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Abstract: In order to effectively identify complex power quality disturbances, a power quality
disturbance classification method based on empirical wavelet transform and a multi-layer perceptron
extreme learning machine (ELM) is proposed. The model uses the discrete wavelet transform (DWT)
multi-resolution method to extract classification features. Combined with hierarchical ELM (H-ELM)
characteristics, the particle swarm optimization (PSO) single-object feature selection method is used
to select the optimal feature set. The hidden layer of the H-ELM classifier in the model is trained
by forward training. Once the previous layer is established, the weight of the current layer can be
fixed without fine-tuning. Therefore, the training speed can be accelerated, the recognition accuracy
is almost independent of the parameter adjustment, and the model has strong robustness. In order
to solve the problem of data imbalance in the actual power system, a data enhancement method is
proposed to reduce the impact of data imbalance and enhance the generalization performance of
the network. The simulation results showed that the proposed method can identify 16 disturbances
efficiently and accurately under different noise conditions, and the robustness of the proposed method
is verified by the measured data.

Keywords: classification; extreme learning machine; feature extraction; optimal feature selection;
power quality

1. Introduction

Due to the large-scale use of power electronic devices, there has been an increase in distributed power
supply grid-connected non-linear loads. Concurrently the proliferation of reactive power devices and
solid-state switches cause the power grid to frequently suffer from various interferences. All these factors
result in the emergence of various power quality disturbances [1]. Accurate positioning and identification
of power quality disturbances is the premise of power quality analysis and governance. Therefore, pattern
recognition of power quality disturbances has become a top priority [2]. The classification study of
power quality disturbance (PQD) is divided into three stages, feature extraction, feature selection [3] and
classifier design.

At present, power quality disturbance feature extraction [4–8] is mainly based on experience and
statistics. In the literature [9], the S transform is used for feature extraction, but the S-transformed
Gaussian window changes in the same direction as the frequency, which hinders its adaptability for
different signals analysis. In reference [10], the authors further applied the multi-resolution S transform
to extract the features, but the analysis of the signal was cumbersome. In another reference [6], the
feature extraction was performed by using the short-time Fourier transform, but the Fourier transform
window function is fixed, the time-frequency resolution is single, and the extracted features lack the
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multi-resolution features. Researchers [11] have proposed using discrete wavelet transform (DWT)
to overcome the fixed-resolution problem of short-time Fourier transform to analyze PQD signals.
DWT is especially suitable for automatic detection and feature extraction of PQD, especially in terms
of transient interference. Moreover, DWT has multiple resolutions, which can determine the initial
feature set more accurately.

In recent years, the vast development of data mining, machine learning algorithms and hardware
computing capabilities has offered powerful tools to various fields. From the perspective of classifier
design, decision trees (DT), probabilistic neural networks (PNN), support vector machines (SVM) and
deep neural networks (DNN) have achieved good results in PQD classification. However, the DT [12]
classification threshold setting depends on training samples, simultaneously, DT classification has poor
generalization ability; compared with DT, PNN [13] is faster and more accurate in general, but it is slower
in classifying new cases, PNN requires more storage space than DT; SVM [14,15] needs to set many
parameters and is prone to overfitting. Although the neural network model [16,17] has a high classification
accuracy, its training and classification speed is slower, and the training network requires a large amount
of data. In this study, we extend the extreme learning machine (ELM) and propose a hierarchical ELM
(H-ELM) framework for ELM-based multilayer perceptron. H-ELM has both the ability to classify small
samples and the high accuracy of deep learning classification. At the same time, the framework has a
high classification performance. When processing large amounts of data, the classification speed is fast,
and its self-learning feature extraction module can greatly prevent the model over-fitting.

Most existing studies have aimed to optimize the classifiers and feature extraction, but have
lacked consideration of the actual operating conditions of power quality disturbance data. Artificial
intelligence applications, however, should be able to consider actual grid data characteristics. There
is a data imbalance in the power quality disturbance data collected by the power grid, and there are
great differences even with the same type of interference. Most of the existing research is focused
on the balanced data of simulation, while they do not pay attention to the above problem. In this
paper, the data enhancement method is used to deal with the imbalance of data and to achieve data
balance. For the disturbance difference, the H-ELM classifier with strong generalization ability is
used for classification. For the first time, the method is applied to the classification of power quality
disturbances. We propose to use a power quality disturbance recognition method based on DWT and a
multilayer perceptron extreme learning machine. The major contributions of this paper are as follows:

(1) For the first time, the H-ELM algorithm is applied to the PQD classification. A comprehensive
experimental exploration of H-ELM for PQD classification is performed.

(2) The feature selection algorithm is combined with the H-ELM algorithm to improve the
classification accuracy and speed. The simulation results show that the method is more accurate than
the traditional methods in classification accuracy. Both speed and the ability to process big data have
improved significantly.

(3) In this paper, we consider the problem of PQD data imbalance, and utilize data enhancement
to solve the data imbalance. Simultaneously, the paper also uses the data enhancement method to
expand the data set to solve the problem of insufficient measured tag data.

The rest of the paper is organized in the following sequence. Section 2 describes power quality
disturbance feature extraction. Section 3 discusses the classification of power quality disturbance based
on H-ELM. In Section 4, a simulation experiment verifies the feasibility of the algorithm. Section 5 uses
the measurement data to verify the feasibility of the algorithm. Section 6 concludes the paper.

2. Power Quality Disturbance Feature Extraction

2.1. Feature Extraction Based on Discrete Wavelet Transform

Wavelet transform [18] is used to analyze stationary and non-stationary signals in various scenes,
which can analyze local discontinuities in the signal. Mathematically, continuous wavelet transform
(CWT) for a continuous signal with respect to the wavelet function ψ(t) is given by (1).



Appl. Sci. 2019, 9, 2315 3 of 16

fCWT(a, b) =
1
√

a

∫
∞

−∞

f (t)ψ(
t− b

a
)dt a, b ∈ R, a , 0 (1)

Parameters a and b represent scale and conversion parameters, f (t) represents the original signal.
In the practical application of CWT, there is redundant information that is not suitable for computer
analysis. The study [11] found that DWT is more suitable for the analysis of PQDs, as shown in
Equation (2).

gDWT(m, n) =
1
√

a0m

∑
k

f (k)ψ(
n− kb0a0

m

a0m ) (2)

The scaling and translation parameters are replaced by functions of m and n integers, i.e., a = a0
m

and b = kb0a0
m, respectively, whereas f (k) is the sequence of discrete points of the continuous time

signal f (t).
In the feature extraction process, the PQD signal is decomposed using a discrete wavelet transform.

This wavelet analysis is actually a measure of the similarity between the mother wavelet and the input
signal. The correct choice of wavelet master function is one of the main problems in the execution
of DWT applications. In this paper, the widely used Daubechies4 wavelet filter is used as a mother
wavelet [19]. The number of decomposition levels l is also very important. Choosing a higher l will
bring more information into the system. In the text, the PQD signal is decomposed into eight levels for
feature extraction.

The statistical parameters that are used for the feature extraction were obtained from the
literature [17]. The seven statistical features are entropy (Ent), standard deviation (σ), mean (µ),
kurtosis (KT), skewness (SK), root mean square (RMS) and range (RG). These statistical feature values
are calculated using the mathematical formulas of Equations (3) through (9). The power quality
waveform is decomposed into eight levels, providing eight detail coefficients and one approximation
coefficient, and the total features obtained is 63, which is done for each PQD in the 4500 × 1280 signal
matrix. Finally, a 4500 × 63 feature matrix is obtained and normalized for classification. The original
feature set according to DWT statistics is shown in Table 1.

Table 1. Original feature set. Standard deviation (σ), mean (µ), root mean square (RMS), kurtosis (KT),
entropy (Ent), skewness (SK) and range (RG).

Wavelet Coefficients
Statistical Features

µ σ RMS KT Ent SK RG

D1 µ_1 σ_1 RMS_1 KT_1 Ent_1 SK_1 RG_1
D2 µ_2 σ_2 RMS_2 KT_2 Ent_2 SK_2 RG_2
D3 µ_3 σ_3 RMS_3 KT_3 Ent_3 SK_3 RG_3
D4 µ_4 σ_4 RMS_4 KT_4 Ent_4 SK_4 RG_4
D5 µ_5 σ_5 RMS_5 KT_5 Ent_5 SK_5 RG_5
D6 µ_6 σ_6 RMS_6 KT_6 Ent_6 SK_6 RG_6
D7 µ_7 σ_7 RMS_7 KT_7 Ent_7 SK_7 RG_7
D8 µ_8 σ_8 RMS_8 KT_8 Ent_8 SK_8 RG_8
A8 µ_9 σ_9 RMS_9 KT_9 Ent_9 SK_9 RG_9

µ_1 represents the mean feature provided by the first layer of detail coefficients, σ_1 represents
the standard deviation feature provided by the first layer of detail coefficients, RMS_1 represents
the root mean square feature provided by the first layer of detail coefficients, KT_1 represents the
kurtosis feature provided by the first layer of detail coefficients, Ent_1 represents the entropy feature
provided by the first layer of detail coefficients, SK_1 represents the skewness feature provided by the
first layer of detail coefficients and RG_1 represents the range feature provided by the first layer of
detail coefficients.

Rang:
RGi = Max

(
Ai j, Di j

)
−Min

(
Ai j, Di j

)
(3)
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Entropy:

Enti = −
∑N

j=1

{
A2

i j log
(
A2

i j

)
, D2

i j log
(
D2

i j

)}
(4)

Standard deviation:

σi =
( 1

N − 1

∑N

j=1

{(
Ai j − µi

)2
,
(
Di j − µi

)2
}) 1

2
(5)

Mean:
µi =

1
N

∑N

j=1

(
Ai j, Di j

)
(6)

Kurtosis:

KTi =

E
(
Ai j − µi

)4

σ4
i

,
E
(
Di j − µi

)4

σ4
i

 (7)

Skewness:

SKi =

E
(
Ai j − µi

)3

σ3
i

,
E
(
Di j − µi

)3

σ3
i

 (8)

Root mean square:

RMSi =
( 1

N

∑N

j=1

(
Ai j

2
)
,
(
Di j

2
)) 1

2
(9)

where i = 1, 2, . . . , l represents the number of wavelet decomposition at level l. Here N is the number
of coefficients in each decomposed data. The PQD waveforms are decomposed into up to eight levels
which provide eight detail coefficients (D1, D2, D3, D4, D5, D6, D7, D8) and one approximation
coefficient (A8).

2.2. Feature Selection to Select the Best Feature

The combination of different features has different effects on the classifier. In order to verify that
the proposed feature is an effective feature and find the best feature combination, the existing research
adopts the multi-objective feature selection method. The H-ELM classifier proposed in this paper has a
high calculation speed, and the difference in the number of classification features is less than 10, which
has little effect on the classification speed of the classifier.

In this paper, the particle swarm optimization algorithm is used to optimize the error of the classifier
to select the best feature combination. The features selected by PSO-SVM meet the classification accuracy
requirements of H-ELM. The main idea of PSO is to select the subset as a search optimization problem,
generate different combinations, evaluate the combination and compare with other combinations.
This makes the selection of the best feature subset an optimization problem. The algorithm used in this
paper uses SVM classification accuracy as the objective function as shown in Equation (10), where ai is
the SVM classification accuracy.

Q f itness = ai (10)

For the fitness definition, the classification accuracy a, representing the percentage of the example
of the correct classification, is evaluated by Equation (11). The number of examples of correct and
incorrect classifications is represented by c and u, respectively.

a =
c

c + u
× 100% (11)

The classification accuracy of SVM is the objective function, the classification error is the lowest,
and the most suitable feature combination is selected. The best feature combination selected by the
PSO single-objective optimization feature selection is shown in Table 2.
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Table 2. Particle swarm optimization (PSO) selected best feature set.

Best Feature Set

20 dB µ_1, µ_3, µ_4, µ_6, σ_1, σ_4, σ_6, σ_7,
RMS_3,RMS_5,RMS_6,RMS_7,RMS_8,KT_7,Ent2,Ent_7,SK_4,RG_2,RG_3

30 dB µ_1, µ_3, σ_2, σ_8, σ_9, RMS_1,
RMS_8,RMS_9,KT_5,Ent_1,Ent_5,Ent_9,SK_9,RG_1,RG_3,RG_4,RG_5,RG_6,RG_9

40 dB µ_4, µ_5,RMS_1,RMS_4,RMS_6,RMS_7,RMS_8,RMS_9,KT_4,Ent_8,RG_2,RG_6,RG_8
50 dB µ_2, µ_3, µ_5, µ_8, σ_1, σ_3, σ_4, σ_6, σ_8, σ_9,RMS_7,RMS_9,KT_5,KT_7,KT_8, Ent_7,RG_2

The feature selection algorithm used in this paper is offline. The feature selection is first performed
to find the best combination of features. Then, the feature extraction is performed for the feature
quantity to be extracted with the selected best feature, which reduces the computational complexity of
the feature extraction and the running time of the algorithm. The selected features are related to the
data set and related to the parameter selection of the feature selection, but a common result is that the
feature combinations selected by this method have better classification accuracy.

3. Classification of Power Quality Disturbance Based on H-ELM

The essence of machine learning is to establish a network with specific weights and deviations,
by using given input data and target values, and to classify them. After the arrival of new data,
the output category can be judged through the trained network. The H-ELM framework [20] is a
multilayer perceptron extreme learning machine that consists of two independent phases: (1) an
unsupervised hierarchical feature representation that automatically extracts features from the input
data and the original input features are converted to a higher latitude representation, and (2) the
supervised feature classification. Because ELM combines the entire network through feature extraction
and classification, it does not need to fine-tune the parameters, and can adapt to the network through
the sparse self-encoder, so it has the advantages of fast training speed and high classification accuracy.

3.1. ELM Learning Algorithm

ELM can be built using randomly initialized hidden layer nodes, given power quality disturbance
data

{
(xi, ti)

∣∣∣xi ∈ Rd, ti ∈ Rm, i = 1, . . . , N
}
, where xi is the training data vector, ti represents the type of

each power quality disturbance data, and L represents the number of hidden layer nodes. ELM theory
seeks minimal training errors as shown in Equation (12).

Minimize :
∣∣∣∣∣∣β∣∣∣|σ1

u + λ
∣∣∣∣∣∣Hβ− T

∣∣∣|σ2
v (12)

where σ1 > 0, σ2 > 0, u, v = 0, ( 1
2 ), 1, 2, . . . ,+∞, H is the output matrix of the hidden layer as shown

in Equation (13) and β is the output weight. λ is a user-specified parameter and provides a tradeoff

between the distance of the separating margin and the training error [21].

H =


h(x 1)

...
h(x N)

 =


h1(x1) · · · hL(x1)
...

...
...

h1(xN) · · · hL(xN)

 (13)

T is the training data tag matrix, as shown in Equation (14):

T =


tT
1
...

tT
N

 =


t11 · · · t1m
...

...
...

tN1 · · · tNm

 (14)

The ELM training algorithm can be divided into the following three steps:
(1) Randomly assign hidden layer node parameters;
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(2) Calculate the hidden layer output matrix H;
(3) Obtain an output weight vector such as Equation (15).

β = H†T (15)

where T = [t1, . . . , tN]
T, H† is the generalized inverse matrix of Moore–Penrose of matrix H. According

to the ridge regression theory, it was suggested that a positive value (1/λ) is added to the diagonal of
HHT in the calculation of the output weights β. To improve the robustness of ELM, the output weight
vector can be obtained using Equation (16).

β = (
1
λ
+ HHT)

−1
HTT (16)

The output function of ELM is shown in Equation (17):

f (x) = h(x)β = h(x)(
1
λ
+ HHT)

−1
HTT (17)

3.2. ELM-Based Sparse Autoencoder

The ELM universal approximation function is used in the design of automatic encoders, and
sparse constraints are added to the automatic encoder optimization [20]. The optimization model of
the ELM sparse autoencoder can be expressed as Equation (18):

Oβ = argmin
β

{∣∣∣∣∣∣Hβ−X
∣∣∣∣∣∣2+∣∣∣∣∣∣β∣∣∣∣∣∣

`1

}
(18)

where X represents the input data, H represents the random map output, and β is the hidden layer
weight to be obtained. In order to generate more sparse and compact features of the inputs, `1
optimization is performed for the establishment of ELM [20].

The problem in (17) is solved by a fast iteration shrinkage-thresholding algorithm. The implementation
process is as follows:

(1) Calculate the Lipschitz constant γ of the gradient of the smooth convex function ∇p.
(2) Iterate through y1 = β0 ∈ Rn, t1 = 1 as an initialization point. For j( j ≥ 1) the following holds.
1. β j = Sγ(y j), where Sγ is the Formula (19).

Sγ = argmin
β

{
γ

2
||β− (β j−1 −

1
γ
∇p(β( j− 1))||2 + q(β)

}
(19)

2. t j+1 =
1+

√
1+4t j

2

2

3. y j+1 = β j + (
t j−1
t j+1

)(β j − β j−1)

3.3. H-ELM Framework

H-ELM is constructed in multiple layers. As shown in Figure 1, unlike the greedy layered training
of the traditional deep learning framework, it can be seen that the H-ELM training framework is
structurally divided into two separate phases: (1) unsupervised hierarchical feature representation
and (2) supervised feature classification [20].

The autoencoder in the H-ELM framework is a self-encoder with sparse constraints.
The implementation of the ELM sparse autoencoder is shown in Figure 1b above. It can be seen
from the figure that unlike the automatic encoder in deep learning, the input weight of the ELM
sparse autoencoder is established by searching the loop path from the random space. ELM theory
demonstrates that ELM training using stochastic mapped input weights can approximate any input
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data. That is to say, if the automatic encoder is trained according to the concept of ELM, once the
automatic encoder is initialized, the parameters do not need to be fine-tuned.
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3.4. Classification Process

The classification process of this method is shown in Figure 2. The classification prediction model
used in this paper is an algorithm based on hierarchical learning. The main trend of hierarchical
learning is to conduct research based on deep learning. Deep learning training is challenging, requires
a lot of data, and requires pre-processing data, therefore, it is difficult to apply to the classification
of power quality disturbances. The H-ELM framework used in this paper is a hierarchical structure,
mainly consisting of two parts: “feature extraction and supervised feature classification”. The H-ELM
algorithm has a more compact and more meaningful feature representation than the original ELM.
Utilizing the advantages of ELM random feature mapping, the hierarchical coding output is randomly
projected before the final decision, so that better classification results can be achieved, and the learning
speed is faster. The hidden layer of the H-ELM framework is trained in the forward training mode.
Once the previous layer is established, the weight of the current layer can be fixed without fine-tuning.
Therefore, the proposed algorithm has high accuracy and a fast classification performance.
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4. Simulation Analysis and Result Verification

The proposed method uses the parametric equations of 15 PQD signals, including pure sine waves,
to evaluate the classification performance of the proposed algorithm. The PQD simulation data set
consists of nine single types, namely pure sinusoidal waveforms, sag, swell, interrupt, harmonics,
Oscillatory transient, flicker, notch and spikes. The six complex PQD signals include sag with
harmonics, swell with harmonics, interruption with harmonics, harmonic with flicker, flicker with sag
and flicker with swell. The parameter variation of the power quality disturbance equation conforms
to the parametric equation of the Institute of Electrical and Electronics Engineers 1159(IEEE-1159)
standard [22].

The power quality disturbance signal specifications are: amplitude 1pu, duration t = 0.2 s, total
period T = 10, total sampling point 1280 and sampling frequency 6.4 kHz. Each power quality
disturbance type simulation generates 300 signals, to give a total of 4500 signals. These signals are
stored in a matrix of size 4500 × 1280. A similar matrix increases the Gaussian white noise ratio by
50, 40, 30 and 20 dB at the signal-to-noise ratio (SNR). Part of the simulation signal of power quality
disturbance is shown in Figure 3.

An important feature of the multilayer perceptron extreme learning machine is that the classification
speed is fast and the algorithm runs for a short time. Compared with the machine learning algorithm,
the algorithm has the advantages of high classification accuracy and fast classification speed. In order
to verify that the multilayer perceptron also has this characteristic in the classification of power quality
disturbance, this paper compares the speed of classification of the same dataset by three algorithms.
Table 3 shows the total running time of the three algorithms. All the simulations were accomplished
in MATLAB 2016a software on a laptop with Intel Core i5-M-520 processor at 2.40 GHz clock speed



Appl. Sci. 2019, 9, 2315 9 of 16

and 8 GB of RAM [18]. As is shown in Table 3, the operating speed of H-ELM is superior to the
PNN algorithm.
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Table 3. Algorithm running time comparison. SNR, signal-to-noise ratio; PNN, probabilistic neural networks.

SNR PNN(s) H-ELM(s) PSO-H-ELM(s)

20 dB 3.106 0.864 0.325
30 dB 3.134 0.863 0.330
40 dB 3.109 0.738 0.338
50 dB 3.107 0.953 0.283

In order to verify the classification effect of the multilayer perceptron extreme learning machine,
we compared it with five other existing methods. The comparison results are shown in Table 4 and
Figure 4. It can be seen intuitively from Figure 4 that our method has a good classification effect
compared to other methods. Using the original data set classification, the H-ELM algorithm has a
higher classification performance than the other three machine learning algorithms. When using the
best feature set for classification, under the 20 dB signal-to-noise ratio, the classification effect of the
algorithm is significantly improved. The principal component analysis and support vector machines
(PCASVM) algorithm also has good PQD recognition accuracy, but its training speed is slow, for the
same amount of data, and its operating speed is 30 times that of the H-ELM algorithm. Therefore, the
high performance of the H-ELM can be seen.

Table 4. Comparison of classification accuracy of five methods.

Classifier 50 dB(%) 40 dB(%) 30 dB(%) 20 dB(%)

PCASVM 98.30 97.40 96.30 95.00
ELM 98.40 97.23 94.90 91.32
PNN 94.67 94.32 93.64 91.00

H-ELM 98.10 97.60 96.27 93.20
PSO-H-ELM 98.60 98.10 97.67 95.20
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Table 4 shows that the classification performance of the H-ELM algorithm is best when using the
best feature set selected by PSO for classification. The performance of the pure H-ELM algorithm is better
than that of other machine learning algorithms for the classification of power quality disturbances.
It can be clearly seen from the results of the first four sets of experiments that the classification
performance of the H-ELM classifier is better under the same data volume and the same feature
set. Compared with the existing methods, the classification effect of the model proposed in this
paper is obviously improved under various signal-to-noise ratios. It is proved that H-ELM has better
classification performance for power quality disturbance data.

In the simulation analysis, in order to verify that the features selected by the PSO feature selection
promoted the classification results, the experiments using the original 63 features for classification
and the classification using the best feature set were analyzed. The experimental results are shown in
Table 5. From the four aspects of training time, training accuracy, test time and test accuracy, it can
be clearly seen that the features determined by the PSO feature selection are used for classification,
which has better classification accuracy and faster classification speed. Feature selection is only the
determination phase of the initial feature, and is not embedded in the program. Just like the expert
determines the feature, it only implements this process through the optimization method, so as to get a
better classification effect.

Table 5. Comparison between the PSO-H-ELM and H-ELM algorithms.

SNR Classifier Train Time (s) Train Accuracy (%) Test Time (s) Test Accuracy (%)

20 dB
PSO-H-ELM 0.155 95.55 0.150 95.20

H-ELM 0.204 95.54 0.164 93.20

30 dB
PSO-H-ELM 0.101 97.57 0.140 97.67

H-ELM 0.194 97.25 0.144 96.27

40 dB
PSO-H-ELM 0.120 98.61 0.163 98.10

H-ELM 0.202 98.53 0.170 97.60

50 dB
PSO-H-ELM 0.169 99.24 0.120 98.60

H-ELM 0.200 98.93 0.115 98.10

Figure 5 shows a comparison of training and test times for categorizing the best features selected
using the PSO feature selection and classifying them with the original feature set. It can be seen from
the figure that the classification is performed using the best feature set, and the training speed and test
speed are significantly better than the original features.
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Figure 6 shows a comparison of the classification accuracy using the best feature set and the
original feature set. As can be seen from the figure, the blue histogram is significantly higher than the
orange histogram. It shows that the classifier’s classification accuracy is significantly improved after
using the best feature set.
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Table 6 shows the classification accuracy rate of each disturbance, and that the overall disturbance
classification accuracy rate is above 95%, which satisfies the actual classification needs. The misclassified
samples are mainly concentrated in the 20 dB signal, with and without harmonic disturbance, indicating
that high noise has greater interference with the identification of signal harmonics.
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Table 6. Classification effect of each disturbance type of PSO-H-ELM.

Disturbance Type
Classification Accuracy (%)

50 dB 40 dB 30 dB 20 dB

Normal 100 100 100 98
Sag 96 96 94 94

Swell 88 86 88 90
Interruption 100 100 100 100
Harmonics 100 100 100 100

Oscillatory transient 100 100 100 100
Spike 100 100 100 100

Flicker 96 94 96 84
Periodic notch 100 100 100 100

Sag with harmonics 98 98 92 82
Swell with harmonics 100 100 100 98

Interruption with harmonics 100 100 100 100
Flicker with Harmonic 100 100 100 100

Flicker with sag 98 98 96 84
Flicker with swell 100 100 100 100

5. Real Signal Classification Verification

To further verify the feasibility of the proposed method in the actual signal, in this section, a
set of actual signals is used to test the effectiveness of the H-ELM. The data set is provided by the
IEEE Power Engineering Society database [23,24] for PQD classification. This data set has been
tested in reference [25] for power quality classification effects to meet the needs of the experiment.
The sampling rate of the supplied signal is 256 points per cycle. Each signal has a length of 1536.
The obtained waveforms are determined label by label, and the data set is processed according to the
data enhancement method. The actual disturbance signal is shown in Figure 7.
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The actual power quality disturbance data has an unbalanced feature. For example, the type of
disturbance of voltage sag accounts for more than 80% of all disturbances. There is no relevant research
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on this problem. This paper proposes a data enhancement method to preprocess data. In computer
vision, data enhancement is often used to increase the number of training samples to enhance the
generalization performance of the classifier. In this paper, for the problem of data imbalance, the data
enhancement method is adopted, the amount of data is equalized and the data enhancement operation
is performed for disturbances such as flicker with less data volume. The data enhancement operation
mainly adopts random cropping, moderately increases random noise, reverses the signal, etc., and
performs random extraction verification on all the operation signals to ensure that the data after data
enhancement belongs to the disturbance type data. The data enhancement operation is shown in
Figure 8.
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Figure 8. Data enhancement operation diagram.

The measured data set is classified and verified according to the method in this paper. The optimal
feature combination and classifier parameters are shown in Table 7.

Table 7. The H-ELM algorithm parameter setting.

Parameter Numerical Value

Best feature set µ_3, µ_7,σ_2, σ_7,RMS_4,RMS_6,KT_6,KT_7,KT_9,Ent_2,
Ent_6,Ent_7,Ent_8,RG_1

H-ELM hidden layer node N1=N2=10, N3=290
L2 penalty P on the last layer of ELM 2ˆ-30

Scale factor S 0.8

We verified the real signals by five methods. The classification accuracy rate and algorithm running
time of the five methods are shown in Table 8. It can be seen from the table that the proposed method
achieves better classification performance on the measured data. Since the amount of real signal data is
small, the samples of various types of signals are small, and even after the data enhancement operation,
the amount of data is only 1000 sets. Therefore, the improvement of classification performance by the
best features is affected. Since the real signal is more complex than the simulated signal, the real signal
accuracy is reduced compared to the simulated signal.
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Table 8. Comparison of classification accuracy and algorithm running time of five methods.

Classifier Classification Accuracy (%) Algorithm Runtime (s)

PCASVM 83.94 1.28
ELM 89.73 0.34
PNN 84.93 0.98

H-ELM 92.56 0.12
PSO-H-ELM 93.01 0.08

The best feature set is selected by the feature selection algorithm. The disturbance classification
results obtained by the method of the present invention are shown in Table 9. There is no data imbalance
treatment, the classification accuracy is 92% after the data enhancement process, the average recognition
accuracy of the disturbance is 93% after eliminating the influence of data imbalance. The results of the
real data classification are lower than the simulation results. The main reason is that the training data is
less, the data contains multiple disturbances, and the labeling is inaccurate. In general, the method has
a good classification effect and can be adapted to the disturbance classification in the actual power grid.

Table 9. True signal classification result.

Signal Type True Signal Accuracy (%)

Sag 91.6
Swell 93.1

Harmonics 92.0
Oscillatory transient 98.4
Waveform distortion 88.9

Overall accuracy 93.0

6. Conclusions

Aiming at the problem of identifying complex power quality disturbances, a method for fast and
accurate identification of power quality complex disturbance based on DWT and H-ELM is proposed.
The simulation results of the example are as follows.

(1) The feature extraction is performed by DWT, the feature selection is performed by the PSO
feature selection algorithm, and the feature combination with the best classification performance is
selected. Based on the selected classification features, a network with good generalization performance
can be trained.

(2) The data enhancement method is used to deal with the problems of data imbalance in the
power quality disturbance data and the small amount of data, and to enhance the generalization ability
of the network. H-ELM is faster than traditional machine learning algorithms, it can extract more
important information from features, and its generalization ability is stronger.

(3) Compared with the deep learning algorithm, the advantage of this method is that it adopts a
lightweight structure that combines the ability to process big data and maintain rapidity. Compared
with most machine learning methods, the training speed of this method and the ability to process a
large data volume is outstanding. It can be used for offline large data volume processing as well as for
online analysis.

In the area of disturbance identification of power quality, how to build the local knowledge
map of power systems, analyze the underlying data, and realize streaming online processing is the
direction needed to improve the real-time classification of power quality disturbance, which needs
further research.
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