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Abstract: Leaf coverage is an indicator of plant growth rate and predicted yield, and thus it is
crucial to plant-breeding research. Robust image segmentation of leaf coverage from remote-sensing
images acquired by unmanned aerial vehicles (UAVs) in varying environments can be directly used
for large-scale coverage estimation, and is a key component of high-throughput field phenotyping.
We thus propose an image-segmentation method based on machine learning to extract relatively
accurate coverage information from the orthophoto generated after preprocessing. The image analysis
pipeline, including dataset augmenting, removing background, classifier training and noise reduction,
generates a set of binary masks to obtain leaf coverage from the image. We compare the proposed
method with three conventional methods (Hue-Saturation-Value, edge-detection-based algorithm,
random forest) and a frontier deep-learning method called DeepLabv3+. The proposed method
improves indicators such as Qseg, Sr, Es and mIOU by 15% to 30%. The experimental results show that
this approach is less limited by radiation conditions, and that the protocol can easily be implemented
for extensive sampling at low cost. As a result, with the proposed method, we recommend using
red-green-blue (RGB)-based technology in addition to conventional equipment for acquiring the leaf
coverage of agricultural crops.

Keywords: machine learning; maize-leaf coverage; image segmentation; UAV remoting images

1. Introduction

Plant phenotyping is an important tool for linking environmental and genetic research, and is
used to evaluate drought and climate-change resistance by comparing the growth differences between
plant varieties [1]. Plant researchers can bridge the gap between genomics and phenotype through
field investigations [2]. Many types of phenotypic parameters available in the field are valuable for
yield estimation and quality detection, such as plant height, spike number, leaf coverage, and so on.
Among these, leaf coverage has a direct effect on the interception of photosynthetic radiation, water
interception, heat fluxes, and CO2 exchange. Leaf coverage can also be used as a key linkage between
canopy reflectance and crop-growth models. Over the past decades, the study of leaf coverage evolved
away from the general use of potted plants as research objects [3]. However, current methods, such as
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continuous imaging by fixed-position cameras, or destructive methods based on crop harvesting,
are usually time-consuming.

Moreover, since crop growth can vary between outdoor and indoor environments, indoor
observations are not suitable for predicting outdoor growth trends. Numerous adverse factors affect
the precision of field phenotypic observations, such as differences in nutrients and water availability.
Moreover, environmental influences such as wind, humidity, changing solar radiation, and cloud
coverage also degrade data accuracy. To accurately and reliably study the in-field growth pattern
of plant cultivars, researchers use high-throughput field phenotyping (HTFP), whereby phenotypic
parameters are acquired by using automated or semi-automated systems. Currently, most HTFP-based
systems for estimating leaf coverage use multispectral or hyperspectral images or RGB images.
In the present study, we focus on the use of RGB images, because the associated technology is much
lighter and cheaper than a spectral system, and can be fixed to a small unmanned aerial vehicle
(UAV) platform. Digital photography is a popular tool for acquiring field information about small
crops because it is affordable and easy to use with minimal training. The key step of extracting
leaf coverage from RGB images is image segmentation, and existing segmentation methods for
RGB images focus mainly upon two aspects: The first aspect is solely based on color information.
For example, Dahan et al. presented a technique that synergistically combines depth and color image
information from real devices. They use the color information to fill and clean depth and use depth
to enhance color-image segmentation [4]. Panjwani and Healey introduced a segmentation method
that uses a color Gaussian–Markov random-field model, which considers both spatial interactions
within each spectral band and the interactions between color planes [5]. Shafarenko et al. explored
a bottom-up segmentation approach that was developed to segment randomly-textured color
images [6], and Hoang et al. put color and texture information together in the segmentation process
to finish the segmentation of synthetic and natural images [7]. In addition, Xiong et al. introduced
a segmentation method that combines the hue-saturation-value (HSV) color space and the Otsu
method. Their experimental results show that the algorithm presented herein has a good effect and
can meet real-time demand [8]. Thus, segmentation based on color information is seriously affected by
the illumination. In this way, each type of method usually applies to a certain reproductive period.
Except for the disadvantages described above, excess dependence on color information will lead to
incomplete extraction. The second aspect of extracting leaf coverage from RGB images is based on the
classifier. For example, Wang et al. introduced the novel fuzzy c-means approach (FCM), which uses
local contextual information and the inherently high inter-pixel correlations to automatically segment
images. Experimental results show that the proposed method provides competitive segmentation
results compared with other FCM-based methods, and is generally faster [9]. Bai et al. presented
an automated object-segmentation approach based on principal pixel analysis and a support vector
machine, which effectively segments the entire salient object with reasonable performance and higher
speed [10]. Recently, Chen et al. introduced a new segmentation method by combining three
technologies: Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. This method
is superior for dealing with complex conditions [11]. Moreover, Ravi et al. proposed a semantic
segmentation of images by using multi-feature extraction and random forest (RF). According to their
conclusion, this method offers good performance and accuracy in a small class [12]. Although all the
methods mentioned above improve the processing accuracy of specific scenes in image processing,
they still have many shortcomings. For example, the color-based segmentation methods are sensitive
to changes in light intensity, and so they cannot be regarded as environmentally robust methods.
Furthermore, deep-learning (DL) technology requires a large training set and high-performance
hardware (e.g., a high graphics processing unit (GPU) frequency) [13]. To resolve these problems,
we investigate herein a segmentation algorithm based upon an improved random forest classifier.
First, the original UAV remote-sensing image dataset is augmented by three strategies, so that it can
meet the requirement of big-data training. To highlight target characteristics, the background of the
dataset is removed by using the K-means clustering algorithm. We then extract several image features,
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including color features and texture features, to describe the differences between the leaf part and the
stem part. The improved RF classifier is trained by using the feature matrix and outputs the binary
segmentation results.

Finally, 4 indicates including Qseg, Sr, Es, and mIOU are used to evaluate the segmentation accuracy
by comparing the machine recognition results with the manual ground-truth reference images [14].

The rest of this paper is organized as follows: Section 2 briefly introduces the data acquisition and
preprocessing, and Section 3 details the proposed algorithm. The experimental result and analysis are
given in Sections 4 and 5, respectively, and the conclusion is given in Section 6.

2. Data Acquisition and Preprocessing

This study covers 800 varieties of maize plants, and was conducted at the Xiaotangshan
National Precision Agriculture Research and Demonstration Base (latitude 40◦00′N–40◦21′N, longitude
116◦34′E–117◦00′E, altitude 36 m) to study the genotype-by-environment interactions (Figure 1). In the
present study, each variety was grown in a single plot to ensure independent growth. The sowing date
was 12 May 2017 for the harvest year 2018, and the harvesting date was 5 September 2017.
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Figure 1. Description of the study area and design of the data acquisition based on an unmanned aerial
vehicle (UAV) platform. (A) Schematic diagram of experimental area and selected plots, (B) Location of
sampling points and ground control points.

2.1. Data Acquisition

This research uses images of seedling-stage maize plants for the segmentation dataset because
of the low vegetation coverage and the ease of identifying the leaf boundary. With the further
growth of maize, the images often contain 100% leaf coverage with no visible soil, which makes it
difficult to separate the leaves from the background. To capture the canopy structure of the maize
seedlings, a UAV-based image acquisition system was used to photograph the entire experimental area.
This system consisted of two main parts: A flight mechanism (DJI-S1000, DJI Company, Shenzhen,
China) and an RGB camera. The photos were taken from approximately 40 m above the canopy,
looking vertically downward. A total of 83 photographs were obtained, with a lateral overlap of
50% and a longitudinal overlap of 70%. For this paper, we collected data in overcast and breezeless
conditions to avoid shadows and target sloshing. The parameters of the digital camera used to acquire
the images are given in Table 1. The color images were recorded in jpeg format and downloaded to
desktop computers for subsequent processing.
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Table 1. Camera specifications.

Type Manufacturer Resolution Pixel Size
(µm2)

Ground Resolution
(mm/pix)

Focal Length
(mm) FOV

QX-100 Sony 5472 × 3648 2.44 × 2.44 0.56 35 60◦

2.2. Data Preprocessing

Segmenting plant leaves in the outdoors poses a unique challenge compared with the urban or
interior environment commonly used for image segmentation [15]. Obtaining a strict leaf boundary
is difficult because of the dynamic illumination conditions, leaf occlusion, and geometric variability
between individual leaves [16]. In addition, the changing illumination conditions between images also
increase the difficulty of segmentation.

2.2.1. Image Mosaicking and Generating Subgraphs

After obtaining 83 local images of the maize-breeding research field, all of the images were
processed to obtain complete leaf-coverage information. Because of restrictions due to flight altitude
and CCD size, most of the images acquired from the UAV remote-sensing platforms are image
sequences with a small amplitude, low overlap and a large tilt angle. Furthermore, the RGB cameras
carried on the UAV platforms contained mostly non-metric ordinary digital sensors, so the internal
camera parameters are not known with precision. To solve these problems, we used the Photoscan
Software (Agisoft, St. Petersburg, Russia) to preprocess the images as follows: (1) The selection of aerial
photos, (2) image mosaicking, (3) generate digital elevation model (DEM) and orthophoto. We then
used the Arcgis 10.2 to manually separate a single species from the orthophoto map according to
the scope of the planting plot. Next, we used Photoshop (Adobe Inc., CA, USA) to generate several
1000 × 1000 pixel subgraphs in which the large-area ridges were removed.

2.2.2. Manual Ground Truth

We used Adobe Photoshop CS 6.0 to generate a segmentation mask for each plot; these masks
were then used to manually annotate the boundary of each leaf in the image. To reduce any errors
in the final masks, each image was treated three times by different workers to produce three unique
masks, and the most accurate mask for each image was manually selected based on the overlay of the
mask and the original image.

3. Methods

Leaf segmentation from a complex background requires selecting well-suited features and efficient
segmentation methods, and the segmentation results must be verified so that the segmentation process
may be corrected and refined if need be. Therefore, the image analysis pipeline includes four major
steps: (1) Dataset augmentation, (2) background removal, (3) image segmentation, and (4) noise and
burr removal (Figure 2).

3.1. Dataset Augmentation

Dataset augmentation is a common method to increase the size of a dataset and decrease overfitting
during training [17]. Because the original image dataset is not large enough to satisfy the requirements
for the training dataset, we divide the 800 images in our labeled dataset into 600 training and 200
validation image pairs, and then apply three techniques to augment the dataset: (1) mirror inverse,
(2) 90◦ rotation, and (3) 180◦ rotation. These operations were all done by using Photoshop CS6, with the
final result being a new final dataset with 2400 images for training and 800 for validation. To test the
efficacy of this work, both the original and augmented datasets were used in parallel in our experiment.
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3.2. Background Removal based on Improved K-means Clustering Algorithm

The background removal step serves to separate the vegetation from the soil. This is done by
using the improved self-adaption K-means clustering algorithm. The principle of this algorithm is to
minimize the sum of the squares of the distance from each point in the cluster domain to the center of
the cluster [18]. This procedure consists of the following steps:

(a) As initial clusters, choose k data points at random from the dataset.
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(b) Calculate the Euclidean distance from each data point xi (i = 1,2, . . . ,k) to each cluster center mi
and assign each data point to its nearest cluster center.

(c) Calculate new cluster centers mi so that the squared error distance of each cluster is a minimum.
(d) Repeat steps (b) and (c) until the lustering centers mi remain constant.
(e) Terminate the process.

This method has two main disadvantages: First, the selection of these initial clustering centers
may change the final clustering results, and second, it may cause the final result to become trapped in
a local optimum. In this paper, we propose to solve these problems by using an improved K-means
clustering algorithm based on Otsu multi-threshold segmentation. First, the Otsu algorithm was
used for histogram multi-threshold segmentation, which divides each image into several classes and
minimizes the variance between these classes. The improved algorithm is as follows:

(a) Take the threshold of the Otsu segmentation T1-Tk as the initial clustering center of the
K-means algorithm.

(b) Calculate the Euclidean distance from each data point xi (i=1, 2, . . . , n) to each cluster center Ti
and assign each data point to the nearest cluster center.

(c) Calculate the new cluster center ti to minimize the squared error distance of each cluster.
(d) Repeat steps (b) and (c) until the clustering centers ti remain constant.
(e) Calculate the arithmetic mean for ti and Ti and then obtain the final segmentation threshold Mi.
(f) Use Mi to complete the image segmentation.

3.3. Leaf Exaction based on Multi-feature and Improved Random Forest Classifier

This study uses a machine-learning-based (ML-based) image segmentation method for leaf
extraction, which transforms the image segmentation into a two-classification problem [19].
These techniques can be divided into two main learning groups; namely, supervised and unsupervised
learning. The difference between the two types of methods is the pre-supply of information:
Supervised techniques supply the information by pre-defined class labels or pre-trained samples,
whereas unsupervised pattern representations do not require this operation [20]. In field conditions,
variable light intensity and complex soil background make it crucial to extract crop-related
characteristics. Based on this consideration, we develop a supervised multi-feature that is capable of
training a model in different field conditions and labeling each image pixel as background or vegetation,
regardless of the environmental conditions in the field.

3.3.1. Feature Extraction

Visual features are fundamental in processing digital images to represent image content. The result
of feature extraction is that the points on the image are divided into different subsets, which often
belong to isolated points, continuous curves, or continuous regions. In this paper, color, texture,
and sharp features are extracted to discriminate between leaves and other parts. In this work, 6 color
features and 16 texture features were used to describe each patch. In detail, feature definition and
extraction involve the following items:

(1) Color features
Color feature is a global feature that describes the surface properties of objects. The colors

green, brown, and yellow were found to compose the main part of the images of maize leaf collected
in the field. Further analysis revealed that brown and yellow are common to vegetation and soil,
whereas green is unique to vegetation. For this work, we extract six color components to describe the
color distribution of each patch: R, G, B, L*, A*, B*.

(2) Texture features
Unlike color features, texture features are not based on single pixels, but must be extracted from

regions. This regional aspect gives this approach strong fault tolerance because local deviation cannot
cause matching failure.
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A statistical aspect of texture features is that they are often rotation invariant, which makes them
robust against noise. Crop images reveal different textures for leaf, stem, and soil. For example, leaf
texture is clear because of the leaf stripe, whereas background texture is smooth because it is far from
the camera. Here, we use the gray-level co-occurrence matrix (GLCM) to obtain the texture information
from the images. The GLCM is defined as the joint probability distribution of pixel pairs, and not only
reflects the comprehensive information from the adjacent direction and the adjacent interval, as well
as the amplitude of change in the gray level of the image, but also reflects the spatial distribution of
the pixels with the same gray level. We extract several texture features from the GLCM: The angular
second moment, entropy, contrast, and correlation. The implications of these features are listed in
Table 2. We generate eight matrices in four directions (0◦, 45◦, 90◦, 135◦) with two lengths (1, 2) to
extract eight features. In addition, the mean and variance of these four features for the two distances
are treated as supplements of the texture feature, which makes a total of 16 features.

Table 2. Implication of texture features extracted from the gray-level co-occurrence matrix (GLCM). Types
of features are angular second moment (ASM), entropy (ENT), contrast (CON), and correlation (COR).

Feature Kind Computational Formula Implication

ASM ASM =
∑k

i=1
∑k

j=1[G(i, j)]2 Image gray distribution
uniformity and textural detail

ENT ENT = −
∑k

i=1
∑k

j=1 G(i, j) log G(i, j)
Image gray distribution

heterogeneity or
complexity

CON CON =
∑k−1

n=0 n2
[∑
|i− j|=n G(i, j)

]
Image clarity and texture depth

COR COR =
∑k

i=1
∑k

j=1
(i j)G(i, j)−uiu j

sis j
Local gray correlation in image

In Table 2, G(i, j) is the element in row i and column j, and ui, u j,si, and s j are given by

ui =
k∑

i=1

k∑
j=1

iG(i, j), (1)

u j =
k∑

i=1

k∑
j=1

jG(i, j), (2)

si =
k∑

i=1

k∑
j=1

G(i, j)(i− ui), (3)

si =
k∑

i=1

k∑
j=1

G(i, j)( j− u j). (4)

3.3.2. Proposed Image-Segmentation Model

By using the operations detailed above, image segmentation was transformed into building
a two-class model. This model contains two types of samples: Positive samples (containing leaf patches
manually labeled from different varieties) and negative samples (containing background patches
manually labeled from soil and stem). We next built a training dataset with 24,000 positive patches
(ten patches for each image) and 19,200 negative patches (eight patches for each image).

Each training patch contained 20 × 20 pixels to match the size of leaf, and the training patches
were then represented in an M×N matrix called the “feature cube.” In this cube, M is the number of
pixels in the patch (M = 400) whereas N is the number of features (N = 22 in the axis). To summarize,
we built a training with enough positive and negative samples, which satisfies the requirements of the
ML sample size.
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We then used the improved random forest classifier to classify the model training based on the
above dataset. The conventional random forest methods are an ensemble of learning methods for
classification (and regression), that constructs a multitude of decision trees at training time and outputs
the class that is the mode of the classes output by individual trees. It is a classifier composed of decision
trees. By using x ∈ X as sample data and t ∈ T as an independent decision tree, the predictive function
h(x

∣∣∣t) can be expressed as nonleaf node : h(x|N(ψ, tl, tr)) =

{
h(x

∣∣∣tl),ψ(x) = 0
h(x

∣∣∣tr),ψ(x) = 1

}
leaf node : h(x

∣∣∣L(π)) = π

 (5)

where ψ(x) is the splitting function of each node in the decision tree, and π is the category information
of a leaf. The voting model of a random forest F is

y∗ = argmax
y∈Y

∑
t∈F

I(h(x
∣∣∣t) = y), (6)

where I is the indicator function, which can take on values in the range [0,1]. We define the function
f (x,θi) as the ith tree constructed by the random vector θi. The random forest can then be represented
by F =

{
f1, f2, . . . , fT

}
, where T is the scale of the forest. The margin function of the sample data (x, y) is

mg(x, y) = aνTI( fT(x) = y) −max
j,y

aνTI( fT(x) = j), (7)

where aνT represents the average function. The generalization error can then be expressed as

GE = E(x,y)(mg(x, y) < 0). (8)

In Equation (8), the subscripts x, y indicate that the probability runs over the x, y space.
The generalization error GE has an upper bound that is defined as

GE∗ ≤ ρ
1− s2

s2 , (9)

where ρ is the mean of the correlation and s is the strength of the set of classifiers. To reduce the
correlation coefficient ρ of the decision trees, and widen the information field of the optional new
feature attribute, we should improve the randomness when building the decision trees. The improved
random forest algorithm is described in Algorithm 1. All decision trees in our experiment were
constructed by using the CART tree, and the Gini index was used to measure purity of the node. In the
following experiment, the number of the decision trees was set to 100 and then the best one of them
was chosen to conduct repetitive experiments. The verification period is set to 1000 (i.e., the accuracy
of the training model is tested 1000 times on the verification set per iteration of the network).
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Algorithm 1

Input: initial training dataset as D, the number Fn of input features of each training sample.
Step 1: In a node of the decision tree to be split, F =

⌈
rand (0, F N)

⌉
attributes (s1,s2, . . . sF) are randomly selected

from the set of sample attributes as the attributes to be combined. d•e represents the rounding operation.
Step 2: Let L =

⌈
rand(0, int(lbFN + 1))

⌉
be weight vectors (X1, X2, . . .XL), where Xi is the vector of F times

obtained from a real number sample in the interval (0, 1).
Step 3:L new features (sn1, sn2, . . . , snL) selected by the decision tree in the split node are obtained by linear
weighted summation; that is, sni = s1 ∗ xil1 + s2 ∗ xil2 + · · ·+ sF ∗ xilF; i = 1 : L.
Step 4: The best new feature is selected by the Gini index as the splitting property of the node. The Gini index
can be used to measure the purity of the node, and we use the minimum distance based on the Gini index to
select the splitting attribute.
Step 5: Each node is constructed recursively until the node sample has only a single category, which guarantees
the complete growth of the decision tree.
Step 6: Repeat steps (1)–(5) N times to generate a random forest of scale N.

The improved random forest algorithm proposed herein further extends the attribute domain,
which further reduces the relativity of the decision tree. Since the improved RF does not restrict the
amount of the combining features, the mean value of the linear combination feature number is a random
one. Thus, the original feature space F can be expanded to a γ-dimensional (γ = C1

N + C2
N + · · ·+ CN

N)

feature space that contains not only the original feature space, but also any combination of features.
C here represents a combination of features. Compared with the traditional random forest algorithm,
the feature information space of the proposed algorithm is more extensive.

3.4. Noise and Burr Removal

After finishing the image segmentation, some noise points or burrs remained. To remove these
sources of noise, and thereby improve the accuracy of the segmentation result, we used a median filter
w to minimize the noise, and then removed the result of the burrs and the noise from the binary image.
A three-pixel window was slid over the entire image, pixel by pixel, and the pixel values from the
window were sorted numerically and replaced with the median of the neighboring pixels.

3.5. Evaluation Methods

The accuracy of the segmentation was then evaluated with three quality factors: Qseg, Sr,
and an error factor Es. The factor Qseg is based on both kernels and background regions, and ranges
from zero to unity. Qseg reflects the consistency of all the image pixels, including the leaf part and
the remaining part, and Qseg = 1 represents a perfect outcome. Conversely, the factor Sr reflects the
consistency of only the leaf parts. From the perspective of an image, it reflects the completeness of the
segmentation results. Furthermore, Es indicates the portion of misclassified leaf pixels relative to true
total leaf pixels. These evaluation indicators are calculated as follows:

Qseg =

∑ i, j = a, b
i, j = 0

[
M(δ)i, j ∩N(δ)i, j

]
∑ i, j = a, b

i, j = 0

[
M(δ)i, j ∪N(δ)i, j

] , (10)

Sr =

∑ i, j = a, b
i, j = 0

[
M(δ)i, j ∩N(δ)i, j

]
∑ i, j = a, b

i, j = 0

[
N(δ)i, j

] , (11)
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Es =

∑ i, j = a, b
i, j = 0

[
M(δ)i, j ∩N(!δ)i, j

]
∑ i, j = a, b

i, j = 0

[
N(δ)i, j

] , (12)

where M is the set of leaf pixels (δ = 1) or pixels for other parts (δ = 0) separated by the segmentation
method, N is the ground truth for these two parts, i, j are the row and column coordinates of an image,
respectively, and a, b are the width and height of the image, respectively. Furthermore, “∩” is a logical
“and”, “∪” is a logical “or”, and “!” is a logical “not”. The accuracy of the segmentation can be measured
by comparing M and N on a pixel-by-pixel basis. In addition, the mean intersection-over-union (mIOU)
serves to determine the processing precision for the validation sets. It generates two boxes called the
“predicted bounding box” and the “ground-truth bounding box,” and then compares the overlap rate
between them. The schematic diagram and formula are given by

mIOU = mean
(Detection Leaf Area∩Ground Truth

Detection Leaf Area∪Ground Truth

)
. (13)

Our goal is to take the training images plus the bounding boxes, construct an object detector, and
then evaluate its performance on the testing set. The mIOU varies within the range [0, 1], and mIOU > 0.5
is normally considered a “good” prediction.

4. Results

This section compares the performance of the RF-based image segmentation method with the
performance of three other conventional segmentation methods: HSV segmentation based on color
thresholding, edge detection-based image segmentation, and the convolutional neural network
model called “DeepLabv3+” (Table 3). Moreover, the traditional RF method is also introduced to
compare with the improved RF algorithm proposed herein. The HSV color space differs from the
standard RGB color space, because the former separates the pixel intensity from the actual color of
the image. This is useful for our dataset because illumination conditions varied between images
due to outdoor conditions. Using only the hue channel from the HSV image, we applied an Otsu
threshold to extract the leaf area from the other parts of the image. The edge-detection-based algorithm
(EDA) completes the image segmentation by detecting the gray-level mutation part. This type of
mutation generally corresponds to an extreme point of the first-order derivative, or the zero crossing
of the two derivatives. In this paper, we use the Roberts operator as a differential operator for our
edge detection. Furthermore, DeepLabv3+ is a convolutional neural network model designed for
pixel-based semantic image segmentation. It builds upon the DeepLabv3 design and combines a spatial
pyramid pooling structure with an encoder-decoder structure, in order to achieve state-of-the-art
segmentation results. Note that the DeepLabv3+ is based on the open source code available at
https://github.com/tensorflow/models/tree/master/research/deeplab. The checkpoint was initialized
by using the PASCAL VOC dataset with the following parameters. We also used the following
hyper-parameters in all our experiments: The Base Learning Rate was 0.01, the Momentum was 0.9,
the Dropout was 0.5, and the Iteration Time was 1000.

Table 3. Parameter settings of DeepLabv3+.

output_stride 16

crop_size 513 × 513

initial_learning rate 0.007

atrous rates [6,12,18]

https://github.com/tensorflow/models/tree/master/research/deeplab
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4.1. Estimating Maize Leaf Coverage with Different Image-segmentation Methods

To validate the use of the segmentation model with different theoretical bases, including color
space transformation (HSV), gray-level-change detection (edge detection), ML (RF and improved RF),
and DL (DeepLabv3+), all images in the dataset (i.e., the 600 original images and the 1800 augmented
images) were used to train the model. Here, to show the reliability of the different methods, we choose
five sample subgraphs with different leaf coverage (Figure 3).
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Figure 3. Estimate of the maize leaf coverage generated by different methods. Panels (a–e) show
leaf-coverage images selected at random from the dataset.

4.2. Segmentation Accuracy

Figure 4 compares the accuracy of the segmentation (Qseg, Sr, Es) of the proposed method with
that of four other methods. The HSV and EDA produce a relatively low Qseg with the highest standard
deviation (SD). Furthermore, DeepLabv3+ and RF are second and third, with an average Qseg of 0.65
and 0.82 and a much lower SD. Of all these methods, the improved RF method produces the highest
mean value of Qseg and has the lowest SD. It also produces the highest Sr and the lowest SD. For the Es

index, HSV produces the most misclassified pixels, and the improved RF method produces the fewest
misclassified pixels.
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Figure 4. Comparison of the mean accuracy rate (Qseg, Sr, and Es). Comparison of the segmentation
quality for the hue-saturation-value (HSV), edge-detection-based algorithm (EDA), random forest (RF),
DeepLabv3+, and the proposed method (improved RF). The color bars indicate the mean value of the
indices, and the black lines represent their standard deviations.

To test the efficacy of the augmentation, the image dataset without the augmented images was
used independently.

From the results given in Tables 4 and 5, we conclude that two classifier-based segmentation
methods (DeepLabv3+ and the improved RF) produce the highest mIOU scores (0.7984, 0.8237 and
0.7916, 0.8055, respectively) which indicates that these two methods perform well on alternative
datasets. These two methods also produce the smallest change in the mIOU score for the two training
sets (0.9% and 2.3%), which means that they maintain good segmentation even when the quantity of
data changes. The mIOU score in Table 5 is better than that in Table 4 because the augmentation of the
original dataset improves the final accuracy.
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Table 4. mIOU scores for different methods applied to the training or validation dataset.

Method mIOU

HSV 0.4728
EDA 0.5941
RF 0.7316

DeepLabv3+ 0.7984
Improved RF 0.8237

Table 5. mIOU scores for different methods applied to the original training and validation datasets.

Method mIOU Change (%)

HSV 0.4021 17.5
EDA 0.5364 10.8
RF 0.6897 6.1

DeepLabv3+ 0.7916 0.9
Improved RF 0.8055 2.3

The introduced techniques were also compared with the three well-known color index methods,
the excess green index (ExG), the excess green minus ExGR and the color index of vegetation extraction
(CIVE) [21]. We used ExG to provide a clear contrast between kernels and background: ExG = 2 ×
Green − Red − Blue. It used an automatic thresholding method that enabled background and foreground
segmentation based on the bimodal distribution of the pixel. ExGR combined ExG and the excess red
index to improve the performance of ExG: ExGR = ExG − (1.4 × R −G). CIVE evaluated color features by
providing a greater emphasis on the green area: CIVE = 0.441R − 0.811G + 0.385B + 18.78745.

We concluded from the results in Table 6 that relative to the other three common methods
mentioned in this paper, the proposed method could obtain a greater mean value of these four
indicators. It produced the highest quality of segmentation indices among the other three algorithms
and had the lowest misclassification rate.

Table 6. Comparison of segmentation quality for ExG, ExGR, CIVE and the proposed method (improved RF).

Method Qseg Sr Es mIOU

ExG 0.59 0.57 0.45 0.38
ExGR 0.61 0.60 0.38 0.47
CIVE 0.55 0.53 0.46 0.50

Improved RF 0.87 0.86 0.18 0.81

5. Discussion

The goal of this study is to find a reliable way to estimate the leaf coverage in the maize seedling
stage based on UAV remote-sensing images. To reduce cost and improve efficiency, this goal is
achieved by using image-processing technology rather than labor-intensive field surveys. To be able
to use this efficient image-based method in all conditions, it must be sufficiently robust to handle
dynamic illumination conditions and complex changes in morphology. Thus, to produce robust results,
the image analysis pipeline must consider the various perturbing effects. Verifying the accuracy of
these segmentation methods can also be a significant challenge. Although the experimental results
in Section 4 for the proposed improved RF-based method are consistent with the manual validation
data, further research is required to determine the adaptability of the proposed method. The results
show that the segmentation accuracy depends strongly on the light intensity, the resolution of the
training image and the sensitivity to noise. Here, we analyze how these factors affect the accuracy of
the segmentation results.
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5.1. Dependence of Image-segmentation Models on Illumination

In the field, the light intensity changes constantly. Unlike single plants grown in pots in
greenhouse facilities, segmenting vegetation in a field-grown plot is complex. Factors such as changing
weather conditions, and the solar radiation angle that evolves during the day, affect the results of the
image segmentation.

To study how the method responds to different illumination conditions, we used the image
brightness function of Photoshop CS6 to adjust the luminance components. The original image
brightness was used as the central value for the brightness adjustment, to produce five images of
varying luminance (two brighter and two darker than the central value).

The color lines in Figure 5 show how the indices vary as a function of the illumination conditions
when using the proposed improved RF method and the four comparison methods. Specifically, almost
all these methods have the lowest Qseg and the highest Es for Level 1 light intensity, which indicates
that low illumination intensity seriously degrades the image-segmentation accuracy. The improved
RF method and DeepLabv3+ method produce the highest Qseg and Sr for Level 2 light intensity,
whereas the three other methods do the same for Level 3, which indicates that the moderate light
intensity tends to improve the image-segmentation accuracy. Furthermore, the improved RF and
DeepLabv3+ methods performed well for all evaluation indicators (with larger values and smaller SD),
indicating that they are less sensitive to varying illumination intensity. The accuracy should be further
improved by expanding the training dataset, introducing more pixel-based features, and in particular,
by adding images under different illumination conditions for training.
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5.2. Dependence of Image-segmentation Models on Image Resolution

Choosing original images with the proper resolution is vital for ensuring operational efficiency
and accuracy. We therefore verified the reliability of the proposed method for various image resolutions.
The lower-resolution images were resized to four different resolutions by scaling down the original
image resolution to obtain images with resolutions ranging from 1024 × 1024 pixels to 32 × 32 pixels.

Figure 6 shows the segmentation accuracy for different image resolutions. The curve shows that
the resolution of the input image strongly affects the image-segmentation accuracy for both the HSV
and EDA methods, which we attribute to their pixel-based characteristics. The color characteristics,
or the grey level, change completely when the image resolution changes. No such abnormal fluctuation
appears in the results of the other three ML-based or DL-based methods, because their accuracy
depends only on the size of the training set, and not on the resolution of the input images. Thus, cameras
with lower resolution, such as GoPro or mobile phone cameras, could be adapted to furnish the data.
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5.3. Dependence of Image-segmentation Models on Image Noise

Image degradation caused by random errors is called image noise. Generally speaking, all factors
that hinder the human perception of images can be called “noise”. The process of image generation
often introduces noise that degrades the images. Image noise can be divided into two general categories:
External noise and internal noise. External noise refers to noise caused by sources external to the
system, whereas the internal noise refers to noise caused by the internal electronics of the system.
To determine whether noise degrades the image-segmentation accuracy, we generated noisy versions
of the original dataset and of the augmented dataset by adding three types of noise: Gaussian, Poisson,
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and salt and pepper noise. In addition, to understand how the use of a denoising algorithm for
preprocessing affects the final results, we filtered the noisy data through a denoising median filter.

As shown in Figure 7, the results of the improved RF method with no noise filter are more
accurate than those for the HSV, EDA, and RF methods, but slightly less accurate than the results of the
DeepLabv3+ method.

However, when using the median filter, the results of the improved RF method are more accurate
than those of the DeepLabv3+ method, which shows that noise reduction is important for proper
feature extraction.Appl. Sci. 2019, 9, x FOR PEER REVIEW  16 of 18 
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the results for the different types of noise: (1) Gaussian, (2) Poisson, (3) salt and pepper, (4) Gaussian
noise removed by a median filter, (5) Poisson noise removed by a median filter, (6) salt and pepper
noise removed by a median filter.

6. Conclusions

Timely extraction of meaningful data from a large number of high-resolution images is currently
the bottleneck in high-throughput field phenotyping, so developing more rapid image-analysis
pipelines is imperative. In the present study, we use an improved RF-based segmentation method
to estimate maize leaf coverage in the seedling stage. First, a custom training and validation image
dataset captured by using a UAV remote-sensing platform was preprocessed through a standardization
procedure. Features based on color and texture were then input into an improved RF classifier as
the training target, which we used to generate a set of binary masks for leaf coverage in the images.
A comparison with four conventional color-based or DL-based methods shows that the proposed
method produces more accurate image-segmentation results (an improvement of 15%–30%) as per the
established evaluation system. Two main conclusions are warranted, based on these experimental
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results: (i) The dataset size is critical for DL methods, and (ii) preprocessing the data to ensure the
correct color space improves the results for all methods. Based on the characteristics of ML itself,
more abundant training data are crucial to improving the accuracy of the results. In future research,
the use of an alternative augmentation method would be the easiest to test without requiring more
data collection. In addition, we should add multiple precomputed features to the input data in order
to increase the performance of the model.
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