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Abstract: The unavoidable vacancy defects dispersed throughout the entire pristine graphene tailor
to the integrity of the lattice structure and thereby have complicated impacts on the mechanical
and thermal properties of graphene. In order to analyze the influence of vacancy defects on the
extraordinary thermal conductivity of graphene, three typical kinds of vacancy defects—namely
center concentrated, periodic, and random distributed vacancy defects—are compared and discussed.
In the steady-state thermal conduction, the finite element method (FEM) is performed to calculate
the total thermal energy and temperature field. The equivalent coefficient of thermal conductivity
is derived from thermal energy, amount of vacancy defects, and boundary condition. The chirality
in graphene is discussed by the location of its heat source. Moreover, the Monte Carlo simulation
is applied to propagate the uncertainty of random vacancy defects in the finite element model of
pristine graphene. In this paper, we provide the robustness to defend the impacts of vacancy defects
on thermal conduction and the fluctuation and divergence caused by a certain number of random
vacancy defects.
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1. Introduction

The capability of heat conduction in materials is rooted in its atomic structure. Carbon materials
form a variety of allotropes. The allotropes of carbon have completely different orders of magnitude in
thermal conductivity, from 0.01 W/mK in amorphous carbon to 2000 W/mK in diamond or graphene in
room temperature [1,2]. The mechanical exfoliation of graphene [3] and discovery of its extraordinary
electrical conduction [4–6] provide strong evidence of thermal transportation in two-dimensional
(2D) crystals.

Thermal conductivity is one of the essential issues in the exploration and development of
optoelectronic and photonic devices. In the integrated circuits and three-dimensional electronics,
thermoelectric energy conversion strongly suppressed thermal conductivity [7]. From the measurement
of optothermal Raman in suspended graphene from mechanical exfoliation, the value of thermal
conductivity is found to exceed 3000 W/mK [8–10]. The phonon mean-free path was estimated to be
775 nm near room temperature [11]. For high-quality chemical vapor deposited (CVD) graphene, the
thermal conductivity is also beyond 2500 W/mK at 350 K and is as high as 1400 W/mK at 500 K [12].
When the environmental temperature is at 600 K, the thermal conductivity becomes 630 W/mK for
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suspended graphene [13]. The range in the interval from 1500–5000 W/mK is reported for the thermal
conductivity of suspended graphene [14].

In the investigation process, theoretical and analytical methods are available alternatives of
experimental measurements. The theoretical results obtained for heat conduction can be tested
and compared with the experiments of high-quality suspended graphene with few layers [15–18].
Previously, graphene’s thermal conductivity was computed using relaxation-time approximation
(RTA) [19]. Based on the Klemens theory, thermal conductivity is predicted with divergence in layer,
grain size, and substrate [20,21]. In addition, the molecular dynamics (MD) simulation also provided
9000 W/mK for graphene near room temperature [22]. Heat conduction in graphene nanoribbons
with uncertain length, existence of edge roughness, and unavoidable defect concentration has Tersoff

and Brenner potential, [23–28]. The rough edges in graphene contribute to the reduction of thermal
conductivity by orders of magnitude [29,30]. Usually, theoretical description of thermal properties of
graphene closely corresponds to that of carbon nanotubes [31].

The extraordinary thermal conductivity of graphene is confirmed both in experimental
measurements and theoretical analysis results. However, there are still challenging issues.
First, whether the contribution and importance of Z axial acoustic phonons in graphene is
negligible [32,33] or dominant, it is still not clearly defined. Second, thermal conductivity non-linearly
depends on the temperature [34], which is proofed in the experimental [35] and theoretical [36] data.
Third, the optical absorption under the conditions of the experiment [37] leads to underestimated
thermal conductivity. It is hard to compare directly its accuracy of Raman optothermal technique with
that of the thermal-bridge or 3-ω techniques [38–41]. Lastly, the parameters of geometrical properties
are ambiguous and the defects are difficult to precisely define. Based on the inter-atomic potential [42],
the graphene thickness equals 0.34 nm, but based on Young’s modulus and tensile strength [43], the
thickness ranges from 0.06–0.69 nm. The inevitable vacancy defects dispersed throughout the entire
pristine graphene tailor to the integrity of the lattice structure and impact the thermal conductivity
of graphene. It is necessary to quantitatively analyze the influence of vacancy defects in graphene’s
thermal conduction.

In this paper, three typical kinds of vacancy defects—namely center concentrated, periodic, and
random distributed vacancy defects—are introduced in the pristine graphene. The chirality of graphene
is considered by using the boundary condition as a location of its heat source. In steady-state thermal
conduction, the finite element method (FEM) is performed to calculate the total thermal energy and
temperature field in graphene. The equivalent coefficient of thermal conductivity is derived from
thermal energy, amount of vacancy defects, and boundary condition. Moreover, the Monte Carlo
simulation is applied to propagate the uncertainty of random vacancy defects in the finite element
model of pristine graphene. The results are discussed and analyzed comprehensively.

2. Materials and Methods

Heat is transferred through two different modes: elastic crystal lattice vibrations of atoms or
molecules and collision between particles caused by free electrons movability. The impurities and
defects cause structure heterogeneity, destroy the continuums, and bring about electron scattering.
The thermal conductivity sharply declines in the appearance of impurities and defects. For quantitative
analysis of the impacts of vacancy defects on graphene, the finite element method is applied in the
steady-state thermal conduction.

2.1. Steady-State Thermal Conduction

Consider that the volume of an element is and the quantity of the heat entering in time δτ is δQx.
According to Fourier’s heat conduction equation, the temperature T is a function of x, y, z, and time τ.
The unidirectional heat flow can be written as:

δQx = −Kx(δyδz)
∂T
∂x
δτ (1)
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where Kx is the conductivity constant in the x direction and the lengths of the volume elements in y
and z direction are represented as δy, δz respectively. The leaving quantity of heat can be expressed by
Taylor’s series as:

δQx+δx = δQx +
∂
∂x

(δQx)δx + ε (2)

Excluding the high order terms ε, the net heat inflow in x direction can be approximately computed as:

δQx − δQx+δx = − ∂
∂x

[
Kx(δyδz) ∂T

∂x δτ
]
δx

= −
[
∂
∂x

(
Kx

∂T
∂x

)]
δVδτ

(3)

where δV = δxδyδz is the volume. According to the heat inflow in x direction, the sum of the net
amount of heat stored due to difference in conduction heat flow can be expressed as:

δQ =

[
∂
∂x

(
Kx
∂T
∂x

)
+
∂
zy

(
Ky
∂T
∂y

)
+
∂
∂z

(
Kz
∂T
∂z

)]
δVδτ (4)

Ky, Kz are the conductivity constants in the y and z direction, respectively. Besides, the heat
generation in the element at a rate of per unit volume per unit time is introduced as qg:

∂
∂x

(
Kx
∂T
∂x

)
+

∂
∂y

(
Ky
∂T
∂y

)
+
∂
∂z

(
Kz
∂T
∂z

)
+ qg = ρc

∂T
∂τ

(5)

For homogeneous materials, Kx = Ky = Kz. When there is no heat generation qg = 0, the above
equation is simplified as:

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 =

1
α
∂T
∂τ

(6)

For the steady-state heat conduction, the derivative of the temperature with time is zero. Then,
the heat conduction equation can be written as:

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 +

qg

K
= 0 (7)

2.2. Thermal Conductivity

The thermal conductivity in matter is one of the natural properties. For graphene, optothermal
Raman, and electrical measurements are performed to test the thermal conductivity of suspended
graphene layers from exfoliation or chemical vapor deposition (CVD). Besides, MD numerical simulation
and analytical methods based on the Boltzmann transport equation in valence force field are explored
to determine the precise value of thermal conductivity. In Table 1, the ranges of thermal conductivity
for graphene are listed from different experimental tests and simulation methods. Large deviation
is demonstrated for thermal conductivity from 600 W/mK to 10000 W/Mk. However, the results of
Nika [21,36], Savin [25] and Lindsay [31] are more approximated consistent to the measurements
results of Balandin [8], Ghosh [10], Jaugeras [14], and Cai [12] than the result of MD [29], as shown in
Figure 1. Therefore, the values of thermal conductivity for graphene are settled in the reported range
of Balandin [8] and Nika [21].

The heat in graphene is mostly carried by acoustic phonons rather than by electrons. The heat
flux along a graphene flake can be computed as [21]:

→

W =
∑
s,
→
q

→
v (s,

→
q )}ωs(

→
q )N(

→
q ,ωs(

→
q ))

=
∑
s,
→
q

→
v (s,

→
q )}ωs(

→
q )n(

→
q ,ωs)

(8)
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The above equation can be used to calculate the thermal conductivity with the actual dependence
on the phonon frequency ωs(

→
q ), the phonon velocity

→
v (s,

→
q ), and the number of the phonon with the

certain frequencies n(
→
q ,ωs).

→
v}ω is the energy carried by one phonon and N(ω,

→
q ) is the number of

phonons in the heat flux. From the macroscopic definition:

Wα = −καβ(∇T)βhLxLy (9)

where Lx = d is the width of graphene flake, Ly is the sample length, and h is supposed to be 0.35 nm
as the thickness of graphene. The thermal conductivity tensor καβ in Equation (9) is expressed as:

καβ =
1

hLxLy

∑
s,
→
q

τtot(s,
→
q )vα(s,

→
q )vβ(s,

→
q )
∂N0(ωs)

∂T
}ωs(

→
q ) (10)

where τtot is the combined phonon relaxation rate in graphene. Moreover, α, β are the subscripts that
represent the elements in the matrix of thermal conductivity tensor. Similarly, the diagonal element of
the thermal conductivity tensor is computed as:

καα =
1

hLxLy

∑
s,
→
q

τtot(s,
→
q )v2(s,

→
q ) cos2 ϕ

∂N0(ωs)

∂T
}ωs(

→
q ) (11)

Table 1. Thermal conductivity of graphene in reference.

Reference K (W/mK) Method

Balandin [8] 2000–5000 RO, exfoliated
Ghosh [10] 1300–2800 RO, exfoliated

Jauregui [14] 1500–5000 RO, CVD
Cai [12] 2500 RO, CVD

Faugeras [13] 600 RO, exfoliated
Murali [44] 1100 Electrical self-heating, exfoliated

Seol [45] 600 Electrical, exfoliated
Savin [25] 4000 Ballistic, width dependence
Nika [21] 2000–5000 VFF, BTE, width dependence
Nika [36] 1000–5000 RTA, size dependence
Evan [29] 8000–10000 MD, square graphene sheet

Lindsay [31] 1400–2400 BTE, length dependence

Raman optothermal—RO, chemical vapor deposition—CVD, VFF—valence force field, BTE—Boltzmann transport
equation, RTA—relaxation time approximation, MD—molecular dynamics.
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Then, the 2D density of phonon states is taken into consideration to obtain the expression for the
scalar thermal conductivity:

κ =
1

4πkT2h

∑
s=1···6

∫ qmax

0

[}ωs(q)vs(q)]
2τtot(s, q)

Exp(}ωs(q)/kT)

(Exp(}ωs(q)/kT) − 1)2 q

dq (12)

Based on Equation (12), the dispersion of phonon and phonon polarization branches are taken
into consideration using a valence force field. The room temperature is substituted into the theoretical
expression of Equation (12). Then, the value of thermal conductivity in this study is set to be 3000
W/mK for steady-state heat conduction.

2.3. Finite Element Model for Graphene

FEM is applied for spatial discretization. In the weighted residual method, trial functions serve as
weighting functions. In the finite element model, the conducting bars in graphene lattice is defined by
two nodes, a cross-sectional area, and the material properties, as in Figure 2. Specific heat and density
are ignored for steady-state solutions. The thermal conductivity is in the element longitudinal direction.
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The conductivity matrix of element can be expressed as:

[Ke] =
AK
L

[
1 −1
−1 1

]
(13)

where A, K, and L is the area, thermal conductivity, and distance between nodes, respectively.
The output is computed as:

q = K
(Ti − T j)

L
(14)

Q = qA (15)

where q, Ti, Ti, and Q is the thermal flux, temperature at node i and j, and Q is the heat rate.
Energies are available in the solution for each element.

Epo
e =


1
2

N∑
i=1
{σ}T

{
εei

}
voli + Epi

e + Es

1
2 {ue}

T([Ke] + [Se]){ue}

(16)

where N is the number of integration points, {σ} is the stress vector,
{
εei

}
is the elastic strain vector,

voli of integration point i, Epi
e is the plastic strain energy, Es is the stress stiffening energy.

Es =

{ 1
2 {ue}

T[Se]{ue}

0
(17)

where [Ke] is the element stiffness or conductivity matrix. [Se] is the element stress stiffness matrix.
{ue} is element degree of freedom vector.
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Figure 3 shows the finite element model based on honeycomb lattice structure of graphene. Its heat
source is discussed in armchair and zigzag edges, respectively, as shown in Figure 3a,b. The colorful
contour depicts the thermal conduction in the steady-state.
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Figure 3. Finite element model of pristine graphene for the thermal conduction. (a,b) is its heat source
in the armchair and zigzag edge, respectively.

Vacancy defects are an unavoidable existence in graphene. However, the shape, size, and location
in the entire graphene are unpredictable and uncertain. In order to discuss the impacts of vacancy
defects in the steady-state thermal conduction of graphene, three different vacancy defects are compared
and discussed in the following results. As shown in Figure 4, center concentrated vacancy defects,
periodic vacancy defects, and random distributed vacancy defects are included as three typical vacancy
defects in graphene.
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distributed vacancy defects, respectively.

3. Results and Discussion

In the following section, the three kinds of vacancy defects are sequentially presented.

3.1. Center Concentrated Vacancy Defects

The concentrated vacancy defects in the center of graphene are gradually amplified, as shown in
Figure 5. According to the size amplification of the center concentrated vacancy defects, the thermal
energy of entire graphene gradually decreases in both situations, no matter what its heat source is in
the armchair or zigzag edges. The thermal energy of graphene with its heat source in armchair edges
is larger than that of graphene with its heat source in zigzag edges, as shown in Figure 6a. The location
of its heat source, as one of the boundary conditions, contributes to the difference of thermal energy in
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the steady-state thermal conduction of graphene. Furthermore, the definition of equivalent coefficient
of thermal conductivity for vacancy defected graphene can be expressed as:

C =

m∑
i=1

ET
i /m

n∑
i=1

ET
pi/n

(18)
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coefficient, unit for thermal energy is J).

In addition, the percentage of vacancy defects in the entire graphene can be counted as:

Per =
n−m

n
× 100% (19)

where n and m are the number of elements in pristine graphene and vacancy defected graphene.
The total thermal energy is computed by the sum of the thermal energy of each element and ET

pi in
pristine graphene and vacancy defected graphene, independently.

Based on Equation (18), the amount of vacancy defects is introduced in an equivalent coefficient of
the thermal conduction. In Figure 6b, the reduction of an equivalent coefficient of thermal conductivity
becomes sharper with the size amplification of a concentrated center. Under both boundary conditions,
the impact of vacancy defects in a steady-state thermal conduction is non-linear. Further, the gradient
of curve in the equivalent coefficient is augmented with the enlargement of center concentrated vacancy
defects. Moreover, the vacancy defected graphene sheets with its heat source in armchair and zigzag
edges have consistent results in the thermal condition’s equivalent coefficient, especially when the
size of the center concentrated vacancy defects is not large. With the size enlargement of the center
concentrated vacancy defects, the difference between two boundary conditions becomes evident.
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The graphene with its heat source in armchair edges has higher equivalent coefficient of thermal
conductivity than that with its heat source in zigzag edges.

In addition, the contour of temperature in graphene is revealed in Figures 7 and 8. In order to
track the exact impacts of center concentrated vacancy defects in the steady-state heat conduction of
graphene, the local region around the center concentrated vacancy defects is compared. When the
size of the vacancy defects is small, the effects in temperature are not obvious. Along with the size
amplification of center concentrated vacancy, the influenced region in graphene become larger and
the regularity and band characteristic of temperature results in pristine graphene is destroyed under
both boundary conditions. The regions close to the center concentrated vacancy defects tend to have
a higher temperature than the pristine graphene. Therefore, the center concentrated vacancy defects in
graphene is a crucial factor to change the temperature field in the steady-state thermal conduction.
Heat accumulation near the center concentrated vacancy defects in graphene leads to local higher
temperature and can cause thermal damages in devices.
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3.2. Periodic Vacancy Defects

Different with the pattern of center concentrated vacancy defects, periodic vacancy defects are
gradually dispersed in one quarter of a graphene sheet, as presented in Figure 9. The thermal energy
and equivalent coefficient of thermal conductivity are computed by the finite element model in
graphene with its heat source in armchair and zigzag edges.

With the increase in the amount of periodic vacancy defects, the thermal energy in graphene
with its heat source in the armchair and zigzag edges generally decrease. The thermal energy in the
graphene with heat source in the armchair edges are absolutely larger than that in the graphene with its
heat source in zigzag edges. However, the results of the equivalent coefficient of thermal conductivity
is more complicated than that of the center concentrated vacancy defects, as shown in Figure 10.
The equivalent coefficient of the thermal conductivity in graphene with its heat source in armchair edges
has a strengthening effect, owing to periodic vacancy defects. Furthermore, the equivalent coefficient
of thermal conductivity in graphene with its heat source in zigzag edges does not monotonically
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decrease with the development of periodic vacancy defects. The fluctuation exists in the second mode
of periodic vacancy defects.
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Z—heat source in zigzag edge. And (a) is for the thermal energy, (b) is for the equivalent coefficient,
unit for thermal energy is J.

Contrary to graphene with its heat source in armchair edges, graphene with its heat source in
zigzag edges has an apparent reduced equivalent coefficient of thermal conductivity in the first mode
of periodic vacancy defects. Although thermal energy of graphene with its heat source in armchair
edges is larger than that of graphene with its heat source in zigzag edges in all modes of periodic
vacancy defects, graphene with its heat source in zigzag edges has greater equivalent coefficient of
thermal conductivity after the first mode. Thus, graphene with its heat source in armchair edges has
a strengthening effect caused by the first mode of periodic vacancy defects. However, it decreases
abruptly with the development of periodic vacancy defects, while graphene with its heat source in
zigzag edges is more robust and defends against the effects of periodic vacancy defects with fluctuation.

Moreover, the influence of periodic vacancy defects in the temperature field is not as evident as
that in the center concentrated vacancy. In Figures 11 and 12, the changes in the temperature field of
the local region near the periodic vacancy defects in graphene with its heat source in armchair and
zigzag edges are not obvious when compared with the results in the original pristine graphene.
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3.3. Random Distributed Vacancy Defects

The center concentrated and periodic vacancy defects are two typical vacancy defects in graphene.
Actually, the vacancy defects are stochastically distributed; thus, it is difficult to predict the placement
in the entire graphene. By combing the finite element model with the Monte Carlo simulation [46], the
vacancy defects are randomly dispersed in graphene with a specific amount. The statistical results of
thermal energy for graphene with heat source in armchair and zigzag edges are listed in Table 2. In the
procedure of the Monte Carlo based finite element method, the minimum and maximum values of
the thermal energy are captured from many possible situations. The mean and variance values are
computed from series of thermal energy from samples of the Monte Carlo based finite element method.

Table 2. Statistical thermal energy results for random distributed vacancy defects (unit: ×105 J).

Type Per (%) Minimum Maximum Mean Variance

A

0.2 1.1494 1.1577 1.1535 0.2181
0.5 1.1335 1.1496 1.1428 0.5465
0.8 1.1243 1.1419 1.1326 0.8798
1 1.1163 1.1349 1.1252 1.0048
3 1.0349 1.0752 1.0550 3.3332
5 0.9571 1.0063 0.9831 6.0168

Z

0.2 0.9232 0.9301 0.9271 0.1480
0.5 0.9135 0.9234 0.9184 0.3278
0.8 0.9032 0.9161 0.9102 0.5540
1 0.8948 0.9130 0.9043 0.6667
3 0.8300 0.8589 0.8472 2.4754
5 0.7718 0.8050 0.7894 3.6630

Different than the center concentrated and periodic vacancy defects, the minimum, maximum,
and mean values of thermal energy in graphene with random distributed vacancy defects have linear
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declined tendency with the increase of the amount of vacancy defects. The minimum, maximum,
and mean values of graphene’s thermal energy with its heat source in armchair edges are larger than
when its heat source is in zigzag edges, but the linear results are parallel to each other in the two
different boundary conditions, as presented in Figure 13. In addition, the divergences between the
minimum and maximum values of the thermal energy with different amounts of vacancy defects are
non-negligible (Table 2 and Figure 13). The unit of the thermal energy is 105 J. With the increase of the
number of random distributed vacancy defects in graphene, the differences between the minimum and
maximum values of the thermal energy are amplified. The exact computation results are provided and
compared in the following discussion.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 17 
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Furthermore, the variance of thermal energy is amplified with the enlargement in the amount of
stochastically distributed vacancy defects. However, the parallel characteristic between the results of
the two boundary conditions disappears in the variance of thermal energy. The variances of graphene
with its heat source in armchair edges have linear growth with an increase of the number of stochastic
vacancy defects. However, the graphene with its heat source in zigzag edges is tougher to shield than
the variation and fluctuation in thermal energy. The gradient of variance in Figure 13d declines when
Per equals 3%. The difference in variance of thermal energy in two boundary conditions becomes large.

To be more exact, the probability density distribution of thermal energy in graphene under
two boundary conditions are illustrated in Figures 14 and 15. With the variance of thermal energy,
the probability density is distributed in a narrow range when the number of random vacancy defects is
small in both boundary conditions. When the amount of vacancy defects is amplified, the probability
density covers a wider range with larger variances. When Per is 0.2% for graphene with its heat source
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in armchair edges, the range of probability density distribution ranges from 114.9–115.7 kJ; the range
becomes 95.71–100.6 kJ when Per equals 5%. The same situation happens in graphene with its heat
source in zigzag edges. The range of probability density distribution is at 92.3–93.0 kJ when Per is 0.2%
and 77.18–80.50 kJ when Per equals to 5%. When the percentage of random vacancy defects is petite,
the probability density is more condensed as a peak, while the probability density distribution is gentle
with a longer drag when Per is large. Importantly, even though vacancy defects are stochastically
dispersed in the entire graphene, the range of thermal energy cannot cover the whole result domain and
may be limited in certain intervals when Per is determined. The range of thermal energy in graphene
with two boundary conditions is not continuous but discrete in the specific intervals according to Per.
The discontinuity (between Per is 1%, 3%, and 5%) in thermal energy is useful to distinguish the amount
of vacancy defects and also can be designed as control switch in precise devices and instruments.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 17 
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In addition, the ratio of thermal energy reduction in graphene with two boundary conditions is
compared in Figure 16. In the graphene with its heat source in armchair edges, the minimum value
of thermal energy has 1%, 2.37%, 3.16%, 3.85%, 10.86%, and 17.56% of reduction compared with the
thermal energy in original pristine graphene, when Per equals to 0.2%, 0.5%, 0.8%, 1%, 3%, and 5%.
The decrease in the maximum value of thermal energy is smaller when Per equals 0.28%, 0.98%, 1.65%,
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2.25%, 7.39%, and 13.32%, respectively. In graphene with its heat source in zigzag edges, the degrees
of reduction in minimum and maximum values of thermal energy are similar to that in armchair
edges. Precisely, the minimum values of thermal energy have 1.05%, 2.09%, 3.19%, 4.09%, 11.04%,
and 17.28% of declines, while the maximum values of thermal energy have 0.31%, 1.03%, 1.81%, 2.14%,
7.94%, and 13.72% of declines, respectively, when Per equals to 0.2%, 0.5%, 0.8%, 1%, 3% and 5%.
Therefore, the difference caused by boundary conditions is not as obvious as that attributed to the
random distribution of vacancy defects. The stochastic dispersion of vacancy defects plays a more
important role in the deviation of thermal energy.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 17 
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energy in graphene with its heat source in armchair edges, respectively; Z-1 and Z-2 for minimum and
maximum thermal energy in graphene with its heat source in zigzag edges, respectively).

In order to analyze the robustness of graphene with random distributed vacancy defects, the index
β is introduced as:

β =
M
√

V
(20)

where M is the mean value of thermal energy and V is the variance of thermal energy. The divergence
due to the randomness of vacancy defects in graphene is measured using the variance of thermal
energy; the quadratic square root of variance is written as a denominator compared with the mean
value of thermal energy.

In Figure 17a, the equivalent coefficient of thermal conductivity is nearly identical in the two
boundary conditions. With the increment of the random vacancy defects, the equivalent coefficient of
mean thermal conductivity is linearly declined; the β gradient becomes smaller with the increase of
random vacancy defects. When Per is less than 1%, β decreases sharply, but when Per equals 3% and
5%, β experiences a moderate reduction. Similar with the equivalent coefficient of thermal conductivity,
the results of β in the two boundary conditions are consistent with small deviation. β equals to 2.47,
1.54, 1.21, 1.12, 0.58, and 0.40 in graphene with its heat source in armchair edges, and 2.41,1.60, 1.22,
1.11, 0.54, and 0.41 when Per is 0.2%, 0.5%, 0.8%, 1%, 3%, and 5%, respectively. Thus, the robustness of
graphene to resist the fluctuation is due to the randomness of vacancy defects, which sharply cuts
down when Per is less than 1%.
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Figure 17. The robustness of graphene with random distributed vacancy defects. (a) is for the equivalent
coefficient, (b) is for β.

In Figures 18 and 19, the temperature results of the samples of random vacancy defected graphene
are presented. The local temperature field is not convenient when distinguishing the impacts of the
random distributed vacancy defects. The discrete and stochastic vacancy defects in the usual samples
cannot present the comprehensive influence in thermal conductivity. However, the thermal energy of
the entire graphene is more appropriate and reliable to observe the impacts of vacancy defects.
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4. Conclusions

In this paper, we analyzed and discussed the impacts of vacancy defects in graphene for steady-state
thermal conduction. Two boundary conditions as chirality in graphene are considered. The center
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concentrated, periodic, and random distributed vacancy defects in graphene are compared using thermal
energy, the equivalent coefficient of thermal conductivity, and thermal field. The results show that:

1. The center concentrated vacancy defects evidently destroyed the regularity and band characteristic
of the temperature field in the steady-state thermal conduction. Moreover, the impacts of periodic
and random distributed vacancy defects in temperature field of graphene is not convenient
to track.

2. The graphene with periodic vacancy defects is sensitive to boundary conditions. The graphene
with its heat source in armchair edges has a strengthening effect in the equivalent coefficient
of thermal conductivity when periodic vacancy defects is distributed in the first mode.
However, graphene with its heat source in zigzag edges is more robust to defend the reduction of
the equivalent coefficient of thermal conductivity in the development of periodic vacancy defects.
On the contrary, center concentrated and randomly distributed vacancy defects have a consistent
equivalent coefficient of thermal conductivity under two boundary conditions.

3. Furthermore, the amount and randomness of the vacancy defects are more important than the
chirality in stochastically vacancy defected graphene. When Per equals to 0.2%, the reduction of
thermal energy fluctuates from 0.3–1%, and from 13–17% when Per is 5%. The thermal energy
has discrete range for certain quantity of random vacancy defects. The range of thermal energy is
useful when reflecting on the amount of vacancy defects designed as a control switch in devices
or instruments.

4. The robustness of graphene to resist the fluctuation owing to the randomness of vacancy defects
declines sharply when Per is less than 1%. The variance caused by random dispersion of vacancy
defects is amplified, according to the increment of Per.

5. Different than the center concentrated and periodic vacancy defects, the minimum, maximum,
and mean values of thermal energy in graphene with random vacancy defects have a linear
decreased tendency with the increase of vacancy amounts.

5. Data Availability Statement
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author upon request.

Author Contributions: L.S accomplished the major work; L.C. came up with the main idea and performed the
numerical analysis; J.S. accomplished the main writing for the research; and E.S.d.C. provided the mathematical
and theoretical support for the research.

Funding: This research is supported by the National Natural Science Foundation of China (Grant No. 11602114).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, P.; Shi, L.; Majumdar, A.; Mc Euen, P.L.C. Thermal Transport Measurements of Individual Multiwalled
Nanotubes. Phys. Rev. Lett. 2001, 87, 215502–215504. [CrossRef] [PubMed]

2. Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. Thermal conductance of an individual single-wall carbon
nanotube above room temperature. Nano Lett. 2006, 6, 96–100. [CrossRef] [PubMed]

3. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A.
Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [CrossRef] [PubMed]

4. Geim, A.K.; Novoselov, K.S. The rise of graphene. Nanosci. Technol. 2009, 6, 11–19. [CrossRef]
5. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.;

Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.
[CrossRef] [PubMed]

6. Zhang, Y.B.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and
Berry’s phase in graphene. Nature 2005, 438, 201–204. [CrossRef]

7. Balandin, A.A. Better computing through CPU cooling. IEEE Spectrum. 2009, 29, 33.

http://dx.doi.org/10.1103/PhysRevLett.87.215502
http://www.ncbi.nlm.nih.gov/pubmed/11736348
http://dx.doi.org/10.1021/nl052145f
http://www.ncbi.nlm.nih.gov/pubmed/16402794
http://dx.doi.org/10.1126/science.1102896
http://www.ncbi.nlm.nih.gov/pubmed/15499015
http://dx.doi.org/10.1142/9789814287005_0002
http://dx.doi.org/10.1038/nature04233
http://www.ncbi.nlm.nih.gov/pubmed/16281030
http://dx.doi.org/10.1038/nature04235


Appl. Sci. 2019, 9, 2363 16 of 17

8. Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal
conductivity of single layer graphene. Nano Lett. 2008, 8, 902–907. [CrossRef]

9. Ghosh, S.; Nika, D.L.; Pokatilov, E.P.; Balandin, A.A. Heat conduction in graphene: Experimental study and
theoretical interpretation. New J. Phys. 2009, 11, 1–18. [CrossRef]

10. Ghosh, S.; Bao, W.; Nika, D.L.; Subrina, S.; Pokatilov, E.P.; Lau, C.N.; Balandin, A.A. Dimensional crossover
of thermal transport in few-layer graphene. Nat. Mater. 2010, 9, 555–558. [CrossRef]

11. Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.; Nika, D.L.; Balandin, A.A.; Bao, W.; Miao, F.;
Lau, C.N. Extremely high thermal conductivity in graphene: Prospects for thermal management application
in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 151911. [CrossRef]

12. Cai, W.; Moore, A.L.; Zhu, Y.; Li, X.; Chen, S.; Shi, L.; Ruoff, R.S. Thermal transport in suspended and
supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651.
[CrossRef] [PubMed]

13. Faugeras, C.; Faugeras, B.; Orlita, M.; Potemski, M.; Nair, R.R.; Geim, A.K. Thermal Conductivity of graphene
in Corbino membrane geometry. ACS Nano 2010, 4, 1889–1892. [CrossRef] [PubMed]

14. Jauregui, L.A.; Yue, Y.; Sidorov, A.N.; Hu, J.; Yu, Q.; Lopez, G.; Jalilian, R.; Benjamin, D.K.; Delk, D.A.; Wu, W.;
et al. Thermal transport in graphene nanostructures: Experiments and simulations. ECS Trans. 2010, 28, 73–83.

15. Saito, K.; Dhar, A. Heat conduction in a three dimensional anharmonic crystal. Phys. Rev. Lett. 2010, 104, 040601.
[CrossRef] [PubMed]

16. Lippi, A.; Livi, R. Heat conduction in two-dimensional nonlinear lattices. J. Stat. Phys. 2010, 100, 1147–1172.
[CrossRef]

17. Yang, L. Finite heat conductance in a 2d disorder lattice. Phys. Rev. Lett. 2002, 88, 094301. [CrossRef]
18. Dhar, A. Heat conduction in the disordered harmonic chain revisited. Phys. Rev. Lett. 2001, 86, 5882–5885.

[CrossRef]
19. Klemens, P.G. Theory of the A-plane thermal conductivity of graphite. J. Wide Bandgap Mater. 2000, 7, 332–339.

[CrossRef]
20. Klemens, P.G.; Pedraza, D.F. Thermal conductivity of graphite in basal plane. Carbon 1994, 32, 735–741.

[CrossRef]
21. Nika, D.L.; Pokatilov, E.P.; Askerov, A.S.; Balandin, A.A. Phonon thermal conduction in graphene: Role of

Umklapp and edge roughness scattering. Phys. Rev. B 2009, 79, 155413. [CrossRef]
22. Berber, S.; Kwon, Y.-K.; Tomanek, D. Unusually high thermal conductivity if carbon nanotubes. Phys. Rev.

Lett. 2000, 84, 4613–4616. [CrossRef] [PubMed]
23. Lindsay, L.; Broido, D.A.; Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B

2010, 82, 115427. [CrossRef]
24. Munoz, E.; Lu, J.; Yakobson, B.I. Ballistic thermal conductance of Graphene ribbons. Nano Lett. 2010, 10, 1652–1656.

[CrossRef] [PubMed]
25. Savin, A.V.; Kivshar, Y.S.; Hu, B. Suppression of thermal conductivity in graphene nanoribbons with rough

edges. Phys. Rev. B 2010, 82, 195422. [CrossRef]
26. Huang, Z.; Fisher, T.S.; Murthy, J.Y. Simulation of phonon transmission through graphene and graphene

nanoribbons with a green’s function method. J. Appl. Phys. 2010, 108, 094319. [CrossRef]
27. Hu, J.; Ruan, X.; Chen, Y.P. Thermal conductivity and thermal rectification in graphene nanoribbons: A

molecular dynamic study. Nano Lett. 2009, 9, 2730–2735. [CrossRef]
28. Guo, Z.; Zhang, D.; Gong, X.-G. Thermal Conductivity of graphene nanoribbons. Appl. Phys. Lett. 2009, 95, 163103.

[CrossRef]
29. Evans, W.J.; Hu, L.; Keblinsky, P. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics:

Effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 2010, 96, 203112. [CrossRef]
30. Aksamija, Z.; Knezevic, I. Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge

roughness scattering. Appl. Phys. Lett. 2011, 98, 141919. [CrossRef]
31. Lindsay, L.; Broido, D.A.; Mingo, N. Diameter dependence of carbon nanotube thermal conductivity and

extension to the graphene limit. Phys. Rev. B 2010, 82, 161402. [CrossRef]
32. Woodcraft, A.L.; Barucci, M.; Hastings, P.R.; Lolli, L.; Martelli, V.; Risegari, L.; Ventura, G. Thermal

conductivity measurements of pitch-bonded at millikelvin temperatures: Finding a replacement for AGOT
graphite. Cryogenics 2009, 49, 159–164. [CrossRef]

http://dx.doi.org/10.1021/nl0731872
http://dx.doi.org/10.1088/1367-2630/11/9/095012
http://dx.doi.org/10.1038/nmat2753
http://dx.doi.org/10.1063/1.2907977
http://dx.doi.org/10.1021/nl9041966
http://www.ncbi.nlm.nih.gov/pubmed/20405895
http://dx.doi.org/10.1021/nn9016229
http://www.ncbi.nlm.nih.gov/pubmed/20218666
http://dx.doi.org/10.1103/PhysRevLett.104.040601
http://www.ncbi.nlm.nih.gov/pubmed/20366695
http://dx.doi.org/10.1023/A:1018721525900
http://dx.doi.org/10.1103/PhysRevLett.88.094301
http://dx.doi.org/10.1103/PhysRevLett.86.5882
http://dx.doi.org/10.1106/7FP2-QBLN-TJPA-NC66
http://dx.doi.org/10.1016/0008-6223(94)90096-5
http://dx.doi.org/10.1103/PhysRevB.79.155413
http://dx.doi.org/10.1103/PhysRevLett.84.4613
http://www.ncbi.nlm.nih.gov/pubmed/10990753
http://dx.doi.org/10.1103/PhysRevB.82.115427
http://dx.doi.org/10.1021/nl904206d
http://www.ncbi.nlm.nih.gov/pubmed/20402531
http://dx.doi.org/10.1103/PhysRevB.82.195422
http://dx.doi.org/10.1063/1.3499347
http://dx.doi.org/10.1021/nl901231s
http://dx.doi.org/10.1063/1.3246155
http://dx.doi.org/10.1063/1.3435465
http://dx.doi.org/10.1063/1.3569721
http://dx.doi.org/10.1103/PhysRevB.82.161402
http://dx.doi.org/10.1016/j.cryogenics.2008.10.024


Appl. Sci. 2019, 9, 2363 17 of 17

33. Jang, W.; Chen, Z.; Bao, W.; Lau, C.N.; Dames, C. Thickness-dependent thermal conductivity of encased
graphene and ultrathin graphite. Nano Lett. 2010, 10, 3909–3913. [CrossRef] [PubMed]

34. Chen, S.; Moore, A.L.; Cai, W.; Suk, J.W.; An, J.; Mishra, C.; Amos, C.; Magnuson, C.W.; Kang, J.; Shi, L.; et al.
Raman measurement of thermal transport in suspended monolayer graphene of variable sizes in vacuum
and gaseous environments. ACS Nano 2011, 5, 321–328. [CrossRef]

35. Lee, J.U.; Yoon, D.; Kim, H.; Lee, S.W.; Cheong, H. Thermal Conductivity of suspended pristine graphene
measured by raman spectroscopy. Phys. Rev. B 2011, 83, 081419. [CrossRef]

36. Nika, D.L.; Ghosh, S.; Pokatilov, E.P.; Balandin, A.A. Lattice thermal conductivity of graphene flakes:
Comparison and bulk graphite. Appl. Phys. Lett. 2009, 94, 203103. [CrossRef]

37. Mak, K.F.; Shan, J.; Heinz, T.F. Seeing many-body effects in single and few layer graphene: Observation of
two-dimensional saddle point excitons. Phys. Rev. Lett. 2011, 106, 046401. [CrossRef]

38. Bullen, A.J.; O’Hara, K.E.; Cahill, D.G.; Monteiro, O.; Von Keudell, A. Thermal conductivity of amorphous
carbon thin films. J. Appl. Phys. 2000, 88, 6317–6320. [CrossRef]

39. Chen, G.; Hui, P.; Xu, S. Thermal conduction in metalized tetrahedral amorphous carbon ta-c films on silicon.
Thin Solid Films 2000, 366, 95–99. [CrossRef]

40. Shamsa, M.; Liu, W.L.; Balandin, A.A.; Casiraghi, C.; Milne, W.I.; Ferrari, A.C. Thermal conductivity of
diamond like carbon films. Appl. Phys. Lett. 2006, 89, 161921. [CrossRef]

41. Balandin, A.A.; Shamsa, M.; Liu, W.L.; Casiraghi, C.; Ferrari, A.C. Thermal conductivity of ultrathin
tetrahedral amorphous carbon. Appl. Phys. Lett. 2008, 93, 043115. [CrossRef]

42. Huang, Y.; Wu, J.; Hwang, K.C. Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B
2006, 74, 245413. [CrossRef]

43. Odegard, G.M.; Gates, T.S.; Nicholson, L.M.; Wise, K.E. Continuum model for the vibration of multilayered
graphene sheets. Compos. Sci. Technol. 2002, 62, 1869. [CrossRef]

44. Murali, R.; Yang, Y.; Brenner, K.; Beck, T.; Meindl, J.D. Breakdown current density of graphene nanoribbons.
Appl. Phys. Lett. 2009, 94, 243114. [CrossRef]

45. Seol, J.H.; Jo, I.; Moore, A.L.; Lindsay, L.; Aitken, Z.H.; Pettes, M.T.; Li, X.; Yao, Z.; Huang, R.; Broido, D.; et al.
Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213–216. [CrossRef] [PubMed]

46. Chu, L.; Shi, J.; Souza de Cursi, E. Vibration Analysis of Vacancy Defected Graphene Sheets by Monte Carlo
Based Finite Element Method. Nanomaterials 2018, 87, 489. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/nl101613u
http://www.ncbi.nlm.nih.gov/pubmed/20836537
http://dx.doi.org/10.1021/nn102915x
http://dx.doi.org/10.1103/PhysRevB.83.081419
http://dx.doi.org/10.1063/1.3136860
http://dx.doi.org/10.1103/PhysRevLett.106.046401
http://dx.doi.org/10.1063/1.1314301
http://dx.doi.org/10.1016/S0040-6090(99)01097-4
http://dx.doi.org/10.1063/1.2362601
http://dx.doi.org/10.1063/1.2957041
http://dx.doi.org/10.1103/PhysRevB.74.245413
http://dx.doi.org/10.1016/S0266-3538(02)00113-6
http://dx.doi.org/10.1063/1.3147183
http://dx.doi.org/10.1126/science.1184014
http://www.ncbi.nlm.nih.gov/pubmed/20378814
http://dx.doi.org/10.3390/nano8070489
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Steady-State Thermal Conduction 
	Thermal Conductivity 
	Finite Element Model for Graphene 

	Results and Discussion 
	Center Concentrated Vacancy Defects 
	Periodic Vacancy Defects 
	Random Distributed Vacancy Defects 

	Conclusions 
	Data Availability Statement 
	References

