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Abstract: Recently, farmers of sweet pepper suffer from the increase of its unit production costs due to
the rise of labor costs. The rise of unit production costs of sweet pepper, on the other hand, decreases
its productivity and causes the lack of its farming expertise, thus resulting in the quality degradation
of products. In this regard, it is necessary to introduce an automated robot harvest system into the
farming of sweet pepper. In this study, the authors developed an image-based closed-loop control
system (a vision servo system) and an automated sweet pepper harvesting robot system and then
carried out experiments to verify its efficiency. The working area of the manipulator that detects
products through an imaging sensor in the farming environment of sweet pepper, decides whether
to harvest it or not, and then informs the location of the product to the control center, which is
set up at the distance scope of 350~600 mm from the center of the system and 1000 mm vertically.
In order to confirm the performance of the sweet pepper recognition in this study, 269 sweet pepper
images were used to extract fruits. Of 269 sweet pepper images, 82.16% were recognized successfully.
The harvesting experiment of the system developed in this study was carried out with 100 sweet
peppers. The result of experiment with 100 sweet peppers presents the fact that its approach rate to
peduncle is about 86.7%, and via four sessions of repetitive harvest experiment it achieves a maximal
70% harvest rate, and its average time of harvest is 51.1 s.

Keywords: sweet pepper harvesting automation; cylindrical robot; vision servo system; image
processing-based; momentum backpropagation

1. Introduction

Manpower decrease and aging in the agricultural sector for food production cause the price rise of
farm products. In order to keep up farmer’s productivity and competitiveness, therefore, it is necessary
to improve and automate agricultural technology [1].

More than 20,000 tons of sweet pepper (in other words, bell-pepper), one of South Korea’s most
cultivated greenhouse plants, are exported abroad annually, with the share of South Korean sweet
pepper in the Japanese market exceeding 60% [2,3]. However, with the recent increase of its unit
production cost due to the continuous rise of labor costs, the productivity of sweet pepper is decreasing
continuously in South Korea [4]. In addition, the commercial value of sweet pepper is reduced by the
harvesting of day laborers lacking harvesting expertise [5]. In order to solve these problems of sweet
pepper harvesting in South Korea, it is necessary to introduce a robot-based automated harvesting
system. In order to carry out a robot-used automated harvest of sweet pepper, it is necessary to
introduce a system which can consider the farming environment of the greenhouse and the location,
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size, shape and color of fruits. It is also necessary to reduce the problem of damaging the stem of sweet
pepper in the course of the harvest.

In the cases of South Korea, there has been active research on the automation of pest control and
the development of automation technology for agricultural work in the interest of crops, but little
research on fruit recognition and harvesting has been conducted recently [6]. In South Korea, Ha
and Kim [7] developed a harvesting robot, which was designed to be suitable for harvesting oriental
melon in a greenhouse, using a 4-axis manipulator structure combining shuttle-type and orthogonal
coordinate-type. Hwang et al. [8] developed multi-functional robot which was designed to cultivate
watermelon in a South Korean greenhouse. Min et al. [9,10] in South Korea developed an end-effector
and a manipulator for a cucumber harvest robot. In contrast to South Korea, researchers around the
world are actively studying harvest robots to automate harvesting operations. Fruit harvesting robots
and fruit recognition methods have been actively studied for the automation of harvesting work [11].
Lin et al. [12] studied detection methods of guava fruit using an RGB (red, green, blue) depth camera,
and then used a state-of-the-art FCN (Fully Convolutional Network) model [13] to segment the guava
fruits and branches from aligned RGB images obtained using the RGB depth camera. The precision
and recall of guava fruit detection were 0.983 and 0.948, respectively. Ostovar et al. [14] studied image
processing methods to detect yellow peppers for a harvest robot and suggested a method to threshold
yellow pepper fruits on a real greenhouse image. A decaying epsilon-greedy algorithm was proposed
to threshold the fruit area of yellow peppers, and the performance of the algorithm to threshold the
yellow pepper fruit area was 91.5%. Wang et al. [15] suggested the stereo matching method to harvest
litchi fruits. Binocular CCD (Charge-Coupled Device) cameras were used to calculate the coordinates
of litchi fruits in real-world coordinates; the highest matching success rate was 97.37% and the lowest
matching success rate was 91.96%. Sa et al. [16] studied the detection method of sweet pepper peduncle
for a harvest robot. RGB depth camera was used to detect peduncles of sweet pepper, and color and
geometry information acquired from the RGB depth camera were used, and then a supervised-learning
approach for the peduncle detection task was utilized; it achieved an AUC (the area under the curve) of
0.71 regarding detection precision of peduncles on field-grown sweet peppers. Kitamura and Oka [17]
suggested a method to recognize sweet pepper fruits for a picking robot in a greenhouse. Regions of
sweet pepper fruit were detected using the reflection characteristic (that fruits reflected light more than
leaves) with LED (Light Emitting Diode) lights, and the recognition success rate for detecting sweet
pepper fruits was 79.2%. Xiong et al. [18] developed a harvesting robot with a cable-driven gripper to
harvest strawberries. A cable-driven gripper used in the system was designed to be robust against
local errors introduced by the vision module, and the harvesting success rate was 53.57%. Barth et
al. [19] suggested a method of angle estimation between the fruit and stem for a harvest robot. The
method used to estimate the angle between the fruit and stem theoretically increased the success rate
from 14% to 52% and impacted the harvest performance.

In order to automate the harvest work, a suitable harvest algorithm is needed for each country’s
cultivation environment. Compared to other countries, South Korea lacks research on the development
of harvest robots for the automation of agricultural work [6]. This study introduces a vision servo
control (image-based closed-loop control) [20] system for a Korean greenhouse environment to improve
the accuracy of sweet pepper harvest. In addition, this study developed an automated sweet pepper
harvest robot system based on a manipulator and an end-effector which could detect a sweet pepper
via stereo cameras, decide whether or not to harvest it, carry out the work of harvest using the acquired
information, and then verify its efficiency.

2. Material and Methods

2.1. Hardware Composition

As shown in Figure 1, the manipulator used in this study is the cylindrical robot which has three
axes, namely a rotation axis, a horizontal axis, and a vertical axis, and is appropriate for a narrow space.
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Figure 1. Coordinate relationship of the manipulator used in this study: (a) three axes (rotation, 
horizontal, vertical); (b) two axes ignoring vertical orientation. 

The cylindrical robot is controlled by height L1, angle θ2, and radius L3 like Figure 1a. The robot 
can carry out works in a narrow space, like a sweet pepper greenhouse, efficiently and easily move 
to horizontally. It has three independent degrees of freedom, and its vertical and horizontal joints 
cross each other. If the degree of freedom of horizontal orientation is ignored, it is a rotating and 
horizontally moving L2-Θ2 manipulator as shown in Figure 1b. The rotation angle θ1 is defined as 
horizontal X-axis, and L2 can be defined as the distance from the rotation axis to the endpoint of the 
end-effector. 

Depending on the environmental characteristics of the sweet pepper farming analyzed by Yu et 
al. [21] and Myung [22], the working area was set up at 350~600 mm from the center of the system 
and 1000 mm vertically. The planting interval of sweet pepper was 1000 mm and the rail intervals 
were 500~600 mm. The working area was set up after considering these conditions. In order for the 
manipulator to be able to transport horizontally and vertically two linear actuators were used. As for 
the linear actuator, which is in charge of vertical transportation: its stroke is 1000 mm; the lead of its 
ball thread is 10 mm; its maximal vertical load(weight) is 18 kg; its maximal transportation speed is 
500 mm·s−1; and its repetitive transfer accuracy is 0.005 mm. As for the linear actuator which oversees 
horizontal transportation: its stroke is 500 mm; its maximal load (weight) is 25 kg; and other 
specifications are the same with the linear actuator which oversees vertical transportation. The 
cylindrical robot is made of duralumin, an alloy of aluminum with excellent corrosion resistance, in 
consideration of a greenhouse’s hot and humid working environment. 
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horizontal, vertical); (b) two axes ignoring vertical orientation.

The cylindrical robot is controlled by height L1, angle θ2, and radius L3 like Figure 1a. The robot
can carry out works in a narrow space, like a sweet pepper greenhouse, efficiently and easily move to
horizontally. It has three independent degrees of freedom, and its vertical and horizontal joints cross
each other. If the degree of freedom of horizontal orientation is ignored, it is a rotating and horizontally
moving L2-Θ2 manipulator as shown in Figure 1b. The rotation angle θ1 is defined as horizontal
X-axis, and L2 can be defined as the distance from the rotation axis to the endpoint of the end-effector.

Depending on the environmental characteristics of the sweet pepper farming analyzed by Yu et
al. [21] and Myung [22], the working area was set up at 350~600 mm from the center of the system
and 1000 mm vertically. The planting interval of sweet pepper was 1000 mm and the rail intervals
were 500~600 mm. The working area was set up after considering these conditions. In order for the
manipulator to be able to transport horizontally and vertically two linear actuators were used. As
for the linear actuator, which is in charge of vertical transportation: its stroke is 1000 mm; the lead
of its ball thread is 10 mm; its maximal vertical load(weight) is 18 kg; its maximal transportation
speed is 500 mm·s−1; and its repetitive transfer accuracy is 0.005 mm. As for the linear actuator which
oversees horizontal transportation: its stroke is 500 mm; its maximal load (weight) is 25 kg; and
other specifications are the same with the linear actuator which oversees vertical transportation. The
cylindrical robot is made of duralumin, an alloy of aluminum with excellent corrosion resistance, in
consideration of a greenhouse’s hot and humid working environment.

Figure 2 presents the manipulator with three axes, namely a rotation axis, a vertical axis, and
a horizontal axis. Since the motor of the manipulator must work under the high temperature and
humidity of the planting environment of sweet pepper, this study used Panasonic Minas a5 (Panasonic,
Kadoma, Japan).
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Figure 3 presents the end-effector. The end-effector props a fruit from below and makes the
peduncle of the fruit positioned in its cutting portion through pose control, thus making its pneumatic
cylinder harvest the fruit. The cutting part of the end-effector is designed to be carried out vertically,
thus preventing damage to the stem of the sweet pepper. The end-effector was designed according to
the characteristics of sweet peppers cultivated in South Korea with reference to the studies of Kim
et al. [23], Ministry of Agriculture, Food and Rural Affairs (MAFRA) [24] and Um et al. [25]. The
horizontal length of the end-effector is set up at 120 mm, and 150% of the sweet pepper’s average
diameter 80.92 mm. On the other hand, its vertical length is set up at 140 mm, and 150% of the
sweet pepper’s average length 92.15 mm. The entrance size of the cutting portion is set at 16 mm, in
consideration of the average diameter of a sweet pepper’s peduncle, thus preventing the peduncle’s
escape from the entrance. The entrance is set up at 10 mm initially, at a relatively narrower size, thus
making it controlled elasticity by a spring. In the front of the end-effector, a pneumatic cylinder for
cutting was installed, and in order to catch the stem of sweet pepper, a guide of 35 mm thickness
is designed. For the stem of sweet pepper to be located in the guide, the guide has a 60◦ angle. In
addition, the vertical guide is designed to be 59◦. This is because the angle from the entrance of the
guide to the portion of cutting is about 59◦ when the peduncle is assumed to be in the center of a sweet
pepper fruit.
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Figure 4 presents the end-effector produced according to its design. At the bottom of the
end-effector, a prop is installed in order to support sweet pepper fruits throughout the process from
harvesting to transportation.
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In this study, as shown in Figure 5, three cameras were used to acquire image information of
sweet peppers in the greenhouse. The BFLY-U3-13S2C-CS model (FLIR, Portland, USA) of cameras
was used. Cam1 and Cam2 were used as a stereo vision system to measure the distance to the sweet
peppers. Cam3 was installed on the end-effector and used to correct the pose of the end-effector. To
control the vision servo system, I5-4690 (Intel, Santa Clara, USA, 2017) and 8GB of Ram were used, and
the vision servo system was programmed using C++ language on Windows 7 64bit OS (Microsoft,
Redmond, USA, 2009) and Visual studio 2017 (Microsoft, Redmond, USA, 2017).
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Figure 6 shows images of artificially characterizing points of fruit of a red pepper using a laser
light source. In this system, a green laser light source was used to easily extract feature points from
the internal region of the fruit of the pepper. Figure 7 shows the stabilization of the laser light source
designed for the manipulator and camera system. It is designed so that it does not interfere with other
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Figure 7. A design of joint parts for laser sources.

Figure 8 shows the stereo vision system (Cam1 and Cam2) attached laser source and shows the
end-effector attached to Cam3. The system of this study was designed to control the end-effector to
match the direction of the sweet pepper after extracting the center of the sweet pepper through Cam3
attached to the end-effector. Using the laser source attached between Cam1 and cam2, artificially
characterizing points were created in the sweet pepper, and feature points extraction and stereo
matching were performed through Cam1 and Cam2 to measure the distances.
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2.2. Sweet Pepper Recognition

Barnea et al. [26] used color information to recognize sweet pepper fruits. The color information
of RGB (red, green, blue), hue, saturation, Y, Cb, and Cr in the fruit region of sweet peppers were used
as learning factors of the momentum backpropagation algorithm. In general, images are represented
by an RGB color model, and hue, saturation, Y, Cb, and Cr are represented by converting the RGB
information of these images.

Hue =
{
θ i f B ≤ G
360− θ i f B > G

, (1)

Saturation = 1−
3

R + G + B
[min(R, G, B)], (2)

θ = cos−1


1
2 [(R−G) + (R− B)]√

(R−G)2 + (R− B)(G− B)

, (3)

Y = 0.257R + 0.504G + 0.095B + 16
Cb = −0.148R− 0.291G + 0.439B + 128,

Cr = 0.439R− 0.368G− 0.071B + 128
(4)

Hue and saturation are calculated through Equations (1)–(3), and Y, Cb, and Cr are calculated
through Equation (4). Y means luminance, Cb means blue-difference, and Cr means red-difference.

According to Rumelhart et al. [27], the process of establishing the connection strength of a neural
network was called learning. The error signal (δ) was calculated using the difference between the
output calculated by the input and the expected output of the input, and the process of correcting
the connection strength by propagating the error signal to the previous layer was repeated. At this
time, the process of propagating the error signal to the previous layer was called the backpropagation
algorithm, and neural network learning was performed through this process. In the backpropagation
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algorithm, the connection strength is changed by the error signal, and if the learning rate is set small,
the amount of connection strength variation is reduced, and the learning process is slowed down. In
order to prevent the learning process from being slowed down, the variation of the previous learning
phase is supplementary used when the connection strength is changed. This method is referred to as a
momentum backpropagation algorithm [28].

vnew =
β vold

‖vold‖
, β = 0.7n√p, (5)

For initial connection strength setting, the initial connection strengths were set in the range of
w = −0.5 to +0.5 and v = −0.5 to +0.5 according to Nguyen and Widrow [29]. Connecting strength v
was initialized by Equation (5) at the start of learning. In Equation (5), n is the number of neurons in
the input layer and p is the number of neurons in the hidden layer. The method of Mirchandani and
Cao [30] was used to determine the number of hidden neurons. The maximum number M of linearly
separable regions was calculated as Equation (6); n is the number of dimensions of the input pattern
space and p is the number of neurons in the hidden layer. In Equation (6), if k is less than p and n is
larger than or equal to p, then M was calculated as Equation (7).

M =
n∑

k=0
pCk, (6)

M = pC0 + pC1 + · · ·+ pCp = 2p, (7)

the number of neurons in the hidden layer to solve the problem of the linearly separable region, p, was
calculated by Equation (8).

p = log2 M, (8)

∆vk = α δzxk + β∆vk−1

∆wk = α δyzk + β∆wk−1 (9)

The learning rate a was changed within the range of 0.001–0.1, and it was set with reference to the
progress of learning. In this study, a unipolar sigmoid function was used. This is because the size of
the image information transmitted as the input was normalized to a size of 0 to 255. In Equation (9), α
means learning rate and β means momentum constant. δz denotes the error signal of the hidden layer,
and δy denotes the error signal of the output layer. In this study, the momentum constant was set to
0.8 [28].

The expected output value was set to [0 0 1] for red sweet pepper, [0 1 0] for yellow sweet pepper,
and to [1 0 0] otherwise. A total of 204,800 pixels were used for the extracted color information and
184,320 pixels were used for the learning. The remaining 10% were used to confirm the learning
outcome and the learning was terminated if the learning outcome was over 99%. In order to check
the learning result, this study used the learned weights v and w to output the image information,
which was transmitted through the input layer into the output layer as images. When the output layer
activation state was [0 0 1], red pixels were displayed in the image, yellow pixels were displayed in
[0 1 0], and green pixels were displayed in the other cases. The activation state of the paprika region
was confirmed by comparing the output image of the activated paprika and the input image of the
paprika cultivation environment.

2.3. Vison Servo Control

Since an image processing-based harvest uses a non-contact measurement method, it is appropriate
for robot harvest works. The visual detection and control can be seen through the open-loop mode
which “sees” and “moves.” In addition, the accuracy of works depends on the accuracy of the image
sensor and the accuracy of the end-effector control [20]. As an alternative to enhance the accuracy
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of the servo system, this study used a visual-feedback control loop, and increased the accuracy of
the system. The mechanical vision can provide a closed-loop position for the robot’s control of the
end-effector and this mechanism is referred as a vison servo system.

As shown in Figure 9, an eye-in-hand vision servo system was used in this study. The eye-in-hand
vision servo system is a type of camera that is fixed at a robot’s end-effector. In this method, there are
already known and fixed relations between the poses of the camera and end-effector. In this case, the
pose relation between the end-effector and a camera is referred to as Xe

c, and the pose relation between
an object and a camera is referred to as Xc

t . The image-based control method was used to control the
pose of the end-effector approaching the object. According to Corke [31], in the image-based vision
servo, control is carried out by the position and pose of an object that exists in the image.
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In order to realize a vision servo-type sweet pepper harvest algorithm, this study acquired
the center of a sweet pepper through the camera installed at end-effector, and then controlled the
end-effector to be matched with the said sweet pepper, thus extracting feature points and adjusting
stereo matching, and then measuring distances. After acquiring a three-dimensional coordinate, the
end-effector approaches a sweet pepper based on the information acquired and then detects its position
through an image, thus manipulating the end-effector.

Vision servo system’s working processes for the automated harvest of sweet pepper are shown in
Figure 10. The center of the sweet pepper was first extracted through Cam3 installed in the end-effector,
and the end-effector was controlled so that the direction of the end-effector coincided with the direction
of the sweet pepper. Then, the distance was measured through stereo matching. Based on the 3D
coordinate information measured by Cam1 and Cam2, after the end-effector approaches the sweet
pepper, the posture of the end-effector is controlled while confirming the position of the fruit by the
image of Cam3. After that, the vision servo system checks the image of Cam3 and repeats the process
so that the peduncle part of the sweet pepper approaches the cut part of the end-effector.

When the ROI (region of interest) of the sweet pepper is extracted, the manipulator rotates to
place the center of the ROI in the center of Cam3, thus controlling the Y-axis manipulator and then
making the center of Cam3 matched with the bottom of the ROI. The reason for this process is to allow
Cam1 and Cam2 to acquire images of sweet pepper fruit during stereo matching. Experiments were
conducted to confirm that the center of the camera and the center of the paprika were controlled to
coincide with each other and confirmed the results. The results were analyzed by measuring the unit
of pulse for controlling the manipulator, the rotation angle of the rotation axis manipulator, and the
movement distance of the vertical axis manipulator.
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When the center of the ROI and the center of Cam3 are matched, the system extracts the source of
laser light irradiated and then carries out the adjustment of irradiated points, thus measuring distances.
It extracts green laser that exists in the sweet pepper and then examines the original form of the laser. In
case the form is circle, it extracts the center of the circle and carries out adjustments on the basis of the
center of the circle. When it carries out the adjustment, it uses epipolar geometry [32]. After examining
the disparity of adjusted points, it calculates the z-score and then classifies the outlier. Using disparity
examined and calibration results, it measures distances and then moves the horizontal manipulator,
thus placing the end-effector in the bottom of the sweet pepper (Figure 11).
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As shown in Figure 12, the peduncle of the sweet pepper is fixed in stems or branches. When it
moves horizontally, therefore, it rotates on the axis of the peduncle. If the end-effector moves vertically
as much as the sweet pepper rotates in this process, the peduncle can be positioned in its cutting
portion. At this time, it is necessary to use the axis of rotation and then make the peduncle continuously
placed in the center of the end-effector. As shown in Figure 13, this study created a similar environment
to carry out the experiment of establishing control variables for the control of vision servo using the
model of sweet pepper.
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In order to realize a vision servo-used harvest algorithm, the control variables of the manipulator
were established according to the position and pose of objects appearing in stepwise harvesting images.
Figure 14 presents the ROI of a sweet pepper detected from the image, and the difference between the
position of the center of the bottom and the center of the camera. After analyzing the difference of X
and Y directions in the image, the rotation control variable θ2 was established based on the difference
of the X direction, and the vertical control variable L3 was established based on the difference of the
Y direction.
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2.4. Harvest Experiment

As a field experiment, this study conducted a harvest experiment with sweet peppers planted in a
greenhouse of the Gumi Horticulture Confederation, Gyeongbuk Province in South Korea. Figure 15 is
a scene of the field experiment. The field experiment was carried out to measure the errors of control
variables (rotation axis error (◦), vertical axis (mm)) in the process of detecting a sweet pepper and of
making it match with the center of the end-effector. The errors by distance measurements were also
measured. The success of harvesting by peduncle thickness and length was analyzed.
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The harvesting success rate for the thickness of the peduncle was analyzed in three cases (0–10 mm,
10–15 mm, and more than 15 mm). The harvesting success rate for the length of the peduncle was
analyzed in three cases (0~3 mm, 3~6 mm, 6~9 mm, and more than 9 mm). Sessions of experiment
were repeated four times, thus checking the efficiency of the harvest.

3. Results and Discussion

3.1. Sweet Pepper Recognition

Momentum backpropagation algorithm was performed by inputting H, S, Y, Cb, Cr, R, G, and B
of the fruit of red and yellow sweet peppers and other areas. Weights were calculated by learning
1 million hidden neurons and 3 hidden neurons with a maximum error of 0.05, learning rate of 0.01,
and momentum constant of 0.8. Figures 16 and 17 show the result of extracting the fruit region of
sweet peppers through the momentum backpropagation algorithm. Figures 16 and 17 show the output
values calculated using the learned v and w values as red, yellow, and green pixels. A red pixel means
a pixel recognized as a fruit region of red pepper, a yellow pixel means a fruit region of a yellow
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pepper, and a green means a pixel recognized as another region. It was confirmed that a lot of noise is
generated in areas where it is difficult to extract the intrinsic colors such as reflections and shadows
generated by illumination, but the actual paprika regions are clearly extracted. Figure 18 shows the
fruit area of the pepper in green squares in Figures 16 and 17.
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In order to confirm the performance of the sweet pepper recognition in this study, 269 sweet
pepper images were used to extract fruits. Out of 269 cases, 221 (82.16%) sweet pepper images were
recognized successfully. As a result, 26 cases (9.67%) were recognized as one fruit when two or more
paprika were attached. When the difference of contrast was severe, the recognition failure occurred
once (0.37%). Among the cases of recognition failure, 21 cases (7.81%) were when there were many
areas obscured by leaves and branches.
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3.2. Set-Up of Control Variables

An experiment was carried out to make the center of the sweet pepper detected from the image of
the sweet pepper that existed in 350~600 mm distance matched with the center of camera, and then use
the necessary control variables to control the manipulator to directions of vertical (Y) and horizontal
(X). The rotation axis was made to rotate by 2.4◦ per 10,000 pulses, and the horizontal axis was made to
be controlled by 10 mm per 10,000 pulses.

The size of a pixel corresponding to a length of 30 mm at a distance of 350 mm and a distance
of 600 mm was measured. The position of the changed pixel was calculated according to the angle
change. When the distance from the camera was 350 mm, the number of pixels occupied by the 30 mm
length line in the image was 342 pixels. When the distance from the camera was 600 mm, the number
of pixels occupied by the 30 mm length line in the image was 127 pixels. The actual length of one
pixel at each distance was 0.088 mm at a distance of 350 mm and 0.236 mm at a distance of 600 mm.
When 1 pixel changes in 350 mm distance, θ2 must be controlled by 0.014◦. On the other hand, when
1 pixel changes in 600 mm distance, θ2 must be controlled by 0.023◦. However, it was not possible
to control the information of distance in the experiment, and therefore the angle was controlled only
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by the average 0.018◦ for 1 pixel. Since the rotating axis can rotate 2.4◦ per 10,000 pulses, 75 pulses
must be given to rotate 0.018◦. In other words, 75 pulses for 1 X-axis pixel are used to control θ2. As it
approaches the center of the picture and the difference of X-axis pixels is less than 15, 50 pulses are
used to control the pose accurately. As for the Y-axis control based on correlation between pixels and
distances presented in Table 1, change of 1 pixel in an image is 0.088 mm on 350 mm distance, and
0.236 mm on 600 mm distance. As in the control of the X-axis, an average of 0.16 mm per pixel are
used to control L3. A total of 160 pulses per Y-axis pixel was used to control L3.

Table 1. Variation of coordinate.

No. 90 mm 110 mm 130 mm 150 mm

1 127 109 101 102
2 126 108 105 98
3 143 109 104 102
4 128 107 101 100
5 134 104 106 100
6 108 106 102 98
7 123 105 101 97
8 125 104 98 94
9 130 107 103 99
10 128 105 102 101

Average 127.2 106.4 102.3 99.1

As a result of the control experiment using the set control variables, it was confirmed that the
error diverges without converging to 0 based on ±30 pixels. Therefore, when the Y-axis pixel errors
were less than 30, 100 pulses per pixel were used to control.

Since harvest was carried out with the sweet pepper that exists within the distance of 90~150 mm
from the camera installed at the end-effector, the change of distance per pixel in that scope of distance
was measured.

Table 1 presents the change of the image coordinate for the 10 mm change of spatial coordinate
from the distances of 90, 110, 130, and 150 mm, through the camera of the end-effector. The table
presents that the difference of measurement from the distance of 90 mm is bigger than that from any
other distances. This difference seems to be caused by the distortion of the image that is taken at a
close distance. Therefore, on the basis of 10 mm/100 pixels, L3 for the control of the Y-axis in three
steps were established at 100 pulses/per pixel. In addition, in order to convert the result to angles, it is
necessary to have the value of the manipulator L1 variable.

α = 2 tan−1
( 1

L1 + 230

)
, (10)

Equation (10) presents the calculation of angle α for the change of 1 mm X coordinate using L1
variable. Angle α is used to calculate the control pulse of θ2 according to the angle per pulse.

Table 2 presents the result of the experiment. Repeated 20 times, the table presents the errors of
the X-axis and Y-axis, together with the times of control executed in every experiment. In order to
detect the position of the sweet pepper from the image and then move the end-effector to the target
position, it was necessary to carry out an average 4.15 times of controlling process.
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Table 2. Test results of a sweet pepper’s position controlling.

No. Error x (pixel) Error y (pixel) Control Count

1 0 5 3
2 −1 7 4
3 −1 0 4
4 −6 10 3
5 −10 5 3
6 9 4 3
7 −2 7 3
8 1 −3 8
9 3 1 3

10 6 3 5
11 −2 −5 3
12 −5 5 3
13 −5 2 4
14 3 −9 6
15 −3 9 6
16 4 2 7
17 −9 1 5
18 −2 7 3
19 2 3 3
20 9 1 4

Average −0.45 2.75 4.15

Figure 19 presents the change of errors after undergoing the controlling process eight times. It
confirms that from the fifth control, errors approach to 10 pixels. This result seems to derive from
the fact that convergence is not realized by the error occurred in the extraction of the ROI of the
sweet pepper. Average control errors were −0.45 pixels for the X-axis and 2.75 pixels for the Y-axis.
Additionally, 2.75 pixels can be converted to 0.65 mm in 600 mm and therefore there seems to be no
problem in the control of the vision servo.
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3.3. The Result of Harvest Experiment

The harvest experiment was carried out in three steps. After completing each step, results
were examined.
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Figure 20 presents the result of realizing the algorithm to move the position of the end-effector to
the center of the harvesting sweet pepper using the rotation axis, and of practicing the algorithm. In
order to calculate the real coordinates, the sweet pepper that appeared in the image was checked and
then the pulse of the manipulator was inputted by 500 units, thus matching centers and calculating
angles using distances. After moving the coordinate of the end-effector based on the algorithm, the
pulse measured was presented. The error of angle was 1.2◦ in maximum and 0.77◦ on average, and
standard deviation of errors of angle was 0.2652. The distance-based error was 11.3 mm in maximum
and 6.22 mm on average, and standard deviation of distance-based errors was 2.0368. When the error
of the X-axis was 11.3 mm, the horizontal length of the end-effector was 120 mm and the average
diameter of the sweet pepper was 80.92 mm.
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Figure 21 presents the result of realizing the algorithm to move the position of the end-effector
to the bottom of the harvesting sweet pepper using the vertical axis manipulator, and of practicing
the algorithm. The maximal error was 17.1 mm and the average error was 8.205 mm, and standard
deviation was 5.5497. The reason why the maximal error was bigger than the horizontal error seems
to be derived from the fact that the aspect ratio of the image was small and therefore the number of
pixels was relatively small as well. In the process of searching for the position of the sweet pepper and
moving the end-effector to the target position, there occurred a maximum 11.3 mm error horizontally,
and maximum 17.1 mm error vertically. The error occurred in the detection of sweet pepper and the
set-up of the ROI generates the control error, and position was revised by extracting the pose of sweet
pepper and by carrying out harvesting works.
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The results of the experiment to acquire information on the depth from the system to the sweet
pepper, namely the second step harvest algorithm, is presented in Figure 22. Z means a real coordinate
of distance and signifies a calculated coordinate of distance. The result of executing the algorithm
of extracting information on depth presents the fact that the maximal error was 39 mm and the
average error was 10.05 mm, and standard deviation was 12.1595. Compared with the result of indoor
experiments of which maximal error was 31 mm and average error was 8.44 mm, the errors were
bigger. These bigger errors seem to be because the natural light interferes with the laser light source
that was used to extract feature points.
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The process of transferring the end-effector to harvest sweet peppers was examined by classifying
it into the thickness, length, and angle of the peduncle, in order to make the end-effector approach to
the portion of cutting.

The thickness and length of the peduncle were calculated on the basis of the end-effect’s contact
point of cutting, and the vertical angle of the peduncle to the system was set up at 0◦. The thickness
of the peduncle was classified by its diameter of 0~10 mm, 10~15 mm, and more than 15 mm, thus
examining their rate of successful harvest. As for the diameter, the portion that has contact with the
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end-effector’s cutting point was measured. The most frequent diameter of the sweet pepper’s peduncle
appeared in the scope of 10~15 mm. The number of experiments was 30 times, and 16 of them were
successfully harvested. The scope of 10~15 mm was most successful with 60.0% of 9 successes in
15 trials. The success rate of the scope of 0~10 mm was 58.3% of 7 successes in 12 trials. In the scope of
15 mm and above, it was impossible to harvest. The failure of harvest in the scope seems to be because
the diameter of peduncle was bigger than the entrance of the cutting portion.

The rate of successful harvest according to the length of the peduncle is presented in Table 3. The
rate was examined by dividing the length of the peduncle into 0~3 mm, 3~6 mm, 6~9 mm, and more
than 9 mm. Most of the harvest of sweet peppers where the length of the peduncle was less than 6
mm was unsuccessful. It was seemingly because the guide installed in front of the end-effector was
too thick.

Table 3. Field experiment results of harvesting algorithm according to length of peduncle.

0–3 mm 3–6 mm

Try Success Rate Try Success Rate

2 0 0% 5 1 20%

6–9 mm ~9 mm

Try Success Rate Try Success Rate

15 9 60% 8 6 75%

The success rate of harvesting according to diameter and length of peduncle was analyzed and
the overall success rate was 53.3%. The approximation rate of the end-effector to the peduncles of
sweet pepper was 86.7%. When the same harvesting procedure was repeated four times using the
sweet pepper which failed to harvest, the maximum harvesting success rate of about 60 sweet peppers
was 70%.

4. Conclusions

In this study, the shape of the manipulator for the automated robot system to harvest sweet
peppers was cylindrical (consisting of a rotation axis, a horizontal axis, and a vertical axis), because it
was efficient to carry out harvesting works in a narrow space. Based on the external dimension of a
sweet pepper, the end-effector was designed not to damage the stem but to approach it from below,
thus harvesting it without damage. It was also designed not to check the peduncle additionally but to
use information on the fruit only, and its cutting portion was designed to be vertical, thus preventing
the cutting of the stem. The study used three color CCD cameras, consisting of a stereo vision system
and an eye-in-hand image system for the control of the end-effector’s vision servo. In addition, using
laser light sources, it was equipped with a light system that could add feature points to the sweet
pepper. Using a camera installed at the end-effector, it could also detect a sweet pepper, and using the
upper and bottom center of the ROI, it could extract the position and pose of the sweet pepper. Based
on the information extracted, the three-step harvest algorithm was developed. In order to confirm
the performance of the sweet pepper recognition in this study, 269 sweet pepper images were used to
extract fruits. Of 269 sweet pepper images, 82.16% were recognized successfully. The result of the
experiment with 60 sweet peppers presented the fact that its approach rate to peduncle was about
86.7%, and via four sessions of repetitive harvest experiment it achieved a maximal 70% harvest rate,
and its average time of harvest was 51.1 s. According to a study by Joung et al. [33], the average
number of harvest days for red sweet pepper ‘cupra’ in South Korea was 81.9 days and the fruit yield
per 10 are was 18,848 kg. In order to do that, when one farmer works eight hours a day, 143 red
sweet peppers (200 g per fruit) should be harvested in one hour. In order to replace the manpower by
using this study, where the harvesting success rate is 70% and the one-time working time is 51.1 s,
and by assuming that the harvesting success of 70% on 205 paprika is obtained and assuming the
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system works eight hours a day like manpower, the three systems must perform. However, since the
system does not require rest, unlike humans, it is assumed that if the system works 24 hours a day, it
will get the same daily yield as the manpower. Compared with the study by Barth et al. [19] in the
Netherlands, their sweet pepper harvesting robot showed 85% sweet pepper recognition rate and
70% harvest success rate. The recognition rate was 2.84% lower than that of Barth et al. who detected
fruits of sweet pepper using the convolution neural network. There were no differences in the harvest
success rate though environmental differences [19,22] such as spacing distance of plant row and crop
density in South Korea and the Netherlands. If the volume of the front portion of the end-effector
of this study decreased, and if the design of the cutting portion of this study improved, and if the
pneumatic cylinder of this study was placed at the back of the end-effector, then the rate of harvest
would increase. In addition, if the motor RPM (Revolutions per minute) of the manipulator of this
study increased, the time of harvesting would seemingly decrease.
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Nomenclature

Xe
c The pose relation between end-effector and a camera

Xc
t The pose relation between a camera and an object

θ2 Angle for the change of X
α Calculated angle of control pulse
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