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Abstract: Carbon fiber reinforced polymer (CFRP) plays an important role in many fields, especially
in aviation and civil industries. The electrical conductivity of CFRP is critical for its electrical behavior,
such as its lightning strike vulnerability, electromagnetic shielding ability, and potential uses for
self-sensing. In addition, the electrical conductivity is related to the mechanical integrity. Therefore,
electrical properties can be measured as an indication when detecting delamination and other defects
in CFRP. This review provides a comprehensive basis for readers to grasp recent research progresses
on electrical behaviors of CFRP.
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1. Introduction

Research and development in the field of materials is largely driven by application demands.
Carbon fiber reinforced polymer (CFRP) is a composite material composed of a polymer resin and
carbon fibers. CFRP has shown enormous potential in many fields, such as sports and the aircraft
industry. Particularly, CFRP is widely applied in automotive and aerospace because of its great
potential strength, lightweight, non-corrosion, and excellent fatigue resistance [1,2].

Over the last two decades, the global demand for carbon fibers has increased rapidly and is
expected to reach 140,000 tons in 2020 [3]. In the automobile industry, CFRPs account for 17% of
auto weight and the application of CFRPs can reduce auto weight by 30% [4,5]. For aircrafts, CFRPs
account for 50% of the total weight of structural elements and the application of CFRPs can reduce
the weight of structural element by 20% [6]. The applications of carbon fibers, especially CFRP, in
the civilian aerospace industry are rapidly increasing. CFRP was first applied in astronautics and
aeronautics in 1950s [7]. CFRP is applied in primary load-bearing structures, such as wing planks,
fuselages, sandwich panel skins [8]. According to Boeing’s official website, carbon fiber composites
only account for 3% of a Boeing 767’s total weight [9]. The proportion in Boeing 777 model increased
to 7%. Boeing 7E7 containing about 50% CFRPs can reduce 20% of fuel consumption compared to
airliners of the same size [10]. Especially, the wings and fuselage of Boeing 787 Dreamliner was made
of CFRP [11]. A350-XWB was mainly made of composite materials, especially CFRPs. In the future,
the weight proportion of CFRPs in aircrafts will exceed 50% [12]. In the construction industry, CFRP
was first used to strengthen the Ibach Bridge in Switzerland in 1991 [13]. In civil engineering, CFRP is
currently being adopted to repair and improve civil structures [14].
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The cost of CFRP laminates is higher than that of orthodox metals in aircrafts. However, the
application of CFRP is still valuable due to the fuel cost reduction and longer material life cycle. The
application of CFRPs will contribute substantially to the reduction of CO2 emission over the total life
cycle of aircrafts [15].

However, the application potential of CFRP is generally reduced by high safety factors. During
their service life, due to impacts and fatigue loads on CFRPs, local damages such as delamination may
be formed. However, failure prediction is not reliable so far. New problems in these structures made of
composite materials remain to be solved [16]. Besides, composites such as CFRP are complex materials
exhibiting distinct anisotropic properties [17].

CFRPs have found wide applications in antennas [18], transducers [19], aircrafts [6], automobiles [4],
etc. In order to assess damages that occur during the production and the process of using, several
non-destructive methods have been proposed, such as electrical measurements [20]. Furthermore,
the Joule effect, which is used as an innovative, non-destructive method, has been studied in order
to identify interlaminar damages in CFRPs [21]. In addition, CFRPs are expected to solve specific
problems for certain applications, such as novel anti-light techniques in the aerospace industry [22]. In
all the aforementioned applications, the accurate determination of electrical conductivity of CFRPs is a
basic prerequisite.

The paper focuses on the electrical conductivity of CFRPs, which shows anisotropy and significantly
affects the application performance of CFRPs. In Section 2, we describe the structure and conductive
theory of CFRP. Electrical conductivity and its characteristics are emphasized. In Section 3, different
techniques for CFRP conductivity measurements are summarized according to different applications,
i.e., self-sensing, lightening, and electromagnetic shielding. The applications of CFRP conductivity
measurements and techniques are summarized in Section 4. Section 5 describes the necessity and
methods to increase the CFRP conductivity. We then conclude in Section 6.

2. Structure of CFRP and Its Electrical Conductivity

2.1. Structure of CFRP

Typical structures of carbon fibers contain ~90–100% carbon. The plies are arranged to obtain a
multilayer anisotropic composite through tensioning and heating [13,23].

Carbon fibers are characterized by high strength, high modulus, light weight, excellent fatigue
resistance, and low density. Carbon fibers realize the high modulus (900 GPa), thermal conductivity
(1,000 W/mK), and electrical conductivity (106 S/m) [24]. These fibers have become the main material in
many industries. A carbon fiber reinforced composite is composed of matrix, fiber, and an interphase
region [16]. The matrix can endow the composite with key properties. The coefficient of thermal
expansion of carbon fibers is typically much lower than that of most matrices, so carbon fibers
significantly increase the composite stability. Carbon fiber composites are classified based on the fiber’s
length. Compared to short fibers, continuous carbon fibers significantly affect the mechanical, electrical,
and thermal properties of the composites and endow the composites with higher anisotropy [24].

In CFRP, carbon fibers are embedded in a resin matrix. Parallel carbon fibers (conductor) act as
the reinforcement material, whereas the polymer resin acts as the matrix [25] (Figure 1). The matrix
with low strength and stiffness determines the component shape [26]. The plastic matrix can transfer
loads. In a CFRP composite, the thickness of a single layer is 0.05–0.2 mm and a lamina with fibers in
only one direction is called a unidirectional lamina. In order to obtain engineering components, some
layers are stacked to form a laminate composed of several plies with different orientations according to
the required thickness [27] (Figure 2).
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Figure 1. A typical structure of carbon fiber reinforced polymer (CFRP).

Figure 2. A laminate formed by stacking single lamina.

2.2. Conductivity of CFRP and Its Characteristics

In particular, CFRP exhibits poor electrical conductivity and some other unsatisfactory inherent
characteristics. Although carbon fibers are good conductors and epoxy resins show excellent properties
for wide applications, the electrical insulation behavior restricts their applications in many industries.
The electrical conductivity of CFRP can be enhanced by adding conductive fibers. Electrically
conductive channels are randomly distributed within an insulating matrix. The entire CFRP may be
electrically conducting or insulating [28,29].

This fiber directionality determines the electrical anisotropy in CFRP. The electrical conductivity
is much higher in the fiber direction and lower in the direction perpendicular to fiber direction [1,30].
The conductivity of unidirectional CFRP composites is much lower than that of metals by a factor of
about 1,000, whereas the conductivity in cross fiber direction is lower by up to more than 100 times [1].
If the coupling capacitance between fibers are not considered in CFRP, under ideal conditions, the
current is believed to only flow through individual carbon fibers due to the surrounding insulating
polymer. If the carbon fibers were perfectly straight and did not contact adjacent fibers, CFRP would be
highly insulating in the non-fiber direction. In fact, the electrical conductivity of CFRPs in the non-fiber
direction is not zero since the ideal conditions cannot be met. Carbon fiber itself is not a straight fiber
but a wavy fiber (Figure 3). Due to inter-fiber contact points, the current may flow from one fiber to
another [31]. The electric conductance shows similar characteristics in the thickness direction. The
inter-lamina makes the electric conductance of the out-of-plane direction much smaller than that of 90◦

direction. Since the electric conductance of 90◦ and out-of-plane is related to fiber contacts, the total
electrical impedance of a piece of CFRP composites depends on the impedance of all the fibers [32]. The
chance of contact between adjacent fibers increases with the increase in the fiber volume fraction. The
area contains rich resin among CFRP plies, thus decreasing the out-of-plane electrical conductivity [33].
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Figure 3. Curving carbon fibers in CFRP.

It is generally believed that unidirectional CFRP laminates shows anisotropic electrical properties.
That is to say, the conductivity along the direction perpendicular to fibers is relatively small, whereas
the conductivity along the fiber direction of the composite can be calculated with fiber-volume fraction
and total single-fiber conductivity [29]. For an ideal unidirectional composite, the composite resistivity
parallel to the fibers σcp can be calculated as [34]:

σcp = σf/vf (1)

where vf is the volume fraction of fibers; and σf is the resistivity of carbon fibers.
If conductivities in all three directions are considered, the conductivity tensor of the CFRP plate

can be expressed as [35,36]:

_ =


_Lcos2(_) + _Tsin2(_) _L− _T

2 sin _(2_) 0
_L− _T

2 sin _(2_) _Lsin2(_) + _Tcos2(_) 0
0 0 −CP

 (2)

where σL and σT are, respectively, the longitudinal and transversal conductivities of plies; σCP is the
cross ply conductivity; and θ is the orientation of each ply.

As CFRPs are not as conductive as metals and they are anisotropic, it is necessary to
understand the electrical conductivity of CFRPs for the purposes of accurately predicting some
electrical properties [37–41]. However, the properties are unknown and should be measured in
advance [35,38,42,43].

3. Relationship Between Conductivity and Other Characteristics of CFRP

3.1. Self-Sensing and Conductivity

A material can sense its own properties, such as stress, strain, temperature, and damage, indicating
that the material has the self-sensing ability. The self-sensing ability is important in aircrafts and
other industrial applications since it can improve the structural performances. The sensing can be
realized through measuring electrical resistance/impedance [44,45]. Self-sensing is different from
damage sensing. To some degree, damage sensing based on electrical conductivity measurement
is part of self-sensing. Zhu pointed out that the origin of damage was different from that of strain
(which relates to the stress) [46]. Damage is related to irreversible fiber breakage, delamination,
matrix deterioration, interfacial debonding, etc., whereas elastics strain is related to subtle reversible
microstructural changes [47,48].

Strain, temperature, and damage affect electrical properties of CFRPs [17,49,50]. The idea is
to conduct electricity through fibers and measure resistivity changes between multiple electrodes.
Damage or straining of the composite can impede current pathways and as a result, the resistance
of an equivalent circuit made of carbon fiber network increases. Therefore, strain, temperature, and
damage may be determined by measuring the electrical resistivity of laminates without embedded
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sensors [51–55]. Hence, self-sensing relies on the fibers themselves to act as the sensing elements and
minimizes any structural attrition due to sensor incorporations [56].

Significant progress has been made in the multi-functionality of CFRPs. When CFRP composites
are applied in the self-sensing technology, only a portion of composites are generally used as the
sensor [57–62]. The electrical resistivity of composites could indicate damage and strain. Resistivity
in the fiber’s direction could indicate the fiber’s breakage damage, whereas the resistivity in the
through-thickness direction could indicate the delamination damage [49]. The resistivity in both
directions could indicate the longitudinal strain since the strain caused the degree of fiber alignment to
increase, thereby decreasing the longitudinal resistivity and increasing that in the through-thickness
direction [63]. However, the volume of the composite as the sensor is less amenable to spatial
distribution sensing [53]. The interlaminar interface acted as a sensor, whereas the interlaminar
interface acted as a thermocouple junction or a thermistor. The thermistor function was based on
the mechanism that the contact electrical resistivity of the interlaminar interface decreased with the
increase in temperature [53].

The self-sensing technique is a valuable, non-destructive detection method and has been extensively
explored [64]. The electrical conductivity of CFRPs has been explored for different applications involving
carbon fibers [65,66]. Kupke et al. investigated mechanical damages during fatigue tests by measuring
the electrical resistance in specimens [20]. The self-sensing ability of these composites is realized
through the piezoresistivity phenomenon [46]. Todoroki and his co-workers concentrate on identifying
the interlaminar’s damage shape and size in multi-ply CFRP laminates. They adopted reinforcement
carbon fibers as sensors to identify the delamination crack in thin CFRP laminates. The change of
electrical resistance is a main parameter to indicate the location and dimension of the delamination [67].
The authors also used the time difference between the measured signals reflected from a transmission
line end and from damage respectively to determine the location of the damage [68]. The time difference
reflectometry (TDR) method would be used to detect damage caused by light strike at a fastener as
well [69]. Several similar studies used silver paste utilized with the circumferential lead wires to detect
damage in unidirectional CFRP [70].

3.2. Conductivity and Lightning Strike

3.2.1. Why is CFRP Vulnerable to Lightning Strike?

Recently, the application scope of CFRPs has been largely expanded. Lightning strikes an aircraft
at least once a year on average and seriously threatens the operation safety of aircrafts [71–74]. CFRPs
have high in-plane electrical conductivity but low through-thickness electrical conductivity and can be
more easily destroyed by lightning strikes [75,76]. In case of lightning strikes, a lot of energy is delivered
rapidly, so ionized channels expand immediately. In traditional aircrafts, lightning may flow along
the aluminum skin without serious damage. However, composite structures with lower conductivity,
such as CFRPs, cannot conduct away the large electrical current from a lightning strike and lightning
may pass through the aircraft structure, vaporize cables, weld hinges on aircraft surfaces, explode
fuel vapors, and generate serious consequences. Damages, which are deeper in laminates with poor
conductivity in thickness direction, may lead to the catastrophic accidents of CFRP structures [77–80].
Electromagnetic interference may affect the functions of electronic and electrical systems too [81]. This
has led to more complicated lightning strike protection problems [82].

In previous studies, Feraboli explored lightning strike damages on carbon/epoxy specimens under
different currents and found that electrical conductivity was a key parameter for developing effective
lightning strike protections (LSP) [22,83]. Hence, it is necessary to further explore the relationship
between lightning strike damage mechanisms and electrical conductivity. The effect of a lightning
strike can be reduced by diverting electrical currents or designing the CFRP components [22,84].
These lightning protection measures are also applicable to other vehicles. Todoroki et al. analyzed
the lightning strike behavior in CFRP materials through the impulse current testing [85]. The
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inhomogeneous and anisotropic electrical property determines the damage types such as fiber failure,
delamination or decomposing of polymer matrix. Lately, in order to explain the failure mechanism by
means of numerical simulation and experimental testing, the researchers performed a thermal–electrical
analysis of CFRP laminates suffered from the artificial lightning striking [86]. The conductivity along
the thickness direction is in a linear relationship with temperature. The delamination zones and
damage depths obtained from numerical analysis were consistent with the thermal damage area
observed from experimental results.

Many studies into the simulation and experimental methods have been conducted in this field [87].
Through artificial lightning testing on carbon woven fabric/epoxy laminates [88], damage characteristics,
models, and mechanisms have been evaluated based on measurement results. With a thermal–electrical
model, the ablation damage of carbon woven fabric/epoxy laminates under simulated lightning current
was simulated and the electrical conductivity in the thickness direction varied with the pyrolysis degree
of composite materials. Through optical visualization experiments with CFRP laminates, Sonehara
explored lightning impulse current discharge phenomena and found that the propagation speed of
shock waves was influenced by the thermal and electrical conductivities of specimens [89]. Ogasawara
et al. explored quasi-isotropic laminated CFRPs through simulation and experiments and analyzed the
lightning strike damage behavior of CFRP structures. Under the peak current of 40 kA, with finite
element method (FEM), the damage condition was investigated through thermal and electrical analysis
and experimental results were consistent with numerical results [85].

3.2.2. How to Avoid Lightning Strike for CFRP?

For the purpose of minimizing lightning strike damage, several solutions have been developed.
Gagne and Therriault have published a review of lightning strike protection of composites, providing
a broad introduction to lightning strike protection of aircraft made from CFRP structure. They pointed
out that since lightning strikes carry large electrical currents, aircraft LSP requires materials with a
high conductivity to avoid structural damage [72]. From the perspective of electrical conductivity, LSP
solutions have been adopted in novel aircrafts, including Airbus A350 and Boeing 787. The solutions
can largely decrease the lightning strike damage in experimental studies [72,77,90].

Traditional Methods

Metal alloys have high thermal and electrical conductivities, so the lightning strike damage of
metal aircraft structures is limited. Metallic strips arranged on the top of CFRPs can avoid the lightning
strike damage. Copper or aluminum alloys with excellent conductivity can protect CFRPs against the
lightning strike on horizontal and vertical composite stabilizers.

Traditionally, lightning protection of composite aircrafts is based on methods such as incorporating
a conductive metallic mesh [77,91]. As a continuously conductive outer layer, the mesh can dissipate
indirect or direct electromagnetic interference effects. The similar problems exist in CFRPs of other
components, such as wind turbines and masts. More electrically conductive CFRP structures should
be adopted in order to reduce or avoid lightning strike protection materials in aircrafts. Although the
efficiency of this method has been verified, the metallic mesh also increases the weight and offsets the
advantages provided by the high strength and stiffness of CFRP [92].

Novel Methods

Metal mesh increases the manufacturing cost and structural weight and lightning strike damage
cannot be avoided by metal mesh even though LSP is adopted in CFRPs. Therefore, a new solution is
highly desired for the purpose of improving the lightning damage resistance in the CFRP [6]. To reduce
the structural weight, random Bucky paper, aligned carbon nanotubes (CNTs) and other approaches
have also been considered. Material selection and protective measures are significant ways to reduce
lightning strike damage. Aerospace structures should be developed based on the consideration of
lightning strike protection. The main factor influencing the lightning strike damage in composite
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structures is the low electrical conductivity of resin. Several techniques were developed to increase
the conductivity of epoxy. Carbon black was generally used as the reinforcement to increase the
conductivity of epoxy in CFRPs. CNT reinforcement has been recently applied for this purpose since
CNT has excellent mechanical properties and high electrical and thermal conductivities [93].

3.3. Conductivity and Electromagnetic Shielding

Electromagnetic interference (EMI) shielding is also widely concerned in communication and
electronic industries [94,95]. EMI can be defined as radiated and/or conducted electromagnetic signals
emitted by electrical circuits. EMI refers to the ability to block electromagnetic radiation [96].

As electromagnetic radiation tends to interfere with electronics, EMI shielding of both radiation
and electronics source is widely required. The performance of a shielding material involves shielding
effectiveness (SE). EMI shielding mainly involves a reflection mechanism [97,98]. For the radiation
reflection, the shield should have mobile charge carriers, which can interact with the electromagnetic
fields. Therefore, the shield tends to be electrically conductive, although it does not require a high
conductivity. Metals, such as steel, copper, and aluminum typically serve as excellent EMI shielding
agents [99]. Since metal shielding is characterized by high cost, heavy weight and susceptibility to
environmental degradation, polymer composites with discontinuous conductive fillers are widely
employed in EMI shielding. So far, EMI remains a challenge due to the rapid development of
electronic devices.

CFRP composites, used in aeronautic industry, have a good shielding and absorbing effectiveness
while presenting high mechanical and chemical resistance per unit weight [100]. The high electrical
conductivity of carbon fibers allows for good electromagnetic shielding effect since the electric field
lines are attracted to conductive fibers and result in surface electric currents [101–103]. Therefore,
it is necessary to explore the structure and function of carbon fiber-based composites [104]. The
orientation and distribution of carbon fibers largely influences the electrical conductivity and shielding
effectiveness of the composites. The exposed clearance and the destroyed conductive network mainly
led to the decrease in the shielding effectiveness [105].

In summary, the SE of a composite material is mainly related to the filler’s dielectric constant,
intrinsic conductivity, and the aspect ratio [106]. Several approximations have been proposed for SE of
composite materials in recent years. Pomposo et al. proposed a far-field calculation equation of SE for
electrically thin samples [107]. Yang et al. adopted the “Classical Good Conductor Approximation”
and “Simon Formalism” in SE calculations. However, various equations yielded significantly different
results [108].

Two common approaches are generally used to achieve EMI shielding of CFRP for plastics
products. One is coating with the conductive metal, the other is blending with conductive fibers or
particles [109]. The addition of metal powders into CFRP composites was a cost-effective method for
improving shielding effectiveness [98].

The incorporation of conductive fillers in the polymer matrix can improve the electrical conductivity
of plastics and solve the EMI problem. Although adding more carbon fibers can yield satisfactory
shielding effectiveness, it is difficult to produce composites with high fiber volume fraction through
extrusion and injection molding. More carbon fibers also significantly increase the cost. The problem
can be solved by adding a thin layer of metal on carbon fibers’ surface. In addition, metal-coated carbon
fibers also endow polymer composites with high modulus, light weight, and high strength [110–112].

Another method [108,113] mentioned that the polymer matrix in the composites was typically
electrically insulating, so it could not provide shielding. However, electrically conducting fillers endow
the composites with the shielding ability. Both discontinuous and continuous fillers are used for this
purpose [114].
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4. CFRP Conductivity Measurements and Techniques for Non-Destructive Testing Applications

CFRP with continuous carbon fibers are also widely applied in primary structures of aircrafts.
However, CFRPs are typically characterized by low functional and structural properties in the
thickness direction of laminates, so CFRP is seldom considered in electromagnetics [115]. In case
of overheating, lightning strikes, and external impact, composite laminates may suffer from wide
structural damage [116]. The increasing demand for improved CFRP performance arouses new
engineering solutions to enhance the performances of CFRP and other fiber-reinforced composites [77].

In most cases, electrical conductivity is an important parameter providing useful information for
CFRP quality assessment, non-destructive testing, and performance improvement. Several approaches
are used for the CFRP conductivity measurement. Some approaches have focused on the fiber’s
orientation or through-thickness conductivity. The Four Points Bridge technique has been used to
determine the electrical conductivity of CFRPs, but this technique is unreliable and difficult in many
cases due to low dimensionality and high anisotropy of CFRPs [42,43]. Contactless methods have
been proposed for measuring CFRPs’ bulk electrical conductivity. However, the anisotropy has not
been explored [43,117]. The 0◦/90◦ electrical conductivity ratio range is 50 to 500. The resistance
of CFRP increased due to internal damage, such as delamination and fiber breakage [118–120]. In
the following sections, different techniques for CFRP conductivity measurements are described and
classified according to different applications.

4.1. Conductivity for Non-Destructive Testing

In spite of the above advantages, CFRPs are not used at their full potential in critical load-bearing
structures because it is difficult to track the initiation and propagation of damage. As a consequence,
CFRPs are not designed optimally, but they are designed with a high safety factor. Therefore,
long-term critical structural applications, require low-cost and reliable techniques to detect possible
degradation [57,121,122].

Defects in all composite structures may result in a loss of mechanical properties and tend to
increase with structural complexity. Defects arise in the production process, when they are expected
to be repaired if detected, and during service [8]. During the manufacturing process, layers of
pre-impregnated fibers or thin plies, are stacked according to the given order and the obtained whole
laminate forms a structurally sound component with desired properties. However, unwanted defects
may be introduced in the manufacturing process. It is difficult to detect many of these so-called defects,
which significantly affect the structural integrity. Material degradation and damage may be generated
in the used composite components. Such damage is typically caused by impact loading and rapid local
temperature changes, continuous cyclic loading. The extent and nature of such damage are related
to many parameters including prevailing environmental conditions. When the defect size reaches a
critical value, it will lead to a catastrophic failure and severe consequences. Therefore, it is necessary
to identify and explore such damages and defects in the manufacturing process and service life of
composite materials [17,49].

Delamination is one of the common failure modes. In all the types of the damages in laminated
structures of CFRP products, the proportion of delamination damage reaches 60% due to the low
through-thickness strength. Therefore, delamination characteristics largely determine the safety of
CFRP products. A delamination is a crack in the resin component between plies of different fiber
orientations. Delamination seriously affects the performance of CFRP products and may cause serious
failures because it is difficult to be visually detected [106,123]. Small areas of delamination can cut off

more than 50% of the compression strength. Delamination decreases the stability of the load-bearing
fibers and may lead to a localized buckling-type of failure mode even under low loads [124–126].
Previous studies on delamination focus on delamination detection through electrical conductivity and
the way to prevent delamination by improving CFRP conductive performance.
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4.2. Delamination Measurements Based on Electrical Conductivity

The basic principle of a delamination test is that cracks and damages are obstacles in an electrical
current path. Therefore, such cracks and damages can increase the electrical resistance. The size, shape,
and orientation of such damages/cracks determine the resistance change, which thus can be used as a
detection indicator of delamination [121].

Due to compound material structures, many destructive methods and non-destructive techniques
have been developed for CFRPs [125], including eddy current testing (ECT) [39,126,127], inductive
thermography [128], and electrical resistivity change methods [129].

4.2.1. Eddy Current Testing

Eddy current testing (ECT) can be used to detect CFRPs. ECT has significant advantages.
It can detect subsurface and surface damages as well as non-magnetic metallic items [130]. Based
on electromagnetic principles, ECT is more suitable for electrical conductive materials such as
CFRPs [39,131].

In ECT, a current-carrying coil is positioned just above the component surface to induce an
electrical field in the composite. Flaws in the material can interrupt the current field and change the
impedance in the coil. The defect severity can be explored based on the changes in amplitude and
phase angle of electrical signals [132,133].

Theoretically, eddy current testing is not sensitive to delamination because eddy currents are
flowing in the direction parallel to laminates and changed slightly by the delamination [1]. It is
concluded that eddy current methods are much more sensitive to broken fibers than delamination [134].
The comparison between ECT and ultrasonic inspection confirmed that the ultrasonic method could
precisely detect delamination defects, but the detection results were not consistent with ECT results.
However, some satisfactory results have been obtained. ECT with the high reproducibility and good
signal-to-noise ratio is a low-cost technique for detecting delamination in CFRPs [135].

Three techniques mentioned above can be used to analyze the delamination in CFRPs [136].
However, the extent of delamination as viewed in the C-scan image and scanning acoustic microscopy
(SAM) image differed from the results achieved by the eddy current inspection. Though it was
not possible to distinguish the two types of defects due to the low resolution, ECT detected both
delamination and interlaminar cracks. Experimental results in Reference [135] clearly showed that
eddy currents could detect delamination growth. Therefore, ECT is a potential method for monitoring
defects in CFRPs.

However, if the sensor used is not optimized according to the frequency requirement for detecting
deeper defects, when delamination occurs in deeper zones, chaotic conductivity arrangements increase
the detection difficulty of delamination [137]. Therefore, these layers or the real volume extension of
the delamination is not complete. Larger sensors with the lower resolution but deeper penetration
depths at higher frequencies should be adopted in ECT. In summary, because of the low electrical
conductivity of carbon fibers, the excitation frequency range of the inductors used in ECT for composites
is ~100–100 MHz [138].

4.2.2. Electrical Resistance Change Method

Most of the reported studies on CFRP testing focus on the electrical resistance change method
(ERCM) for monitoring the bulk resistance of the CFRPs [58,63,139,140]. The relationships between
the recorded electrical resistance change and other conditions (loading conditions and/or mechanical
degradation of materials) were obtained. Experimental findings were verified with finite element (FE)
models. Electrical methods, such as ERCM, can sense the evolution and development of damages in
CFRPs [140–142].

Electrical conductivity-based detection methods were extensively investigated. ERCM had been
used to detect the internal damage of CFRP laminates. The through-thickness resistance is responsive
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to delamination. Since CFRP was adopted as sensors for damage detection in the method, ERCM
did not decrease fatigue strength or static strength. ERCM is suitable to existing structures. ERCM
does not increase the structural weight and shows good monitoring performance in stiffness reduction
caused by fatigue loads. The damage accumulation process can be observed [142–151].

Zappalorto studied the electrical response of a conductive laminate with a delamination,
experimentally confirmed the relationship between orthotropic electric conductance and fiber volume
fraction, and explored the effects of measured orthotropic electric conductance on delamination
monitoring through FEM analyses [32]. Selvakumaran developed an electrical meso-model based on
the consideration of transverse cracks with local delamination for in-plane loading and then increased
the consideration of the out-of-plane loading [121]. The model indicates that the through-thickness and
transverse conductivities of the ply can be changed by the transverse cracking with local delamination.
The model’s capability and accuracy were proven [121]. The fiber volume fraction has significant
effects on the through-thickness and transverse electric conductance, and the through-thickness electric
conductance significantly affects the delamination detection results with ERCM [143]. The influence of
transverse cracks along with delamination was explored by the response surface method [144–146].
The method successfully identified the delamination size and location. The effects of matrix cracking
on electric resistance changes between electrodes were explored by FEM analyses [144]. The data set
of electric resistance changes can be obtained for calculating response surfaces through the simple
calculation with a straight delamination crack model. The data normalization method can significantly
improve the estimation performance [142]. Half of the applied electric current flowed in the surface
layer along the fiber direction, whereas the other half tended to flow in the bottom surface layer
along the fiber direction [146]. The difference caused the electric current flow along the thickness
direction as well as a large electrical resistance change in front of a delamination crack. The same
research group monitored the location and dimension of a delamination crack in the specimen through
multiple electrodes mounted on the single surface [148]. The relationship between delamination
locations/dimensions and measured electrical resistances were experimentally explored by response
surface method and the least square errors method.

The ERCM involves the application of two or four electrodes for sending current and different
numbers of electrodes for measuring voltage [145,150]. The differences between two-electrode ERCM
and four-electrode ERCM are listed as follows [34,151]:

(1) Four electrodes (Figure 4): in the four-probe technique for piezoresistance analysis of CFRP
composites, both the inner measurement electrodes and outer current introduction electrodes are
mounted on the external laminate surface and subjected to the mechanical strain. Compared to the
two-electrode technique, the four-electrode technique is suggested for monitoring the changes in
resistance. The four-electrode technique can avoid the effect of potential contact resistance changes at
the inner electrodes under the influence of mechanical strain on the contact.

Figure 4. Electrical resistance change method with four electrodes.

(2) Two electrodes (Figure 5): why the two-probe technique other than the four-probe technique
was adopted in some experiments? Firstly, it can avoid the effect of mechanical strain on the inner
probes. Secondly, it can make sure that the measured potential difference reflects the effects of all the
carbon fibers in the entire sample cross section, other than that of the fibers adjacent to the laminate
surface. Wang and Chung indicated that the two-probe technique might lead to the misunderstanding
because the method included the electric resistance change of electrodes.
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Figure 5. Electrical resistance change method with two electrodes.

The change in electric potential caused by delamination was calculated with the equivalent electric
conductance and the method had been proven with the finite different method (FDM) [147]. ERCM is
proven to be an effective method to detect the CFRP delamination. However, ERCM requires a huge
amount of hardware circuits to supply an alternating current (AC) between all adjacent electrodes.
The measurement precision is strongly affected by the contact state between copper electrodes and
specimens. Most of these studies in this field were experimental studies. The mechanisms of damage
to the bulk resistivity change were not theoretically explored [139].

4.2.3. Electrical Potential Change Method

In addition to ERCM, the electrical potential change method (EPCM) was also employed to sense
CFRP delamination. EPCM measures the change in electric potential difference based on the changing
electric current at the two electrodes installed at two opposite ends of a specimen [152].

In ERCM and EPCM, two electrodes are used to send current and different numbers of electrodes
are used to measure voltage. The difference between them lies in the potential measurement direction.
In ERCM, the applied current line coincides with the electric potential line. In EPCM, the two lines do
not coincide with each other [52,153,154]. The one-dimensional (1-D) ERCM is enough for sense the
damage distribution. A two-dimensional (2-D) method is required for determining the damage location.
In the 2-D ERCM, a large array of contacts is required to cover the surface. According to the ERCM
mechanism, each surface requires three contacts, which cannot be realized in the two-dimensional
resistance method. The 1-D EPCM avoids the disadvantages since it can be applied with only the
contacts along specimen edges. The current is applied with one pair of contacts and other contacts are
used to measure the voltage [155].

Early in the 1990s, Todoroki et al. at the Tokyo Institute of Technology explored EPCM and largely
contributed to the development of non-destructive testing of CFRP [156]. Todoroki combined the
response surface method with EPCM to determine a delamination in the laminate [157,158]. However,
extensive experimental data are required in these models for calibration. The calibration is performed
for a given experimental condition. Todoroki et al. also employed a normalization method to improve
the delamination detection performance. The improved method showed better detection performance
for the delamination near specimen edges, but the low performance for the delamination in the middle
of the specimen [159]. A new two-stage estimation method was used to solve the problem and showed
better performance than FEM analysis [160].

4.3. Methods to Avoid Delamination

The electrical conductivity of CFRPs was generally increased in order to prevent delamination
cracking [161]. In addition, resin-rich layers with elastomer particles were also used to toughen
laminated CFRP [90]. However, the highly toughened CFRP showed the lower electrical conductivity
than common laminated CFRP [86]. The electrical conductivity of the former is significantly orthotropic
and easily lead to structural damages in case of lightning strike [85].

4.4. Measurements for Other Flaws (Taking Fiber Waviness as an Example)

When CFRPs are molded, defects may be generated in the CFRP. Fiber waviness, a typical defect,
refers to fiber deformation and is induced by axial loading of carbon fibers [55]. In thin laminates,
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out-of-plane motion of carbon fibers is limited, so in-plane waviness may occur [162]. However, under
large temperature gradients along the thickness direction, out-of-plane waviness is induced in thick
laminates [55,163].

Mizukami and his colleagues [164] proposed a novel probe to detect out-of-plane and in-plane
fiber waviness in unidirectional CFRPs and characterized the orientations with an ECT. The novel probe
could detect in-plane fiber waviness (amplitude: 1.1 mm; length: 15.9 mm) in a thin unidirectional
CFRP specimen at a sufficiently high working frequency. FEM was also used to verify the proposed
method. Variations in phase and amplitude of the received signals obtained in numerical simulation
were well consistent with experimental data. The probe could detect out-of-plane fiber waviness in a
thick CFRP specimen. The out-of-plane fiber waviness was determined based on ring-shaped plots in
complex plane. Mizukami et al. [165] analyzed the obtained signal with extreme values at the edges
and waviness vertex and proposed the possibility of precise waviness location identification.

The variation of the electrical resistivity of CFRP specimens could be taken as a damage analogue
and the related methods could be used in situ as a non-destructive technique (NDT) for continuously
monitoring the working condition of CFRPs [58]. These methods could improve the quality of
composite panels and monitor structural health of CFRP components [63].

5. Necessity and Methods to Increase the CFRP Conductivity

In recent years, CFRP has been widely applied in many fields, particularly in aircrafts. Compared
to metal materials, CFRPs can significantly decrease the weight of structural parts and have been
increasingly widely applied. Epoxy resins with good properties have wide applications, but they show
the undesired electrical insulation and limited the global electrical conductivity of CFRPs [166]. High
electrical conductivity is required in aircrafts for lightning protection and EMI shielding [141,167,168].
Vogt and co-workers showed how the alignment of carbon materials can be used to improve the
conductivity [169,170]. The results showed that when the current was parallel to the alignment
direction, the specimen reached the highest conductivity (approximately 23 S/cm). As the specimen
rotated away from parallel alignment, the conductivity decreased and finally reached the minimum
value (15 S/cm) when the current flowed perpendicularly to the alignment direction, as shown in
Figure 6. Similar results were also obtained by Miyake and co-workers [171].

Figure 6. Conductivity of aligned mesoporous carbon films as a function of the orientation of the
electrodes to the alignment direction of the cylindrical mesoporous [169].

Carbon black (CB), carbon nanotubes (CNTs), and other nano-particles, as well as metal fibers,
have also been used to improve the mechanical performance of composites. Key performances of
the systems constructed with CFRPs have been significantly improved by the above products of
nanotechnology. New plastic materials, such as polyaniline (PANI), are introduced as an effective
method to improve the conductivity of CFRPs [141,172].
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5.1. CNTs/CB

CNTs could largely enhance the electrical conductivity of polymers and improve the interlaminar
fracture toughness of CFRPs [173–175]. In particular, the incorporation of CB significantly reduced the
epoxy resistance [176]. CNTs have the better conductivity than CB. CNTs could be filtered by dense CF
bundles, so CNTs could not be applied in advanced liquid molding processes.

5.1.1. Carbon Nanotubes

CNTs-polymer composites have gained popularity recently over metals [177,178]. After CNTs
were first reported by S. Iijimain in 1991 [179], they have been extensively explored [180–182].

CNTs are new advanced materials, especially in EMI shielding and electronics of aircrafts. CNTs
may exist as a fabric-like format and can be integrated into composite materials. CNTs in the coating
form can realize the better shielding performance. The tensile strength of CNTs is higher than that of
carbon fiber, but CNTs are more flexible. The greatest challenge in the CNTs technology is scaling and
cost reduction. CNTs can reduce 69% weight of pipelines, but CNT formats and manufacturing cost
should be thoroughly considered [6]. CNTs can improve the EMI shielding effectiveness via absorption
and reflection. Adding CNTs significantly improved the absorption, which becomes the main shielding
mechanism [183]. CNT films are popular among different types of CNTs. Upon CNT film interleaving,
the in-plane and out-of-plane electrical conductivities of the laminates were enhanced significantly,
as shown in Figure 7. This is mainly due to the fact that the interleaved CNT film could effectively
enhance the conductivity of resin-rich area [184]. CNT buckypaper as well as insulating adhesives
were developed for the purpose of protecting the CFRP laminate during the lighting strike. Han et
al. proved that CNT buckypaper could facilitate the lightning current to the ground and dissipate
the energy by promoting the electrical conductivity of CFRPs [185]. The major challenge of these
approaches is the preparation of large scale and high quality CNT dispersion [184].

Figure 7. The in-plane, out-of-plane (O/Plane) thickness, and O/Plane volume electrical conductivities
of composites with and without carbon nanotube film interleaving [184].

5.1.2. Carbon Black

CB is the mainstream reinforcing filler applied in rubber compounds. CBs are generally fused
into aggregates in CFRPs [96,186]. CB is a semiconductor and closely related to the rubber industry.
When it is used as a filler, it can endow the product with conductive/anti-static properties [187].

SE increases with the increase in DC conductivity. The increasing process can be divided into
two stages. Firstly, when the DC conductivity increases below the percolation threshold, SE increases
slightly. At this stage, a slight change in the content of carbon filler may lead to the dramatic increase
in the conductivity, but its effect on the SE remains marginal. Secondly, when the DC conductivity
increases above the percolation threshold, a slight change in DC conductivity significantly increases
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SE. At this stage, even though the conductivity increase is not significant, the shielding properties are
highly sensitive to the slight DC conductivity variation [96].

5.2. PANI

Nanoparticles have been often used to increase the electric conductivity of CFRPs. The
through-thickness conductivity was increased by adding CB and CNTs into CFRP laminates [188,189].
However, this improvement is limited by an electrical percolation threshold. For instance, multi-walled
carbon nanotubes (MWCNTs) in CFRPs had an electrical percolation threshold of 2 wt.%.

Polyaniline (PANI) has various applications in electrochromic devices. Insoluble PANI can be
doped into an insulating polymer matrix. Yokozeki reported the development of CFRPs based on
PANI to increase the electrical properties, and found that the obtained CFRPs had the high electrical
conductivity along the thickness direction [190]. Based on the conductivity analysis, electromagnetic
shielding properties of the developed CFRPs were also explored.

5.3. Conductivity Improvement With Nanotechnology and Plastic Materials

Conductive nanocomposites as the matrix could change electrical properties of CFRPs [191–193].
In the manufacturing process of nanocomposites with polymers and conductive fillers, some drawbacks
are generally generated [194]. Sufficient conductive nanofillers should be added to guarantee high
conductivity. However, too much conductive nanofiller also results in the increased viscosity of
the nanocomposite mixture, thus making the production process of CFRPs difficult [195]. The
agglomeration phenomenon of nanofillers often occurs due to the incomplete mixing, thus decreasing
mechanical performances [196,197].

Although the above methods have their own disadvantages, they could enhance the conductive
performance significantly. The electrical conductivity of CFRPs was almost 12 orders of magnitude
higher than that of pure epoxy resin after adding 0.5 wt% multi-walled carbon nanotube (MWCNT) [178].
The air-spraying method was investigated in order to enhance thermal and electrical conductivities.
Single-walled carbon nanotubes (SWCNTs) with carboxylic acid groups were air-sprayed on the
surface of carbon fiber prepreg, which were stacked and processed into carbon fiber laminates [198]. It
was discovered that the electrical conductivity was largely improved by SWCNTs, but the thermal
conductivity was not ameliorated. The electrical conductivity of CNT/polymer composites was
increased to 10-3 S/cm by ~1.0 wt% CNTs. Similarly, after CNTs were grown for only 3 min, the
interfacial properties and electrical conductivity of the CFs were increased largely. The in-plane
electrical conductivity was improved by more than 170%. The interfacial shear strength of carbon
fiber/epoxy composites was increased by ~70%. The electrical conductivity in the through-thickness
direction was improved by 44% [199].

Novel multi-functional composites can be developed based on the synergetic effect of different
ingredients. In summary, a synergistic enhancement has been obtained in the electrical conductivity of
the hybrid CFRP laminate system incorporating CNTs, PANI, and CB [64,93,185,200–202].

Ruoff explored the damage behavior caused by the lightning strike of carbon nanotube (CNT)
doped CFRPs and found that increasing the content of CNT in the resin significantly decreased the
damage region, indicating that the electrical conductivity in the through-thickness direction of the
plate determined the lightning strike damage [203].

Graphene oxide was also introduced into CFRPs using a wet process for impregnating carbon fiber
by epoxy added with Graphene oxide, which resulted in an enhancement in the interfacial performance
and SE of composite [204]. The results showed that the incorporation of 0.1 wt% Graphene oxide
increased SE in the wide range from 5 to 20 GHz by slight enhancement of CFRP conductivity.

5.4. Incorporation with Metal Fibers

At the same time, highly conductive metal fibers could also be incorporated into the carbon fiber
reinforced polymers to increase the conductivity of CFRP. The novel hybrid material proposed is a
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promising approach for advancing the mechanical properties of conventional CFRP-structure [205].
The increased density of the composite is compensated by eliminating the need for additional electrical
system installation items. Electrical conductivity tests are realized on unidirectional coupons with
different steel fiber volume fractions and compared with analytical values [206] and compared to
conventional CFRPs, the electrical conductivity of the hybrid composites with incorporated stainless
steel fibers is up to 4.2 times higher. For a hybrid composite with 18.8 vol% integrated copper cladded
low carbon steel fibers, a conductivity increase by a factor of 29.8 can be verified. C-0, CV-10, CV-20,
V-60, CB-10, CB-20, and B-60 refer to seven multilayered laminates with different fiber volume fractions
and a cured thickness of approximately 1 mm (Figure 8).

Figure 8. Specific electrical resistance longitudinal to the fiberorientation for different (hybrid)
composites [206]. C = carbon fiber; V = stainless steel fiber; and B = copper cladded low carbon
steel fiber.

6. Conclusions

CFRPs play a key role in many industries. CFRP composites are expensive, but valuable in many
fields. CFRPs are extensively used in aircrafts. New large aircrafts are designed with composite wing
and fuselage structures. Aircraft operators have indicated the demand for product upgrades, and
aftermarket providers have provided the solutions for improving the performance and efficiency of
legacy aircraft by incorporating composites. Electrical behaviors of CFRP composites largely determine
their multi-functional applications under electrical effects and have been widely explored.

The electrical conductivity of CFRPs is important for monitoring structural health and protecting
aircrafts from lightning strike. Recent studies on the electrical conductivity of CFRPs are mainly
focused on the electrical conductivity of single carbon fibers. Due to the anisotropic properties of
carbon fibers, the electrical conductivity of CFRPs should be anisotropic as well and cannot be fully
obtained via bulk measurements of CFRP composites. Related studies are largely restricted because
existing experimental techniques cannot be used to examine the anisotropic features of CFRPs. This is
an ongoing work and much yet to be explored.

In the future development of CFRP, more accurate simulation models and theoretical analysis are
required to improve the understanding of CFRPs conductive behaviors in different applications. The
microstructural study of CFRPs may promote the breakthrough of CFRP development. The CFRPs
industry has promising prospects and new innovative products will be developed.
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