areas. The catchment land use is dominated by industrial zones
with large commercial buildings, and low residential buildings. As a result, the share of impervious
surfaces is 42.4% (169.6 ha). The highest point in the catchment is 315 m a.s.l., and the lowest is 265 m
a.s.l. The average slope of the land is 2.65%.
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In all three catchments, a separate sewage system is used, in which drains collect stormwater and
sanitary wastewater is carried by sewers.

2.2. Measurement Apparatus

In rainfall events, the flow was measured, and at the same time, samples were collected for
analytical tests. The measurement apparatus was installed in the separation chambers (monitoring
point—Figure 1) of all treatment plants. The ISCO AV 2150 module flow meters (Teledyne ISCO,
Lincoln, NE, USA) were employed to measure stormwater quantity. Stormwater samples were collected
using ISCO 6712 portable samplers (Teledyne ISCO, Lincoln, NE, USA). Unstabilised samples were
immediately transported to a chemical laboratory in order to determine the following quality indicators,
i.e., HM: Ni, Cu, Cr, Zn, Pb, and Cd. The pH value was measured in accordance with the PN-EN ISO
10523:2012 method using SevenMulti™meter (Mettler Toledo, Columbus, OH, USA) [17]. Samples
were digested in nitric acid using microwave oven (Multiwave 3000, Anton Paar, Graz, Austria)
and filtered with membrane filters (0.45 µm). Concentrations of HM were determined by atomic
emission spectrometry with inductively coupled plasma ICP Optima 8000 (Perkin Elmer, Waltham,
MA, USA) with certified multi element standards (Perkin Elmer) [18]. The tipping bucket type rain
gauge RG50 from SEBA Hydrometrie GmbH (Kaufbeuren, Germany) was used to measure rainfall
depth. Measurement frequency ranged from 2 to 5 min, with a resolution of 0.1 mm.

2.3. Rainfall Events

The analyses were based on the results of rainfall depth measurements recorded since 2009. The
measurements were taken using a rain gauge located in Kielce (Figure 1), within the Jesionowa SWTP
catchment. The rain gauge is situated 1.2 km from the boundaries of the Witosa SWTP catchment and
2.5 km from the IX Wieków SWTP catchment. For calculation purposes, individual precipitation events
were extracted from rainfall data. Based on the analysis of stormwater drainage system operation,
the following parameters were adopted in the study—minimum inter-event (rainless) time (tbd): 4h
(DWA A-118 [19]) and minimum rainfall depth (Ptot): 2.0 mm. Although average weighted catchment
retention is higher and amounts to 3.81 mm [20], rainfall with smaller Ptot value may induce runoff,
which is determined by specific rainfall distribution within catchment area. The number of precipitation
events ranged yearly from 52 to 75. Precipitation events were parameterised with respect to total
rainfall depth and rainfall duration (tr). Values tr for the observed precipitation events varied in the
range 10–2366 min., tbd was 0.16–60 days, and Ptot 2.0–45.2 mm.

2.4. Meteorological Conditions and Parameters of Hydrographs

In the city of Kielce, monitoring of air quality and weather conditions was conducted in the years
2009–2018. Daily measurements included visibility, temperature and wind speed, and the occurrence
of rainy, snowy and foggy days was noted. In this study, visibility is the measure of air pollution
level [5]. The measurements demonstrated that in the years 2008–2018, selected parameters ranged
as follows: visibility 8.7 to 33.0 km, average air temperatures from −1.3 ◦C to 22.0 ◦C, average wind
speed was from 0.6 to 11.4 m/s, annual number of rainy days ranged from 189 to 201 and snowy days
ranged from 36 to 78. In addition, it was found that in the periods between individual precipitation
events, the number of days with rainfall ranged from 60 to 75, those with snowfall in the range of 1–70
and with fog 25–71.

The hydrographs analysed for the study showed different patterns, depending on the maximum
flow values and runoff duration in the sewer. The highest flow (Q) values were observed in the
Jesionowa SWTP (maximum 4.53 m3

·s−1), which results not only from precipitation characteristics,
but also from the catchment size (Table 1). For Witosa SWTP and IX Wieków Kielc SWTP, Q values
amounted to slightly over 0.5 m3

·s−1. Hydrographs duration values ranged from 60 to 850 min.
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2.5. Statistical Analysis

Statistical analyses were employed to determine mean, median and range values. In order to
identify the relationships between variables under consideration (HM, percentage of each land use
type in a given catchment, and weather characteristics), Pearson correlation coefficient and regression
analysis were used. Additionally, it was checked beforehand whether empirical distributions of the
independent variables of concern do not deviate from normal distribution. The Kolmogorov—Smirnov
test was used for that purpose. When the determined value for individual independent variables was
p ≤ 0.05, no grounds were found to reject the assumption that the empirical distribution of variables
was normal. Otherwise (p > 0.05), the data were subjected to Box-Cox transformation [21].

2.6. Development of ANN Model for Predicting HM Concentrations

2.6.1. The Model for Stormwater Quality Prediction

Initially, to develop the ANN model for predicting HM concentrations, the independent variables
describing catchment characteristics, precipitation and weather conditions [1,3,10,22] were adopted.
Prior to further analyses, those data were normalised and standardised [23]. Then, the independent
variables that have negligible effect on the simulation results were eliminated from the set of
potential variables using the Fisher–Snedecor test. The next stage involved the development of
ANNs models—the multi-layer perceptron (MLP), and structure optimisation (conjugate gradient,
gradient descent, number of neurons in the hidden layer and activation functions in the hidden and
output layers) [23]. Figure 2 shows the diagram of the adopted computational procedure [24].
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Figure 2. Methodology of the development of multi-layer perceptron (MLP) model for predicting the
selected pollutant concentrations in stormwater.

2.6.2. Selection of Variables for the Model

To predict HM concentrations in stormwater, the general formula was used:

HMC(t) = f (ts,G,A,Zi,Q,Pi,tr,tbd,Vi,T,w,Tsn,Tf), (1)

where HMC (t)—heavy metal concentrations in time t, G—event type (rainfall, snowmelt),
A—catchment area; Zi—land use; Q—stormwater flow rate in the SWTP gauging section of the analysed
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catchment; Pi, tr, tbd—variables describing rainfall characteristics, including Pi (total depth—Ptot,
maximum ten minutes rainfall depth—P(10)); tr—rainfall duration, tbd—inter-event time; Vi, T, w, Tsn,
Tf—variables characterising meteorological conditions and air quality based on Vi—visibility, T—air
temperature, w—wind speed, Tsn,f—number of days with snowfall (or fog) preceding the event and ts

—time measured from rainfall onset to the instant, for which stormwater quality is to be determined
(precipitation events).

In order to thoroughly identify the physics of the analysed phenomena, the following parameters
were studied for the inter-event (rainless) period (tbd): average values, variance in the values
(xi—independent variables found in Equation (1)) of visibility, wind speed and air temperature. The
values of variance (range: from minimum to maximum) for individual variables in the period tbd

are as follows: visibility (0.65–72 km, mean 34 km), wind speed (0.3–30 m/s, mean 10 m/s) and air
temperature (0.4–19.2 ◦C, mean 6.1 ◦C).

Based on the measurements of the variables above xi (t0) (where t0 = 0 − tbd), trends in variable
changes were shown in the period of concern by determining the values of coefficients in the linear
model (estimated with the least squares method) xi = ait + bi (Figure 3).
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The analyses demonstrated that the values of coefficient a = tg α range from −3.48 to 5.55, from
−8.5 to 1.6, and from −2.85 to 1.4. These values indicate considerable variability of trends in changes in
weather conditions during the analysed inter-event periods, which may have significant impact on
pollutant deposition on the catchment surface.

For snowmelt events, t is measured from the minimum flow value Qmin (t = 0), which is the basis
for identifying a specific event of given character. HMC(t) values are calculated for successive values
of Q(t+i) > Qmin obtained from the measurements in snowmelt events.

Two hypotheses are formulated in the Fisher–Snedecor test: (i) the null hypothesis (H0), in which
structural parameters are not significantly different from zero (α1 = α2 = . . . αk = 0) and (ii) the
alternative hypothesis (HA), according to which at least one parameter is found that is significantly
different from zero (α1 , 0, α2 , 0, . . . , αk , 0).

2.6.3. Artificial Neural Networks

Artificial neural networks are frequently used for modelling different phenomena. Although
many more complex and less complex ANN have been developed, one of the most popular is the
unidirectional multi-layer network—the multi-layer perceptron (MLP) (Figure 4).
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Figure 4. The structure of the multi-layer perceptron artificial neural networks (ANN) model used for
the study.

In ANN model, individual input signals (xi) that reach the input layer are multiplied by the values
of weights (wij), then by products xi·wij. Next, they are transmitted to the hidden layer neurons, where
they are summed up (Figure 4). The sums obtained undergo transformation by the activation function
f (linear or nonlinear), and then they are transmitted to the output layer neurons. In the MLP model,
the values of weights (wij) are estimated at the training stage. The estimation is intended to minimise
the following function [23]:

E(RMSE) =
1

2n

∑n

i=1

(
ym − ys

)2
, (2)

where E(RMSE)—target function, in the case under consideration equivalent to RMSE, n—number of
data in a set, ys—value y obtained through iteration and ym—value y obtained through measurements.

That is achieved with appropriate numerical methods, for instance, that of
the Broyden–Goldfarb–Shanno.

The values of the dependent variable outputs (y) are determined using the following formula [23]:

y =
∑J

j=1
wif

(∑I

i=1
wijxi + bj

)
, (3)

where I—number of model inputs, J—number of neurons in the hidden layer, wij—the values of
weights between inputs and neurons in the hidden layer, bj—loads of neurons in the hidden layer,
wj—the values of weights between neurons in the hidden layer and the neuron in the output layer and
f—the activation function.

For the set of independent variables (xi), the Fisher–Snedecor test was used to find the optimal
structure of the MLP model for the number of the hidden layer neurons ranging (i−2)·(i+1) [24].
In the simulation tests, the following activation functions were taken into account: linear, exponential,
tangent–hyperbolic and sine. The Broyden–Goldfarb–Shanno algorithm [23] was employed to
determine the values of weights in the model. Due to substantial impact of the initial values of
weights on the simulation results, and also problems with their optimisation, each ANN (having a
specified number of neurons and activation function) was generated many times (5000 times) for
different boundary conditions (initial values of weights for individual neurons). The above-mentioned
algorithm was computed using the MATLAB software. The program automatically generates initial
values [25], and the user can only choose the decay values for the hidden and output layers, which
were assumed to be 0.001 and 0.0001 [8], respectively. The assessment of the predictive capacities of the
models was based on coefficient determination (R2), mean absolute error (MAE) and root-mean-square
error (RMSE), as discussed in [26].

For the assumed values of neuron numbers and activation functions, the optimum values of weights
were sought. The computations were performed using the method of successive approximations
(for various numbers of iterations). In succession, for a number of neurons of the hidden layer, assumed
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a priori, activation functions were selected (hidden and output layers). With adopted assumptions,
the computations of weight values were made using MATLAB software. Assuming successive values
of neuron numbers to range from i to 2i+1 (1 neuron difference between successive models of concern),
ANN models were determined for different combinations of the activation function. At the analysis
stage, measures of fit of the computational results to measurements were obtained for the models
produced. Structure and model considered optimal were those for which the lowest values of RMSE
and MAE were found. The approach, described in details in [8], is frequently used when developing
ANN models.

3. Results and Discussion

3.1. Heavy Metal Concentrations in Runoff

Heavy metals found primarily in the airborne particulate matter are particularly hazardous
substances. Deposited on the ground together with particulate matter, HM are then washed off

the catchment and transported, with the stormwater, into the wastewater receiving body. High
concentrations of Zn, Pb and Ni in the stormwater result from the widespread use of these elements in
the automotive and fuel industries. The presence of copper and chromium in the atmosphere is mainly
caused by coal combustion and industrial activity [27–31].

Zinc had the highest concentration of all HM analysed (Table 2). In stormwater samples
collected from the Jesionowa SWTP catchment, Zn concentrations ranged 319–5731 µg·dm−3, and were
higher than the values observed for the IX Wieków Kielc SWTP (0–3873 µg·dm−3) and for Witosa
SWTP (45–3160 µg·dm−3). These values are similar to the range specified for Bialystok, Poland
(200–6000 µg·dm−3) [27], and for Belgrade (284–6200 µg·dm−3) [32]. The high concentrations of Zn in
the studied catchments result from significant percentage (9.4%–14.3%) of the area of roof covers in
land development [33], especially in the industrial part of the SWTP Jesionowa.

Table 2. Summary statistics describing heavy metals concentrations in the analysed catchments.

Years Value
(µg·dm−3)

Cd Cu Cr Ni Pb Zn

IX Wieków Kielc SWTP

2009–2018
Range 0–162 0–1068 0–350 0–168 0–1405 0–3873

Median 20 128 70 45 411 430
Mean 17 113 46 31 342 298

Witosa SWTP

2015–2018
Range 1–766 3–959 3–319 2–341 1–343 45–3160

Median 37 358 70 38 55 663
Mean 22 262 67 23 14 550

Jesionowa SWTP

2016–2018
Range 4–649 5–660 14–2236 13–304 13–1115 319–5731

Median 16 128 177 74 138 1148
Mean 7 99 117 80 101 842

The highest concentration of Pb (1405 µg·dm−3) was observed in the IX Wieków Kielc SWTP
catchment, and it fits within the limits for runoff from motorways and major roads (3–2410µg·dm−3) [34].
The high Pb values can be caused by a large volume of vehicular traffic in the city centre—exhaust gas,
among others, is a source of Pb [28]. Conversely, the lowest Pb concentrations (1–343 µg·dm−3) were
observed in the Witosa SWTP catchment, which may result from the prevalent single-family housing
and local character of roads. However, Pb concentrations are higher than limits for Paris [35,36]
and Genoa [37], although they fit within the range for runoff from suburban and residential roads
(10–440 µg·dm−3) [34].
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Maximum Ni concentration found in the IX Wieków Kielc SWTP catchment (168 µg·dm−3) was
lower than the values for the other two facilities (304 and 341 µg·dm−3). The values are located within
the range specified in literature for runoff from car parks and industrial areas (2–493 µg·dm−3) [38].
On the other hand, the highest median of Ni concentrations for the Jesionowa SWTP (80 µg·dm−3)
exceeded the values observed in China (20.3 µg·dm−3) [39].

Cr concentration ranges in IX Wieków Kielc SWTP (0–350 µg·dm−3) and Witosa SWTP
(3–319 µg·dm−3) catchments were similar, whereas the highest concentration was found for the
Jesionowa SWTP catchment (2236µg·dm−3). It was greater than that found in Serbia [32] (1350 mg dm−3)
for asphalt surface samples collected from the car park of the University of Belgrade. So high
concentrations of Cr can be associated with the industrial character of the catchment and carbon
incineration in household boilers [28]. Additional source of Cr is a municipal heat and power plant
located less than 1.0 km from the studied catchment.

Minor differences were observed in Cu concentration maxima in IX Wieków Kielc SWTP and
Witosa SWTP catchments (1068 and 959 µg·dm−3, respectively). They corresponded to the results for
urban runoff in Germany (maximum 1143 µg·dm−3) [40], but were much lower than those for runoff

from roofs (maximum 7861 µg·dm−3) [41]. Cu concentration range in the Jesionowa SWTP catchment
(5–660 µg·dm−3) was similar to the results of runoff analyses for high-density residential housing
development (1.8–656 µg·dm−3) reported for Lahti [42].

Cd concentrations were the lowest in the IX Wieków Kielc SWTP catchment (0–162 µg·dm−3).
Average Cd concentrations in the catchments of concern (16–37 µg·dm−3) were much higher than the
average value range in Europe for runoff from residential areas (0–5 µg·dm−3) reported in [34].

3.2. Correlation Significance Analysis

The existence of statistically significant relations between stormwater HM concentrations
and catchment characteristics and weather conditions may deliver information on HM sources
(e.g., pollution from transport, atmospheric deposition, etc.) [43,44]. Additionally, strong correlation of
individual HMs (Zn–Cu, Cr–Cu, Pb–Ni, Cd–Ni, Pb–Cd and Cr–Zn) may indicate common sources [45].
Analysis of data in Table 3 suggests that HM present in stormwater from the three catchments originate
in either traffic, pollutant wash-off from impervious surfaces, or atmospheric deposition.

Pb, Ni and Cd concentrations in stormwater are positively correlated with the area of roofs (RF),
roads (RD) and car parks (CP), which suggests that atmospheric deposition is not the main source
of those elements. In the catchments of concern, Pb, Ni and Cd originate primarily from traffic and
roof covers [46]. Concentrations of HM in storm water are not determined by rainfall event duration
(tr) as shown by a low correlation coefficient (Table 3). They rather depend on precipitation depth
(Ptot, P(10)). This observation complies with the results reported by Rocher et al. in [47]. Based on
the data obtained from Paris, the researchers observed that the process of pollutant removal from the
atmosphere with rainfall depends mainly on its depth rather than other characteristics. Permeable
surfaces (green spaces—GS and gravel roads—GRD) within the catchment, characterised by high water
retention capacity, to some extent reduce the content of trace elements in stormwater intercepted by
watertight drainage systems. This observation is confirmed by the occurrence of negative correlation
relationships between the analysed pollution indicators and the share of permeable surfaces in total
area of the catchments.

Stormwater quality also depends on wind velocity, which has substantial impacts on transport and
deposition of atmospheric pollutants (Table 3) and may provide a reasonable explanation for the negative
correlation between the catchment area and the studied HM. With respect to the analysed catchments,
large areas are relatively less urbanised and have a considerable share of green spaces. In addition,
the negative correlations (from −0.34 to −0.71) between wind velocity and HM concentrations in
stormwater may indicate that wind has a substantial impact on the volume of dry pollutant deposition.
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3.3. Prediction of HM Concentrations in Stormwater

The results also indicate that it is possible to develop a model for assessing stormwater HM
concentrations on the basis of precipitation characteristics, catchment parameters, and weather
conditions, including visibility. The model proposed in the study can have practical applications to
urban catchments. Additionally, the model makes it possible to examine the impact and interactions
between variables analysed, both for rainfall and snowmelt events. These issues were investigated in
many research studies; however, they focused on homogeneous catchments [46,48]. Yet, with respect
to urban catchments, a large number of problems have not been tackled. The model proposed allows
analysis of the impact of many different phenomena (e.g., deposition of airborne pollutants and their
washing off the ground surface) and their variability, which depends on land use type. Comparison of
simulation results and literature data shows that the ANN model proposed in the study accounts for
nonlinear variables, which contributes to its predictive capacity (Table 4, Figure 5).

The parameters that characterise the structure of MLP models, namely number of neurons,
activation functions in the hidden and output layers, are shown in Table 5. The values of measures
of the model fit (R, MAE, RMSE) to experimental data are also given in the table. Based on the data
from Table 5, it can be seen that for individual networks, a number of neurons in the hidden layer
ranges from 28 to 35. Additionally, the analyses demonstrate that the number of neurons obtained for
individual MLP models is not greater than that recommended [25]. The results show that for Ni and
Zn, selected independent variables ensure satisfactory predictive capacities of HMC mathematical
models—R2 > 0.90 (Figure 5). With regard to Cr and Pb, the fit of simulated values to the measured
ones is also satisfactory (0.83 < R2 < 0.86). In addition, Figure 5 shows that the smallest scatter is
found for concentrations lower than 0.08 mg·dm−3 (Cr) and 0.4 mg·dm−3 (Pb). With respect to Cu,
good predictive abilities of the model are observed only up to the value of approx. 0.2 mg·dm−3. The
value of R2 = 0.256 for Cd shows poor fit between ANN predictions and measurements, especially for
concentrations higher than 0.03 mg·dm−3 (Figure 5).

The analyses indicate (Table 4) that the pattern of variation in HM concentrations for catchments
with diversified land use is much more complex than in homogeneous catchments [46]. Additionally,
in heterogeneous catchments, mechanisms affecting the quality and quantity of stormwater are far
more complex. Consequently, taking into account simulation results, it is difficult to specify variables
that decidedly determine HM concentrations. The concentrations of the analysed HM are affected to
the greatest extent by the following values: G, P(10), Tme, wme and A (Table 3). It is necessary to conduct
further investigations and select adequate computational models to identify key independent variables.
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Table 3. Matrix of Pearson correlation coefficients between selected heavy metal (HM) and catchment/atmosphere characteristics.

Ni Cu Cr Zn Pb Cd Q Ptot P(10) tr tbd G

Ni 1.00 0.57 * 0.42 * 0.61 * 0.71 * 0.72 * −0.28 * −0.43 * −0.52 * −0.11 * −0.27 * 0.49 *
Cu 0.57 * 1.00 0.81 * 0.79 * 0.58 * 0.71 * −0.24 * −0.48 * −0.53 * −0.03 −0.12 * 0.40 *
Cr 0.42 * 0.81 * 1.00 0.65 * 0.57 * 0.59 * −0.06 −0.26 * −0.53 * 0.06 0.00 0.17 *
Zn 0.61 * 0.79 * 0.65 * 1.00 0.65 * 0.71 * −0.22 * −0.41 * −0.45 * 0.03 −0.24 * 0.39 *
Pb 0.70 * 0.57 * 0.57 * 0.66 * 1.00 0.73 * 0.02 −0.17 * −0.44 * −0.11 * −0.13 * 0.24 *
Cd 0.72 * 0.71 * 0.59 * 0.71 * 0.72 * 1.00 −0.26 * −0.38 * −0.49 * −0.03 −0.22 * 0.39 *

wme wvar wgrad Vime Vivar Vigrad Tsn Tf Tme Tvar Tgrad ts

Ni −0.71 * −0.46 * −0.15 * 0.32 * 0.51 * 0.02 0.09 −0.08 −0.70 * −0.24 * −0.01 1.00
Cu −0.46 * −0.28 * −0.41 * 0.39 * 0.44 * 0.27 * 0.02 0.35 * −0.60 * 0.18 * −0.16 * −0.34
Cr −0.34 * −0.31 * −0.52 * 0.44 * 0.42 * 0.29 * −0.03 0.20 * −0.46 * 0.15 * −0.19 * −0.37
Zn −0.58 * −0.29 * −0.28 * 0.42 * 0.39 * 0.12 * −0.05 0.20 * −0.70 * 0.11 * −0.10 * −0.33
Pb −0.64 * −0.45 * −0.33 * 0.47 * 0.52 * −0.03 −0.05 −0.16 * −0.68 * −0.28 * 0.07 −0.38
Cd −0.59 * −0.52 * −0.26 * 0.35 * 0.39 * 0.21 * 0.00 0.01 −0.62 * −0.07 −0.19 * −0.32

Zi A
RF CP GRD GS RD

Ni 0.43 * 0.43 * −0.26 * −0.43 * 0.43 * −0.66 *
Cu 0.13 * 0.13 * −0.49 * −0.13 * 0.14 * −0.51 *
Cr 0.28 * 0.28 * −0.33 * −0.28 * 0.29 * −0.56 *
Zn 0.19 * 0.19 * −0.45 * −0.19 * 0.19 * −0.54 *
Pb 0.71 * 0.71 * −0.12 * −0.71 * 0.71 * −0.86 *
Cd 0.34 * 0.34 * −0.31 * −0.35 * 0.34 * −0.59 *

* significant at p ≤ 0.05; RF, roofs; CP, car parks; GRD, gravel roads; GS, green spaces; RD, roads; Vi, visibility; T, air temperature; w, wind speed (me, median; var, variance; grad, gradient).
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Table 4. F and p values for the Fisher–Snedecor test.

Ni Cu Cr Zn Pb Cd

Variable F p Variable F p Variable F p Variable F p Variable F p Variable F p

G 215 <0.00001 GRD 68.2 <0.00001 A 95.2 <0.00001 A 49.4 <0.00001 RF 215 <0.00001 A 58.2 <0.00001
Tme 92.6 <0.00001 RF 68.2 <0.00001 CP 56.7 <0.00001 CP 24.8 <0.00001 CP 215 <0.00001 G 30.7 <0.00001

ts 72.1 <0.00001 RD 68.2 <0.00001 RF 56.7 <0.00001 RF 24.8 <0.00001 GS 215 <0.00001 RD 29.5 <0.00001
A 63.9 <0.00001 CP 68.2 <0.00001 RD 56.7 <0.00001 RD 24.8 <0.00001 RD 215 <0.00001 CP 29.5 <0.00001

CP 46.7 <0.00001 GS 68.2 <0.00001 GRD 56.7 <0.00001 GS 24.8 <0.00001 GRD 215 <0.00001 RF 29.5 <0.00001
RD 46.7 <0.00001 A 59.3 <0.00001 GS 56.7 <0.00001 GRD 24.8 <0.00001 A 82.9 <0.00001 GS 29.5 <0.00001

GRD 46.7 <0.00001 wvar 53.6 <0.00001 Tvar 55.1 <0.00001 ts 24.7 <0.00001 Vivar 48.6 <0.00001 GRD 29.5 <0.00001
RF 46.7 <0.00001 Tvar 53.4 <0.00001 ts 52.1 <0.00001 wvar 24.4 <0.00001 wvar 41.7 <0.00001 ts 26.3 <0.00001
GS 46.7 <0.00001 ts 46.2 <0.00001 Vime 49.0 <0.00001 Tme 16.6 <0.00001 ts 34.3 <0.00001 wvar 25.0 <0.00001

Vime 41.1 <0.00001 G 43.6 <0.00001 Tme 37.6 <0.00001 Tvar 16.5 <0.00001 Tme 29.0 <0.00001 Tme 21.1 <0.00001
wvar 38.8 <0.00001 Tme 38.6 <0.00001 Vivar 27.7 <0.00001 wme 14.7 <0.00001 wgrad 24.5 <0.00001 tbd 13.5 <0.00001
P(10) 29.4 <0.00001 Q 30.2 <0.00001 Tsn 25.2 <0.00001 Vigrad 12.8 <0.00001 tbd 24.2 <0.00001 wme 12.2 <0.00001
Vivar 24.9 <0.00001 Tf 22.3 <0.00001 Ptot 21.6 <0.00001 Vime 9.7 <0.00001 Vime 21.4 <0.00001 Vime 11.1 <0.00001
Ptot 24.7 <0.00001 Ptot 21.0 <0.00001 Q 20.5 0.0001 G 9.3 0.0024 Tf 20.9 <0.00001 Ptot 9.3 <0.00001
wme 17.9 <0.00001 tr 19.4 <0.00001 wgrad 19.6 <0.00001 Ptot 8.9 <0.00001 Ptot 19.9 <0.00001 Tgrad 9.1 <0.00001
Tsn 17.4 <0.00001 Vigrad 15.1 <0.00001 P(10) 19.4 <0.00001 tr 8.2 <0.00001 wme 19.1 <0.00001 Tvar 7.9 <0.00001
Tvar 12.7 <0.00001 Tgrad 13.2 <0.00001 Tf 14.9 <0.00001 Tf 7.9 <0.00001 Tvar 18.9 <0.00001 Tf 7.3 <0.00001
Tgrad 11.7 <0.00001 P(10) 9.9 <0.00001 Tgrad 13.4 <0.00001 tbd 6.2 0.0004 Tsn 15.1 <0.00001 Vivar 6.7 <0.00001
Vigrad 10.4 <0.00001 Vivar 8.4 <0.00001 tr 11.2 <0.00001 P(10) 5.3 0.0001 P(10) 13.4 <0.00001 Vigrad 6.4 <0.00001

tbd 7.9 <0.00001 Vime 5.6 <0.00001 G 11.1 0.0010 Tgrad 3.2 0.0029 Vigrad 11.8 <0.00001 P(10) 5.7 <0.00001
Tf 6.8 <0.00001 wme 0.32 >0.05 wvar 9.0 <0.00001 Q 0.26 >0.05 tr 9.5 <0.00001 tr 5.6 <0.00001
Q 6.2 <0.00001 wgrad 0.22 >0.05 tbd 7.8 <0.00001 wgrad 0.25 >0.05 Q 5.2 0.0001 Q 4.2 0.0010
tr 3.7 0.0013 tbd 0.13 >0.05 wme 6.3 <0.00001 Tsn 0.18 >0.05 G 0.31 >0.05 Tsn 0.28 >0.05

wgrad 0.17 >0.005 Tsn 0.10 >0.05 Vigrad 0.33 >0.05 Vivar 0.11 >0.05 Tgrad 0.28 >0.05 wgrad 0.19 >0.05
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Table 5. Parameters of ANN structure and model fit to experimental data.

Heavy
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Number
of

Neurons

Activation
Function Training Validation

Hidden
Layer

Output
Layer R

MAE RMSE
R

MAE RMSE
mg·dm−3 mg·dm−3 mg·dm−3 mg·dm−3

Ni 28 exp tanh 0.887 0.0093 0.0200 0.845 0.986 0.0043
Cu 30 exp tanh 0.933 0.0374 0.0824 0.979 0.887 0.0457
Cr 32 tanh lin 0.889 0.0130 0.0237 0.871 0.929 0.0113
Zn 35 tanh exp 0.951 0.0931 0.1539 0.975 0.950 0.0871
Pb 33 sigm lin 0.923 0.0489 0.1072 0.881 0.913 0.0557
Cd 35 lin tanh 0.896 0.0044 0.0078 0.581 0.530 0.0083

R, correlation coefficient; MAE, mean absolute error; RMSE, root-mean-square error.



Appl. Sci. 2019, 9, 2210 14 of 16

4. Conclusions

The computations performed for this study demonstrate it is possible to develop an ANN model
to simulate variation in HM concentrations in stormwater and meltwater. The model is innovative
because it attempts to simulate different mechanisms that affect HM concentrations. The use of a single
mathematical model for that purpose has not been reported in the literature so far.

The computations show it is possible to simulate HM (Ni, Cd, Cu, Zn, Cr and Pb) concentrations
in stormwater flowing from catchments with different types of land use. The ANN-based model
employed to that end ensures satisfactory reliability. The results reported in the study demonstrate that
HM concentrations in stormwater are affected by the physical and geographical characteristics of the
catchment, and also by parameters describing atmospheric conditions and air quality. It is also shown
that for heterogeneous catchments (as those investigated in the study), it is difficult to clearly specify
key variables that decide the selected HM concentrations. To validate the ANN models developed for
the study, it is necessary to conduct further field investigations.

The methodology proposed in the study is universal in character. The analysis of spatial data
making up the catchment characteristics, which are retrieved from available databases (orthoimagery,
base maps, digital elevation models—http://www.gis.kielce.eu/), measurements of atmospheric
conditions and air quality, (alternatively available monitoring network data—https://en.tutiempo.net/
climate/poland, http://smjp.kielce.pios.gov.pl/) and measurements of HM concentrations in stormwater
can be combined. That provides a tool which can be applied to model HM concentrations in different
scenarios. The ANN method employed in the study is commonly used in computational packages.
As a result, the development of the model and the optimisation of its structure are not complex tasks
(the parameters are automatically estimated by the programs, e.g., MATLAB), and such an approach
will gain in popularity in engineering practice. The model can be applied to spatial development and
planning. It can be used to seek optimal solutions in stormwater management intended to reduce the
HM content flowing from the catchment.
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