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Abstract: This paper proposes a novel method of training and applying a neural network to act as an
adaptive decoder for a modulation scheme used in optical camera communication (OCC). We present
a brief discussion on trending artificial intelligence applications, the contemporary ways of applying
them in a wireless communication field, such as visible light communication (VLC), optical wireless
communication (OWC) and OCC, and its potential contribution in the development of this research
area. Furthermore, we proposed an OCC vehicular system architecture with artificial intelligence
(AI) functionalities, where dimmable spatial 8-phase shift keying (DS8-PSK) is employed as one out
of two modulation schemes to form a hybrid waveform. Further demonstration of simulating the
blurring process on a transmitter image, as well as our proposed method of using a neural network
as a decoder for DS8-PSK, is provided in detail. Finally, experimental results are given to prove the
effectiveness and efficiency of the proposed method over an investigating channel condition.

Keywords: artificial intelligence (AI); neural network-based decoder; optical wireless communication
(OWC); optical camera communication (OCC); dimmable spatial 8-phase shift keying (DS8-PSK);
blur image processing; vehicular communication

1. Introduction

Nowadays, light-emitting diodes (LEDs) are widely used as common lighting sources because
of their numerous advantages, such as excellent visibility, durability, and low power consumption.
Moreover, the ability to switch the light intensity fast [1,2] gives LEDs the abilities to transmit
high-speed data, provided that the switching rate, or frequency, is higher than 200Hz for human eyes’
safety [3]. On the receiver side, two types of light receivers can be used, which classifies the LED-based
communication into two research directions [4]. OWC/OCC utilized cameras to receive modulated
light, and photodiodes have been widely employed in the VLC system. Although OCC has a lower
data rate compared to VLC since it receives data via an image sensor [4,5], OCC is still preferable in
applications where mobility is crucial because of the wider field of view (FoV) of a camera compared
to a photodiode, for example, indoor localization using a personal smartphone [6,7] or vehicular OCC
system [8–10].

On the basis of the point of view of OCC technologies, internet of vehicles (IoV) is one of the
most promising areas where these technologies could be deployed. Compared to using the traditional
radio frequency (RF) communication, OWC/OCC and VLC are considered as reliable, safe for human
health, and low-cost communication technologies [4,11]. Regarding classification into sub-areas, IoV
can be divided into two communication fields: Vehicles-to-vehicles (V2V) and vehicle-to-infrastructure
(V2X). In either sub-area, the vehicles can either act as transmitters or receivers in the OCC system.
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For transmitting optical data, there are light sources that are designed at both the front and back sides of
vehicles. For receiving data, there are also various kinds of cameras that could be attached to vehicles.

Despite the enormous potential of the OWC/OCC vehicular system for a lucrative industrial
market, the development of these new technologies still suffers several challenges, as has been pointed
out in [12]. However, sources of white, noise such as ambient light radiation from the sun and
streetlight, are one of the main factors causing the degradation of OWC/OCC vehicular systems. Many
studies have been carried out to demonstrate the feasibility of OWC/OCC technology in V2V/V2X
systems (see, for example, [8–10]), and mostly, the performance is investigated with respect to Gaussian
white noise with different signal-to-noise ratio (SNR) values. Another type of distortion that can reduce
the performance of a vehicular OWC/OCC system is blurred phenomenon, which generally occurs
in any system related to camera and image processing. In an OWC/OCC vehicular scenario, vehicle
vibration and mobility, weather conditions (rainy, foggy, and snowy, to mention a few), and camera
focusing are the dominant candidates that can cause the blurring of received images. However, there
are various coding techniques for decoding and error correction. Eventually, these techniques are
developed to perform well in RF communication systems. Hence, to deal with white noise caused
by ambient light in OCC vehicular systems, these techniques could also yield similar performance.
However, the decoding accuracy of an OCC vehicular system can be extremely low when the blur
effect occurs because the blurring process can sum up and fairly redistribute all intensity values using
a point-spread function [13], which decreases the gap between logic state ON and OFF of an LED, and
increases the bit error probability while decoding data from an image.

Fortunately, recent developments in deep learning technologies provide us with a new way to
approach and deal with this issue. Instead of deriving a complex mathematical algorithm from a
pre-defined system model, deep learning, or AI technologies allow the system to learn and approximate
an optimizing model directly from training data. Deep learning has proved itself as an efficient
tool to deal with various types of problems, including computer vision [14], speech recognition [15],
autonomous vehicles [16], and many others. Inspired by these developments, recently many efforts
have been made to apply deep learning/AI technologies in communication field (including channel
decoding) [17–22]. In a vehicular OCC system, the function of the receiver (Rx) mainly includes two
tasks: The first is decoding data from the transmitter (Tx), however, to achieve this, it should be able to
detect and set up a communication link with the transmitter LED array among thousands of possible
artificial lights within an acceptable duration. The second is decoding data from the LED image.
The performances of these two tasks could be enhanced significantly by deep learning/AI technologies.

The remainder of this paper is structured as follows. In Section 2, we will briefly introduce the
fundamental concept of AI and neural networks, as well as a method of applying them to a channel
decoding problem. In Section 3, we point out the contributions of this paper to vehicular OCC systems.
Section 4 provides the vehicular OCC system architecture with AI functionalities proposed in this
paper after discussing the hybrid scheme that we developed in [4]. The principle and method of
analyzing the effect of a blurred LED image on the performance of an OCC decoder are also provided
in this section. On the basis of those effects, we propose extra features extracting as an input of a neural
network (NN)-based decoder. Furthermore, we also provide in Section 4 the experimental results to
compare the accuracy of an NN-based decoder and an original over noisy blurred transmitting image,
which is evaluated using symbol error rate (SER) value. Finally, Section 5 concludes the paper.

2. Related Work

2.1. Fundamental AI

In recent times, the concept of AI is more clearly understood and widely applied in research
related to many practical areas, such as optical wireless communication. The idea of using AI is mostly
due to the increasing demand for an automatic, self-learning, and adaptive ability embedded in every
system in real life. AI takes advantage of reducing human brain heavy workload in big data analysis
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to figure out which model is the most suitable and optimized to reflect the relationship between the
input data and the desired system output. The input data of a real system can be varied depending on
the area of AI employed.

By taking a more in-depth look into the architecture of a neural network, which is one of the
simplest forms of AI, it can be observed as a multi-layer model which has parameter matrices between
layers that are adjustable and adaptable through training to approximately reflect the correlation
between the input and output labels. Figure 1 illustrates the architecture of an NN that is used in a
regression problem as well as an illustration of how each neuron processes the input data.
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 Figure 1. (a) A regression neural network and (b) the processing role of each neuron. (Adapted
from [23]).

The training process is a process in which the weight and bias matrices of every neuron are
updated through every epoch in order to make the predicting value of an output closer to the actual
output value based on the training dataset. Moreover, [Wi1, Wi2, . . . , Win] and bi are, respectively,
the weight matrix and bias value of the ith neuron. To accomplish the training process, AI attempts
to minimize the value of a loss function which is unique for each kind of task using a particular
optimization algorithm.

2.1.1. Loss Function

The loss function is a critical component of artificial NNs which is utilized to measure the
inconsistency between a predicted value (yp) and an actual label (y). It is a non-negative real-valued
function, and the robustness of the model increases as the loss function values decrease. The loss
function is at the core of empirical risk function as well as a significant component of the structural risk
function. Generally, the structural risk function of a model is composed of an empirical risk term and a
regularization term and is represented as follows:

θ∗ = argmin
θ

L̂(θ) + λ.φ(θ),

= argmin
θ

1
n

n∑
i=1

L(y(i), yp
(i)) + λ.φ(θ),

= argmin
θ

1
n

n∑
i=1

L(y(i), f(x(i), θ)) + λ.φ(θ),

(1)

where φ(θ) is the regularization term of a penalty term, θ denotes the parameters of the model to

be learned, f(.) represents the activation function, and x(i) =
{
x(i)1 , x(i)2 , . . . , x(i)m

}
∈ Rm denotes the

training sample.
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Here, we only concentrate on the empirical risk term (loss function):

L̂(θ) =
1
n

n∑
i=1

L
(
y(i), f

(
x(i), θ

))
(2)

There are several frequently used loss functions, as has been pointed out in [24]. Regarding the
model proposed in this paper, we will utilize categorical cross-entropy loss or softmax loss since our
NN is designed for a multi-class classification problem.

2.1.2. Optimization Algorithm

Currently, in machine learning, there are various optimization algorithms for supervised learning.
In [25], a theoretical explanation and the implementation of the results of optimization algorithms
for comparing several models are presented for reference and development. A conclusion is also
reached that there is no such universal optimization algorithm for all problems. However, for the
problem of building a decoder for the DS8-PSK scheme using an NN, which could be assumed to be
a softmax classifier, AdaGrad [26] is the most suitable solution method for such a straightforward
problem. The reason is that Adagrad performs much larger updates for infrequent parameters than
frequent parameters. Moreover, the need to manually tune the learning rate of stochastic gradient
descent methods is eliminated in AdaGrad [27], and the robustness of the stochastic gradient descent
method is greatly improved by this method [28].

From [26] and [27], the AdaGrad algorithm could be expressed as the following pseudo-code.

The Adagrad algorithm

1. Require: Global learning rate ε, initial parameter θ
2. Require: Small constant δ, perhaps 10−7, for numerical stability
3. Initialize gradient accumulation variable r = 0
4. while stopping criterion not met do
5. Sample a minibatch of m examples from a training set

6.
{
x(1), . . . , x(m)

}
with corresponding targets y(i):

7. Compute gradient: g← 1
m∇θ

∑
i L

(
f
(
x(i);θ

)
, y(i)

)
8. Accumulate squared gradient: r← r + g� g
9. Compute update: ∆θ← − ε

δ+
√

r
� g . (Division and

10. square root applied element-wise)
11. Apply update: θ← θ+ ∆θ .
12. end while

From [29], the update rule of the Adagrad algorithm could also be simplified by (3) and (4):

θt+1,i = θt,i −
ε√

Gt,i + δ
.∇θiL(θ) (3)

Gt,i =
t∑
∇iL(θ)

2 (4)

where δ is the smoothing term that avoids division by zero (usually on the order of 1e−8). One can see
that the parameter θt+1,i is modified based on a ratio that involves its current gradient and the sum
over its past gradients.
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2.2. Reference Architecture of a Vehicular OCC System

Figure 2 illustrates the architecture of region-of-interest (RoI) signaling. The transmission of RoI is
beneficial when the camera Rx has the ability to capture the area in which the communication link
should be set up. The light source Tx continuously notifies the camera Rx via a known signal for
differentiating it from other unwanted light sources and other bright objects. The transmission of the
known signal is a type of light source identification, where the high-speed data stream is embedded
into the low-speed RoI stream [8]. Moreover, dual streaming of light source identification signaling
and high-speed data link is performed as a hybrid modulation.
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Figure 2. Reference architecture of the region-of-interest (RoI) signaling system employing DS8-PSK.

For the Rx, Tx light source identification and high-speed data demodulation can be time-slotted
using a single camera. Therefore, the camera Rx first detects the RoI from the identification signal and
then selects the RoI to accelerate the frame rate and achieve a high-speed data link. However, the
movement between Tx and Rx is considered, and the RoI may also change. An alternative solution is
the use of a dual-camera system in which one camera simultaneously detects the RoI, while another
camera demodulates data at a high speed based on the constantly updated RoI from a low-speed
(e.g., 30fps) camera.

A vehicular OWC/OCC system using a hybrid waveform that consists of low-rate and high-rate
data streams can mitigate the computational load on the receiver and thus reduce the processing
time. The hybrid spatial phase-shift keying (HS-PSK) single carrier is such a hybrid waveform (see [4]
and [30]). HS-PSK is a dedicated combination of spatial 2-phase shift keying (S2-PSK) and dimmable
spatial multiple-PSK (DSM-PSK). The S2-PSK data stream is generated based on the changes between
the low and high dimming levels of the DS8-PSK waveform, as illustrated in Appendix 2 of [30].
S2-PSK had been fully demonstrated with implementation results in [8]. In Section 4, we will illustrate
DSM-PSK with M = 8 for eight LEDs in each LED array before proceeding further on our proposed
decoding method based on an NN for decoding the high-rate data stream.

3. Our contributions

In this section, we will present our contributions to the development of vehicular OCC systems.
Precisely, this paper provides and investigates the principle of the blurring phenomenon on an
image and the impact of this phenomenon on the quality of a camera-based communication system.
Currently, many studies have been carried out on blurring images, and possible solutions based on
many advanced computer vision (CV) algorithms have been provided to process and recover blurry
images. However, these deblurring and denoizing algorithms are mostly based on convolutional NNs
and have already been studied extensively (see, for example, [31–37]). Moreover, to be carried out
in such a communication system, these algorithms are computationally expensive, highly complex,
and time-consuming. The reason being that most of these algorithms are specifically developed for
reconstructing a latent image from a degraded image that has been contaminated by the blurring
process, noise, and other factors. To do that, most of the existing techniques need to pass through many
post-processing steps, such as object recognition and feature extraction, which heavily rely on the input
of a clear image. The number of images required for image reconstruction could be one [31–33] or
multiple [34–37].
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In the OCC system, the data being transmitted using LED light and an image frame are captured
using a camera. Often, the LED states can be extracted from a small partition of an image frame, which
occasionally are points intensity values [8,30]. Provided that the RoI information is made available and
updated from other sources, such as low exposure camera [4,8,30,38,39], to decode high-rate data, the
receiver does not need to process the whole image or recover it when the blurring process appears.

Consequently, in this paper, we propose and design an NN-based decoder for decoding data
from the received image frame in the OCC receiver. Further, we shall provide a brief discussion on
critical factors to be considered when designing any NN model. From that point of view, we also
highlight our novel contributions on data preprocessing and input features extraction which enable
the enhancement of decoder performance.

Moreover, to the best of our knowledge, little or none has been done to analyze the performance
and measure the bit or SER of a decoder of an OCC system, including implementation and simulation,
over a hybrid channel of blur and noise.

In summary, our contributions in this paper are as follows:

• We define a novel channel model which can give the nearest approximation of the channel model
in vehicular OCC system, considering the blur effect caused by a different type of environment
condition, such as rainy, foggy, snowy, etc. The defined channel model is also designed to be able
to simulate.

• We provide the principle of the blurred phenomenon on the image: How it affects the quality of the
communication channel and the performance of the traditional decoder in an image sensor-based
communication system.

• We propose a new method of using deep learning and NN to decode the high-rate OCC waveform
(DS8-PSK): The model architecture and dataset preparation for training and performance testing.

• We prove the robustness of a new AI-based decoder on a novel channel model by analyzing the
SER performance of each decoding method. Thus, making a performance comparison between
using the traditional decoder and our proposed AI-based decoder.

4. System Architecture and Performance Analysis

4.1. Reference High-rate Modulation Scheme

4.1.1. DS8-PSK Encoder

Figure 3 shows the reference architecture of the DS8-PSK transmitter. The DS8-PSK waveform is
transmitted using a pair of light sources, which comprise a reference LED group and a data LED group.
Clusters of three bits from the input high-rate data stream are modulated based on the phase-shift value
between two transmitted waveforms, which are driven by a pair of light sources. In order to enable
the mapping of the clusters of three bits of an input bit string to a phase-shift value, the DS8-PSK duty
cycle must be separated into eight time-slots. Additionally, the number of LEDs in each light source
should be eight. The waveform generated by each LED in a light source is a square wave. Within a
light source, the (i + 1)th waveform is delayed by 1/8 of a duty cycle compared to the ith waveform.
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When transmitting Tx data, all phases of the waveforms which are generated by the reference
LED group are maintained from 0, T/8, to 7T/8, and all phases of the waveforms generated by the
data LED group are shifted in comparison with the waveforms in the first LED group based on the
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phase-shift value. The phase-shift value of a pair of light sources is called S_Phase_Shift. It is calculated
using (5) by considering the value of i, where T is the duty cycle of a LED waveform. Moreover, Table 1
shows the mapping of three bits onto the S_Phase_Shift value by considering the value of i.

S_Phase_Shi f t =
T
8

i (5)

Table 1. Mapping table from bits to S_Phase_Shift value (Adapted from [30]).

3 bits Input S_Phase_Shift/(T/8) Output

000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

DS8-PSK supports dimming in steps of 1/8 (12.5%) of a duty cycle T. The dimming level can be
calculated by the sum of ”1” states among eight time slots in a duty cycle T as expressed by (6). Thus,
the DS8-PSK waveform can support seven dimming levels from 1/8 (12.5%) and 2/8 (25%) to 7/8 (87.5%).
The data rate of each data LED group is calculated by (7). For example, with an optical clock rate and a
symbol rate of 10 kHz and 10 symbols/s, respectively, the transmission data rate that can be achieved
by a data LED group is 30 bps.

Dimming_level =
∑

“1”
8

(6)

Data_rate(bps) = (bit/symbol) × (symbol_rate) (7)

4.1.2. DS8-PSK Decoder

At a given sampling time, the Rx camera simultaneously captures two groups of light sources in
an image. Each LED group in an image will form a discrete waveform, comprising eight “1” or ”0”
states. Each set of states is called S_Phase. On the basis of the dimming levels enabled by DS8-PSK,
seven tables can be formed for decoding at seven corresponding dimming levels. In the first step of
the process of decoding a DS8-PSK waveform, the S_Phase value should be selected from the proper
S_Phase decoding table, as presented in Table 2. In the next step, the spatial phase value (S_Phase_Shift)
can be calculated based on the S_Phase value of the reference LED group and the S_Phase value of the
data LED group. Equation (8) shows how to calculate the S_Phase_Shift value, and Figure 4 shows an
example of how to determine S_Phase_Shift. When the S_Phase_Shift value is detected, the data bits
can be decoded inversely using the mapping table, which is presented in Table 1.

S_Phase_Shi f t = S_Phasedata − S_Phasere f erence. (8)

However, there is still a probability that the Rx camera may capture an unclear state of an LED
waveform, which is called bad sampling. Figure 5 illustrates the bad sampling issue which occurs
when the Rx camera captures at a transition time of an LED. In [27], we denote these unclear states as
“x” states, which will take a value between zero and one. From that, we can also re-define the S_Phase
value for all bad-sampling cases corresponding to each dimming level, as described in Table 3.
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Table 2. S_Phase value definition for the captured set of binary LED group states under dimming
condition (Adapted from [30]).

8 States Input
S_Phase
Output

Dimming
1/8

Dimming
2/8

Dimming
3/8

Dimming
4/8

Dimming
5/8

Dimming
6/8

Dimming
7/8

10000000 10000001 10000011 10000111 10001111 10011111 10111111 1
01000000 11000000 11000001 11000011 11000111 11001111 11011111 2
00100000 01100000 11100000 11100001 11100011 11100111 11101111 3
00010000 00110000 01110000 11110000 11110001 11110011 11110111 4
00001000 00011000 00111000 01111000 11111000 11111001 11111011 5
00000100 00001100 00011100 00111100 01111100 11111100 11111101 6
00000010 00000110 00001110 00011110 00111110 01111110 11111110 7
00000001 00000011 00000111 00001111 00011111 00111111 01111111 8

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 17 

detected, the data bits can be decoded inversely using the mapping table, which is presented in Table 

1. 

data referenceS_Phase_Shift = S_Phase -S_Phase .  (8) 

 

Figure 4. An illustration of sampling DS8-PSK waveform and calculate S_Phase_Shift with dimming 

level = 4/8 (50%). 

Table 2. S_Phase value definition for the captured set of binary LED group states under dimming 

condition (Adapted from [30]). 

8 states input S_Phase 

output Dimming 

1/8 

Dimming 

2/8 

Dimming 

3/8 

Dimming 

4/8 

Dimming 

5/8 

Dimming 

6/8 

Dimming 

7/8 

10000000 

01000000 

00100000 

00010000 

00001000 

00000100 

00000010 

00000001 

10000001 

11000000 

01100000 

00110000 

00011000 

00001100 

00000110 

00000011 

10000011 

11000001 

11100000 

01110000 

00111000 

00011100 

00001110 

00000111 

10000111 

11000011 

11100001 

11110000 

01111000 

00111100 

00011110 

00001111 

10001111 

11000111 

11100011 

11110001 

11111000 

01111100 

00111110 

00011111 

10011111 

11001111 

11100111 

11110011 

11111001 

11111100 

01111110 

00111111 

10111111 

11011111 

11101111 

11110111 

11111011 

11111101 

11111110 

01111111 

1 

2 

3 

4 

5 

6 

7 

8 

However, there is still a probability that the Rx camera may capture an unclear state of an LED 

waveform, which is called bad sampling. Figure 5 illustrates the bad sampling issue which occurs 

when the Rx camera captures at a transition time of an LED. In [27], we denote these unclear states 

as “x” states, which will take a value between zero and one. From that, we can also re-define the 

S_Phase value for all bad-sampling cases corresponding to each dimming level, as described in Table 

3. 

 

Reference 
Group

Data 
Group

Camera Sampling

11110000

00111100

S_Phase =  4

S_Phase =  6

S_Phase_Shift = 2 010

Figure 4. An illustration of sampling DS8-PSK waveform and calculate S_Phase_Shift with dimming
level = 4/8 (50%).Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 17 

 

Figure 5. An illustration of bad-sampling issues on the receiver (Rx) camera and the set of LED group 

states including unclear LED states (dimming level = 4/8). 

Table 3. S_Phase value definition for the captured set of unclear LED group states under dimming 

condition (Adapted from [30]). 

8 states input S_Phase 

output Dimming 

1/8 

Dimming 

2/8 

Dimming 

3/8 

Dimming 

4/8 

Dimming 

5/8 

Dimming 

6/8 

Dimming 

7/8 

xx000000 

0xx00000 

00xx0000 

000xx000 

0000xx00 

00000xx0 

000000xx 

x000000x  

1x00000x 

x1x00000 

0x1x0000 

00x1x000 

000x1x00 

0000x1x0 

00000x1x 

x00000x1 

1x0000x1 

11x0000x 

x11x0000 

0x11x000 

00x11x00 

000x11x0 

0000x11x 

x0000x11 

1x000x11 

11x000x1 

111x000x 

x111x000 

0x111x00 

00x111x0 

000x111x 

x000x111 

1x00x111 

11x00x11 

111x00x1 

1111x00x 

x1111x00 

0x1111x0 

00x1111x 

x00x1111 

1x0x1111 

11x0x111 

111x0x11 

1111x0x1 

11111x0x 

x11111x0 

0x11111x 

x0x11111 

1xx11111 

11xx1111 

111xx111 

1111xx11 

11111xx1 

111111xx 

x111111x 

xx111111 

1 

2 

3 

4 

5 

6 

7 

8 

 

4.2. Proposed System Architecture 

In this subsection, we discuss the technical issues associated with the high-rate OCC system 

proposed in this paper and the role of AI techniques in our analyzed system. Figure 6 shows the 

overall architecture of the proposed system. At first, the Tx diagram should remain the same as in 

the architecture of the vehicular RoI signaling system in [4]. The innovation in our work here mostly 

relies on the channel condition after Tx, where we considered the blurring process on LED images 

before the noise addition process. This consideration makes it more challenging for Rx to detect RoI 

and decode a high-rate data stream, notably when using the traditional method based on a linear 

mathematical model with fixed parameters. 

These technical issues lead to the design of an adaptive Rx that could be trained to self-modify 

its parameters and better reflect the correlation between real-world input data and our desired system 

output. To be more detailed, AI algorithms could be applied in Rx to enable the following two tasks: 

Multiple RoIs detection and tracking based on You Only Look Once (YOLO) framework [40] and the 

RoI information from S2-PSK scheme [8], enhancing the reliability of decoding data by using NN-

based decoder for decoding the bit stream, and AI-based error correction (AIEC) for mitigating the 

error caused by channel condition [41]. In this paper, we focus on designing and analyzing the 

 

Camera Sampling

111x000x

Unclear LED state

LED 1

LED 2

LED 3

LED 4

LED 5

LED 6

LED 7

LED 8

Figure 5. An illustration of bad-sampling issues on the receiver (Rx) camera and the set of LED group
states including unclear LED states (dimming level = 4/8).
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Table 3. S_Phase value definition for the captured set of unclear LED group states under dimming
condition (Adapted from [30]).

8 States Input
S_Phase
Output

Dimming
1/8

Dimming
2/8

Dimming
3/8

Dimming
4/8

Dimming
5/8

Dimming
6/8

Dimming
7/8

xx000000 1x00000x 1x0000x1 1x000x11 1x00x111 1x0x1111 1xx11111 1
0xx00000 x1x00000 11x0000x 11x000x1 11x00x11 11x0x111 11xx1111 2
00xx0000 0x1x0000 x11x0000 111x000x 111x00x1 111x0x11 111xx111 3
000xx000 00x1x000 0x11x000 x111x000 1111x00x 1111x0x1 1111xx11 4
0000xx00 000x1x00 00x11x00 0x111x00 x1111x00 11111x0x 11111xx1 5
00000xx0 0000x1x0 000x11x0 00x111x0 0x1111x0 x11111x0 111111xx 6
000000xx 00000x1x 0000x11x 000x111x 00x1111x 0x11111x x111111x 7
x000000x x00000x1 x0000x11 x000x111 x00x1111 x0x11111 xx111111 8

4.2. Proposed System Architecture

In this subsection, we discuss the technical issues associated with the high-rate OCC system
proposed in this paper and the role of AI techniques in our analyzed system. Figure 6 shows the
overall architecture of the proposed system. At first, the Tx diagram should remain the same as in the
architecture of the vehicular RoI signaling system in [4]. The innovation in our work here mostly relies
on the channel condition after Tx, where we considered the blurring process on LED images before the
noise addition process. This consideration makes it more challenging for Rx to detect RoI and decode
a high-rate data stream, notably when using the traditional method based on a linear mathematical
model with fixed parameters.
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Figure 6. Proposed optical camera communication (OCC) system architecture using AI algorithms for
RoI detection and decoding the DS8-PSK scheme from LED arrays.

These technical issues lead to the design of an adaptive Rx that could be trained to self-modify its
parameters and better reflect the correlation between real-world input data and our desired system
output. To be more detailed, AI algorithms could be applied in Rx to enable the following two tasks:
Multiple RoIs detection and tracking based on You Only Look Once (YOLO) framework [40] and the
RoI information from S2-PSK scheme [8], enhancing the reliability of decoding data by using NN-based
decoder for decoding the bit stream, and AI-based error correction (AIEC) for mitigating the error
caused by channel condition [41]. In this paper, we focus on designing and analyzing the performance
of an NN-based decoder to decode data which are contaminated by the blur process and noise.
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Furthermore, Figure 7 illustrates a process where an NN decoder learning from real-world input
data can adjust its parameters to minimize the bias between a predicted value and the actual S_Phase
value of a LED group based on the optimization algorithm.
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Figure 7. The principle of training a neural network (NN)-based decoder for blurry and noisy data.

In our experiments, we utilized LabVIEW to generate datasets for training an NN-based decoder
and SER evaluation for several cases. Each dataset had 104 to 105 label samples of a pair of LED groups.
We trained our model with 80% of datasets with the lowest SNR at each dimming level. The theoretical
principle of our simulation is discussed in the following subsection.

4.3. Performance Analysis

4.3.1. Blurred Image—Principle and Simulation Method

On the basis of the findings in [30–36], the received image of LEDs which is contaminated by the
blur process and noise can be obtained by a convolutional process of the blur kernel with a clear image
of LEDs, followed by the addition of noise, as follows:

y = h ∗ x + n (9)

where y is the captured image matrix, h is the blur kernel matrix, x is the original image matrix, and n
is the noise matrix. Note that all of the matrices here are two-dimensional, as the LEDs image will be
converted to a grayscale format.

In our experiment, each LED occupies a 50 × 50 area on the image. Thus, the clear image of
LEDs group is a 2D matrix with size = 100 x 200 pixels (rows x columns). The blur kernel is also a
2D square matrix, with a matrix size is 20 x 20, 40 x 40, 60 x 60 and 80 x 80 pixels. All cells in a blur
kernel will take equal values and add to one, so each cell of the blur kernel will take value of 1

blur_size2 .
The output matrix of the convolution between a blur kernel and a LEDs image will have a full size of:
(blur_size + 100− 1) × (blur_size + 200− 1). To have the final blur image in our experiments with the
same size as an original image, we make a crop on a product matrix C at the row and column index
equal to blur_size/2.

For clarity purposes, in our data simulation for training and performance testing on SER value,
firstly we collected a basic set of clean data. These basic sets should be sufficient to represent all S_Phase
values corresponding to each dimming level, which are mapped in Table 2 or Table 3. Observe that, to
use Table 3 as the basic clean set of images, the values of the two x variables need to be from zero to
one, and the sum value of the two x has to be one (to guarantee that the sum of all LED states is equal
to the dimming level). Figure 8 illustrates the whole process of contaminating the clean image set with
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blur and noise using (7) in order to create a dataset for training the neural-network-based decoder as
well as the test set for SER evaluation.
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Figure 8. Illustration of data augmentation with the blur process and noisy channel for neural
network-based decoder training and performance evaluation.

4.3.2. Performance Analysis

(a) Blur kernel size

To analyze the effect of blur kernel size on data decoding quality, we performed a simulation
analysis on several sets of images which are blurred by different blur kernel sizes. Figure 9 shows
the testing performance of decoding data from images which are non-blurry, blurred by a 40 × 40
kernel, and blurred by an 80 × 80 kernel using two different methods: A general PSK scheme decoding
technique using a matched filter and our proposed technique using an NN. The dimming level is set to
4/8 or 50% throughout this simulation.
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Figure 9. The decoding performance analysis of the matched filter and neural network-based decoder
on blurred and noisy images (difference blur kernel, AWGN channel).
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The results of this experiment reveal that our NN-based decoder improves the decoding SER
more significantly than the general decoding technique using a matched filter. Generally, our target
SER value for the feasibility of a vehicular OCC system is 10−4. We analyzed the required SNR and
achieved this target value.

In the non-blur case, to achieve an SER below 10−4, the required SNR of our NN decoding must
be improved by 2 dB, in contrast to using a matched filter. With a blur kernel size of 40 × 40, the
improvement on the SNR of the NN-based decoding is approximately 2.2 dB. However, with a blur
kernel size of 80 × 80, our decoder achieved the target SER value at an SNR of 40 dB, and the matched
filter achieved an SER of 10−3 at the same SNR value. Notably, the improvement of the required SNR
increases when the blur kernel size is increased (see Figure 9).

The difference in our data preprocessing technique is attributed to the key factor. From each
image of the transmitter LED group, we extracted central point intensities of eight LEDs in each group
and translated them to fuzzy logic states of 16 LEDs (two groups) for input features of the NN-based
decoder. For the AWGN channel feature, we used the standard deviation value δ, which can be
measured and calculated from the SNR value utilized in [8].

From Figure 7, besides the LED states and the standard deviation of Gaussian noise, we propose
new features which reflect the dimming cases and blur kernel property, calculated as follows:

fbl = dimming
kernel_area
image_area

(10)

Here, the dimming value is from 1 to 7, kernel_area is the number of pixels that the blur kernel
occupied on the LED image, and image_area is the total number of pixels on the LED image (200 × 100
pixels). It is worthy of note that the kernel area in this equation is calculated on the central point of
each LED in the LED group, which is clearly illustrated in Figures 10 and 11.
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Figure 10. The calculation of the ratio of the blur kernel area in the image with kernel size = 40 × 40.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 17 

 

Figure 10. The calculation of the ratio of the blur kernel area in the image with kernel size = 40 × 40. 

In Figure 10, we considered the case where the blur kernel size does not exceed the size of one 

LED area on the image (50 × 50 in this case). Therefore, when calculating the after-blurred intensity 

of the LED central point, the whole area of a blur kernel will be inside the cropped image of the LED 

group. 

 

Figure 11. The calculation of the ratio of the blur kernel area in the image with kernel size = 60 × 60. 

In Figure 11, the size of a blur kernel (60 × 60) exceeds the size of one LED area on the image (50 

× 50), so the exact area of the blur kernel inside a cropped image for calculating the after-blurred 

intensity of the LED central point will be part of the blur kernel. 

b) Dimming 

Dimming level is also one of the essential features that directly affect the decoding performance 

of a communication system, especially when the blur effect is occurring. This impact could be 

significant or trivial depending on the blur kernel size. More precisely, the dimming level is the ratio 

of the blur kernel size and the LED area on the image. From Figure 10, when the blur kernel area is 

within the LED area of an image, the blur effect for the central points of LEDs will occur in each LED 

illumination area. Thus, in this case, the impact of dimming level on the decoding performance is 

trivial, as illustrated in Figure 12 with a blur kernel size of 40 × 40. 

 

Blur kernel

Image area

Blur kernel inside 
cropped image

200

10
0

40

40
 

Blur kernel

Image area

10
0

200

60

60

Blur kernel inside 
cropped image

 
Figure 11. The calculation of the ratio of the blur kernel area in the image with kernel size = 60 × 60.



Appl. Sci. 2019, 9, 2242 13 of 17

In Figure 10, we considered the case where the blur kernel size does not exceed the size of one LED
area on the image (50 × 50 in this case). Therefore, when calculating the after-blurred intensity of the
LED central point, the whole area of a blur kernel will be inside the cropped image of the LED group.

In Figure 11, the size of a blur kernel (60 × 60) exceeds the size of one LED area on the image
(50 × 50), so the exact area of the blur kernel inside a cropped image for calculating the after-blurred
intensity of the LED central point will be part of the blur kernel.

(b) Dimming

Dimming level is also one of the essential features that directly affect the decoding performance of
a communication system, especially when the blur effect is occurring. This impact could be significant
or trivial depending on the blur kernel size. More precisely, the dimming level is the ratio of the blur
kernel size and the LED area on the image. From Figure 10, when the blur kernel area is within the LED
area of an image, the blur effect for the central points of LEDs will occur in each LED illumination area.
Thus, in this case, the impact of dimming level on the decoding performance is trivial, as illustrated in
Figure 12 with a blur kernel size of 40 × 40.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 17 
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Figure 12. The comparison of symbol error rate (SER) performance between an NN-based decoder and
a matched filter on different dimming cases with a blur kernel size of 40 × 40.

On the other hand, when the blur kernel size exceeds the area of one LED on the image, the blur
effect to the central point of each LED is also mixed with a part of other nearby LED illumination area.
Thus, the impact of the dimming level could be significant. Figure 13 shows the decoding performance
of our NN-based decoder for DS8-PSK, which are evaluated based on the SER value with a blur kernel
size of 60 × 60.

The similarity feature that can be realized from both cases is that there always the significant
separation of the dimming 1 and dimming 7 lines from other dimming lines. To be more detailed, these
two dimming cases always yield the worst SER performance. The reason is that the two cases have one
LED ON (or OFF in dimming 7/8) and seven other LEDs have the opposite state. Consequently, the
probability of wrongly decoding in these cases happens when the unique LED and one among other
seven similar LEDs are detected with false states. This error probability can be expressed as follows:

pe,decoding = 7p( sON|detected=OFF, sOFF|detected=ON) = 7pe
2 (11)
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With the dimming from 2/8 to 6/8, the performance lines are approximately similar. Moreover, the
theoretical error decoding probability of each dimming case could be easily calculated as follows:

Dimming 2/8 or 6/8 : pe,decoding = 2pe
2 + 5pe

4; (12)

Dimming 3/8 or 5/8 : pe,decoding = 2pe
2 + 2pe

4 + 3pe
6; (13)

Dimming 4/8 : pe,decoding = 2pe
2 + 2pe

4 + 2pe
6 + pe

8.; (14)

Notably, it can also be assumed that the portions of error probability with an exponent equal or
greater than four could be insignificant, in which case the error probability of all dimming cases from
2/8 to 6/8 could be approximately the same (≈ 2pe

2), provided that the bit error probability (pe) is equal
for all LEDs.
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With the blur kernel size within the LED area as in Figure 10, pe could be the same for all eight
LEDs within that group. However, when the blur kernel size exceeds an LED area as in Figure 11, the
pe in each LED will now be different, also depending on the LED array arrangement.

Figures 12 and 13 also show that compared with the decoding technique using a matched filter,
our proposed decoding method of using the neural network-based decoder for the DS8-PSK scheme
performed excellently well and enhanced the SER performance of all of the dimming cases considered.

5. Conclusions

In this paper, we discussed the technical challenges in vehicular OCC systems. Owing to these
challenges, many studies has been carried out to enhance the performance of the OCC to be feasible
with the vehicular communication scenario. The blurring process on an image is also a critical issue
that needs to be considered in this context. This paper focuses on analyzing the blurring phenomenon
on an image and its effects on vehicular OCC systems. In this regard, we provided a mathematical
model and a simulation method of a blurred image.

We also introduced a vehicular OCC system using a hybrid waveform of RoI signaling and a
high-rate waveform for data streaming. HS-PSK, which is a combination of the low-rate scheme S2-PSK
and the high-rate scheme DS8-PSK, was introduced in IEEE 802.15.7-2019 standard [30] as a solution
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for vehicular OCC systems, and S2-PSK was already presented in [8]. As an update, we contribute a
novel decoding method using AI concept for the existing DS8-PSK single-carrier modulation scheme.
A simulation was performed on grayscale images of the LED array which were captured and rescaled
to be all 100 × 200 in size. Our SER versus SNR simulation has not only considered the blurring level
but also concerned the AWGN effect on all images in both training and testing dataset. Also, the
performance of our proposed decoder for DS8-PSK has been compared to a previous DS8-PSK decoder
using a traditional matched filter. Finally, we provided experimental results to validate the robustness
of the proposed NN-based decoder over simulating channel conditions.
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