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Abstract: Boiler heat exchange in thermal power plants involves tubes to transfer heat from the fuel
to the water. Boiler tube leakage can cause outages and huge power generation loss. Therefore, early
detection of leaks in boiler tubes is necessary to avoid such accidents. In this study, a boiler tube leak
detection and classification mechanism was designed using wavelet packet transform (WPT) analysis
of the acoustic emission (AE) signals acquired from the boiler tube and a fully connected deep neural
network (FC-DNN). WPT analysis of the AE signals enabled the extraction of features associated
with the different conditions of the boiler tube, that is, normal and leak conditions. The deep neural
network (DNN) effectively explores the salient information from the wavelet packet features through
a deep architecture instead of considering shallow networks, such as k-nearest neighbors (k-NN) and
support vector machines (SVM). This enhances the classification performance of the leak identification
and classification model developed. The proposed model yielded a 99.2 % average classification
accuracy when tested with AE signals from the boiler tube. The experimental results prove the
efficacy of the proposed model for boiler tube leak detection and classification.

Keywords: Acoustic emissions; boiler tube; deep learning; deep neural network; leakage detection;
wavelet packet transform

1. Introduction

Thermal power plants generate electrical power from heat energy. The heat energy is converted to
electrical power mostly through steam-driven turbines. Steam is produced by heating the water with
the help of heating sources, such as fossil fuel, nuclear heat energy, and solar heat energy. The steam
generated spins a steam turbine that drives an electrical generator, thus producing electrical power that
is then added to the grid through the main transformer [1–3]. Thermal power plants are becoming more
successful due to technological advancements, and demand for them is increasing [4]. One reason for
their success and increasing demand is their low construction cost and reduced transmission cost [5,6].

The heat exchanger of the boiler in thermal power plants consists of thousands of tubes that
transfer heat from one fluid to another [7]. Over the operation period, these tubes may develop defects
that can cause fluid leakage. Leakage may be due to overheating, foreign matter flow, or tube wall
deterioration due to machining. Such leakage affects power plant operation and can cause unexpected
downtime of the plant with a longer outage and significant loss in power generation. In addition, such
leakage can affect the adjacent components and sometime results in an explosion with the destruction
of the whole boiler [8]. Moreover, with the failure of the system, other factors such as economic losses
and safety risk are also possible. Thus, leakage detection is necessary to avoid all of the problems
associated with it. One possible and efficient solution is to perform condition-based maintenance of
the boiler tubes. This condition-based maintenance of the boiler tube is attained through data-driven
condition maintenance (leakage detection) of the tubes. There are two main steps in the data-driven
condition maintenance of an object: (1) data acquisition that contains valuable information about the
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condition of the object; and (2) preprocessing and classification of the data acquired. If there is recorded
information about the boiler tube, then it can be categorized whether a certain record belonged to
the boiler tube when it was working in a normal condition or in a leakage state. Thus, the leakage
detection can be considered and solved as a classification problem. The data on the health states of
the boiler tube can be recorded in the form of ultrasonic signals, electrical resistance measurement,
and acoustic emissions [9–15]. Out of these techniques, acoustic emission (AE) collection is popularly
used to acquire data from the deteriorated objects. AE sensors, due to their high sensitivity, can record
activity generated due to slight variation in the physical state of an object [16]. Therefore, information
collection with the help of AE sensors about the condition of boiler tubes is a good choice.

There is not enough research related to data-driven condition monitoring of the boiler tubes in
thermal power plants. The existing works are mostly regard manual monitoring of the data collected
from boiler tubes [17]. This is being done by visualizing the change in the collected data manually and
then identifying the leakage manually. There is no intelligent process in place that can automatically
identify when leaks appear in the tubes. The present study designed a system that can automatically
identify whether a collected sample (AE signal) belongs to the normal or leakage state of the boiler
tubes. The recorded AE signal from the boiler tube contains valuable salient information about the
health sate of the boiler tube. When a leak appears on a tube, the characteristics of AE signals, that is,
amplitude, frequency, and so on, also change accordingly. However, the signals recorded from the
boiler tubes are highly complex and nonlinear. Therefore, leakage of the boiler tubes cannot be detected
only by visualization of the AE waveforms. Furthermore, a classifier does not yield satisfactory results
with raw AE signals as inputs. For this reason, a preprocessing setup is required that can extract
features from the recorded AE signals. The extracted features act as descriptors of the health state
of the boiler tubes. The better the descriptors are, the higher quality the classification results will
be. Therefore, selection of an appropriate signal processing technique for feature extraction is very
important. In this regard, wavelet packet decomposition of AE signals was carried out in the current
study. The relative energy and the entropy of the subbands are used as the descriptors to describe
the health state of the boiler tubes. The features extracted are classified into these classes using a
deep neural network (DNN). A DNN is a variation of an artificial neural network with more than
one hidden layer. Due to its deep architecture, a DNN can obtain high accuracy with satisfactory
classification performance.

The remainder of this research article is as follows. Section 2 describes the boiler tube leakage
detection model developed. In Section 3, the data acquisition and experimental setup are explained.
In Section 4, the results of the current study are presented in detail. The conclusions are given in
Section 5.

2. Methods and Procedures for Leakage Classification of the Boiler Tube

In Figure 1, the proposed boiler tube leakage classification model is given. The proposed model
can be divided into three main steps: (1) feature extraction through wavelet packet transform (WPT)
analysis; (2) deep neural network (DNN) implementation for higher level feature extraction, which is a
reduced feature set that contains highly discriminant information; and (3) provision of the reduced
feature set to the SoftMax classifier to complete boiler tube leakage classification (i.e., normal state and
leak state classification of the Boiler tube data).
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Figure 1. The proposed boiler tube leakage detection model.

2.1. Wavelet Packet Decomposition

The acoustic emission (AE) signals acquired from the boiler tube are used to record information
about the health state of the tube in the time domain. The signal waveform represents the signal
amplitude values (voltage) recorded at specific time intervals. During the signal acquisition process,
the signal amplitude values vary randomly. There is no clear pattern in the time domain waveform
of the signals. Moreover, the inclusion of unwanted signals from the surrounding environment in
the form of noise makes leak detection and classification more difficult just by observing the time
domain values of the signals. To thoroughly analyze the signals for the extraction of descriptive
features associated with different health states of the boiler tube, a sophisticated signal processing
technique is required. There are several signal analysis techniques in the literature, like, traditional
fast Fourier transform (FFT), short-time Fourier transform (STFT), empirical mode decomposition
(EMD). All of these techniques have been implemented in the literature for different types of signal
analysis in the fault diagnosis domain, but these techniques either have limited signal analysis capacity
or have hectic computation procedures. For instance, the Fourier transform cannot provide time
information of the analyzed signals. Similarly, STFT has the problem of fixed resolution [18]. Choosing
an appropriate windowing function is a challenge in the STFT calculation. A narrow window provides
good time resolution, whereas a wider window yields better frequency resolution. Always there will
be a tradeoff while selecting the window size. In EMD, intrinsic mode functions (IMFs) are calculated
and cannot be predicted before they are observed empirically. Moreover, the number of IMFs cannot
be predicted before the decomposition. In EMD, oscillations in a signal are considered at the very
local level. Their calculation involves detailed signal processing techniques like extrema identification,
interpolation and residual calculation of a signal. Thus, EMD calculation depends on a number
of options which need signal processing expertise from the user. Moreover, in EMD, the iterative
calculation of the IMFs increases the latency of the algorithm. Therefore, it is not recommended to
provide online solutions [19]. Therefore, in this study, a wavelet packet transform (WPT) based AE
signal analysis was performed, which provided better time-frequency resolution and lower latency
of the algorithm. WPT provides better time-frequency resolution compared to short-time Fourier
transform (STFT). This turns out to be a promising tool to extract health state features from complex
AE signals. WPT is a variant of a basic wavelet transform that divides the input signals into different
subbands based on the high pass and low pass filters. In WPT, a signal is decomposed according to
the criteria that at each level j the number of nodes is 2 j. In WPT, both detailed and approximated
coefficients are decomposed to form a binary tree contrary to the discrete wavelet transform (DWT).
In this way, WPT provides a more detailed time-frequency, on both lower and higher frequencies
of the signals, than conventional DWT analysis. Each node in a specific level in DWT provides half
the frequency resolution width of the preceding level and twice that of the next level. In this study,
fourth-level decomposition of acoustic emission signals was carried out. Level 4 decomposition of the
signals resulted in 24 = 16 nodes. Figure 2 shows the adopted 4-level WP tree structure.
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Figure 2. A 4-level wavelet packet tree having 24 nodes.

After decomposition of the AE signals, the relative energy and entropy of each node were
calculated. The wavelet values were used as input features to the subsequent DNN. The relative energy
of a subband can be calculated as follows:
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Eni
j
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where Eni
j is ith node energy at the level j and EnTotal is the overall energy of a signal. Eni
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The entropy of a wavelet packet node can be calculated as:

ET = −
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j=1

si log2 si. (4)

The relative energy and entropy vectors at level 4 were used as input feature vectors for the DNN.

2.2. Deep Neural Network (DNN)

Recently, researchers have introduced deep learning or DNN techniques, which have been used in
numerous fields, especially image processing. DNN can reduce the data dimensionality and effectively
map the input to the outputs. Moreover, one interesting property of a deep network is that it can
explore the salient information from the input data efficiently without expert knowledge in a specific
field. Such networks are popular in fields that require nonlinear mapping. In the current work,
a sophisticated signal processing method was adopted to analyze AE signals while not relying on
traditional handmade features where in-depth domain expertise is needed.

In a DNN, multiple layers of units are stacked on each other to create a deep or hierarchical
structure, as presented in Figure 3. There is connectivity between the layers of the DNN, but no
connectivity among the units of the same layer. A typical DNN consists of one input layer, one output
layer, and one or multiple hidden layers. The input and output layer dimensions of the DNN are
selected according to the input data and output classes, respectively. There is no specific rule for
hidden layer dimension selection. Normally, the number of units in the hidden layers is set to less than
the preceding layer.
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Backpropagation (BP) was applied to fine tune the DNN and reduce the cost function. The cost
function was updated negatively to the gradients of the cost function. Once the training and fine
tuning of the DNN were completed, the trained model was used to identify the samples that belong to
the leakage of the boiler tube.

2.3. k-Nearest Neighbor (k-NN) Classifier

k-NN is the simplest and most frequently used classifier in the classification problems related to
the fault diagnosis domain. It is a non-parametric classifier with no specific training step required for
the algorithm. It does not make an assumption for the classification of the data; however, classification
depends on the structure of the data by itself. Moreover, during classification, whole data resides in
the memory, hence increasing the computational complexity in case of large datasets. In this study,
the k-NN classifier was used as one of the algorithms for comparison purposes. The value of k was
selected arbitrarily and through the cross validation process and turned out to be 5.

2.4. Support Vector Machine (SVM)

The support vector machine (SVM) belongs to the supervised learning models category of machine
learning. SVM is a discriminative algorithm that separates the instances of different classes using a
hyperplane. It calculates an optimal hyperplane that separates the label data in the best possible way.
In this work, in addition to k-NN, SVM with a gaussian kernel was used as a second classifier for
comparison purposes.

3. Dataset

This study presents leakage detection and classification of boiler tubes in a thermal power plant
with the help of acoustic emission signals and machine learning. Boiler tubes used to collect AE signals
for the experiment can be seen in Figure 4. Pinholes were seeded on the tube at four different locations.
The pinholes were seeded to simulate leakage of the boiler tube. The locations of the seeded pinholes
can be seen in Figure 5. The seeded pinholes were 0.6 mm, 1 mm, and 2 mm in diameter. Pinholes of
different sizes were used in the experiment. A typical installation of a pinhole on a boiler tube is shown
in Figure 6. Moreover, illustration of the testbed and control system developed for the experiment
is given in Figure 7. Solenoid valves were attached to the pinhole so that they could be remotely
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controlled from the control room. The valves were needed to open and close the pinholes to simulate
the boiler tube in different conditions, that is, normal and leak states. The schematic diagram of the
whole testbed is given. First, the solenoid valves were kept closed so that AE signals for the normal
condition of the boiler tube could be collected. For the normal state of the boiler tube, multiple 2 sec
AE signals were recorded. Later, the valve was opened to record the signals related to the leak state of
the boiler tube. Further, multiple 3 sec signals were recorded for the leak state. The AE signals were
recorded with the help of wideband differential AE sensors (WDI-AST) and peripheral component
interconnect (PCI-2)-based data acquisition devices. AE signals of variable length were collected, both
for normal and leak states containing 50 samples for every pinhole size. The signals were segmented
to produce enough dataset for the algorithm developed. The dataset description and the division into
training and test sets are given in Table 1.
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Table 1. Dataset description.

Type of
Signals

Pinhole Size
(mm)

Training
Samples

Validation
Samples Test Samples Number of

Channels

Normal 0 900 300 500
4

Leak 0.6, 1, 2 900 300 500

4. Performance Evaluation and Results

Acoustic emission signals recoded from the boiler tube under two different conditions (normal,
leak) were used to evaluate the leakage identification model developed. The dataset consists of AE
signals that were recorded under 0.6 mm, 1 mm, and 2 mm pinholes on the boiler tube. This study has
two main parts: (1) wavelet packet decomposition of the AE signals to explore the salient information;
and (2) deep neural network adoption for the classification of input data and to identify the samples
belonging to the leakage. In Figure 8, AE signals associated with the two different conditions of the
boiler tube are given. It can be observed that there are no visible differences between the signals
belonging to the two different conditions. Signals under both conditions possess the same pattern of
variation with respect to time. Thus, it is hard to identify the signals associated with the leak state
of the boiler just by monitoring them. Therefore, in this work, 4-level wavelet packet decomposition
was applied to the AE signals associated with both conditions. The 4-level wavelet decomposition
resulted in 16 nodes in the last layer of the wavelet tree. The wavelet packet decomposes the signal
into a sub-band that provides detailed information, both in the time and frequency domains. After the
decomposition, the relative energy and entropy of each subband from the last level of the wavelet tree
were computed. Each feature vector for a given sample is 14 points long. The distribution of the two
wavelet features is presented in Figure 9. It is evident from the figure that both of the features form a
fine cluster with no overlap among the features from different classes.
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Figure 9. Wavelet features distribution.

To classify the data, a deep neural network was used in the current study. The deep architecture
of the DNN and the adaptation of the nonlinear activation function make the DNN very effective in
learning salient information from the input data. The design parameters of the adopted DNN are given
in Table 2. The design parameters were selected based on the cost function of the DNN. The parameters
given in Table 2 yielded optimal values for the cost function. The results presented in this paper are
according to this architecture.

Table 2. Structure of the adopted deep neural network (DNN).

Length of Each Input Total Number of Layers Number of Nodes in Each Layer

32 3 15, 10, 5

The performance of the leakage classification and identification model developed was evaluated
using the k-fold cross validation technique and is given in Figure 10. The dataset obtained was split
among training, validation, and test datasets, with approximately 50, 20, and 30 percent of the data,
respectively. In the figure, a confusion matrix and the class-wise accuracies of the proposed model
are given. It can be observed that the average accuracy of the developed model is 99.2%. This means
the proposed model could accurately classify most of the instances present in the test set. Specifically,
the proposed model could correctly classify 99% of the samples in the normal class, whereas 99.4%
of the samples associated with the leak state of the boiler tube were correctly classified. The model
developed could yield enhanced classification performance because it was initially trained well on the
wavelet features. Due to the deep architecture, the DNN could easily extract salient information from
the distinct wavelet features. The features were already well clustered and had a non-overlapping
distribution pattern that made the information extraction and classification task easy for the DNN.
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To endorse the efficacy of the developed model, a comparison of the results was made with the
traditional k-nearest neighbors algorithm (k-NN) and the support vector machine (SVM) algorithm.
These two algorithms are very popular for developing intelligent systems and industrial equipment
fault diagnosis. DNN in the model developed was swapped with the k-NN and SVM algorithms.
Both models were provided with the same set of features used in the proposed study. The experiment
was repeated multiple times for stable results. The results for the k-NN and SVM algorithms are also
listed in Figure 10b. It can be perceived that the performance of the proposed model surpassed that of
k-NN and SVM. The average accuracy of the model developed is 99.2%, compared to k-NN and SVM
which have 69.35% and 81.85% accuracies, respectively.
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Furthermore, the results of the proposed model were also compared with published studies on
the fault diagnosis of different objects using AE signals. One of the comparisons was based on a
study in which a hybrid feature pool, principal component analysis (PCA) and k-NN classifier were
used for fault classification of a mechanical system [20]. Similarly, in another published study, genetic
algorithm (GA)-based feature selection and DNN were applied for the classification of AE signals
obtained from a pressure vessel [21]. The third study consisted of a statistical feature pool (SFP)
and support vector machine (SVM) for leakage detection of a spherical tank using AE signals [22].
The comparison results in terms of average classification accuracy and execution time are presented
in Table 3. The proposed model had a longer execution time (11.8 seconds) to yield the desired
result compared to the other algorithms. However, it is evident from the comparison results that the
proposed model outperformed all of the other algorithms. The average classification accuracies of
PCA + KNN, GA + DNN, SFP + SVM, and the proposed model are 91.65%, 94.67%, 95%, and 99.2%,
respectively. Thus, the improvement in classification performance using the proposed model is at
least 4.25% compared to the rest of the algorithms. Therefore, it is obvious that the proposed model is
superior for detecting and classifying leaks in a boiler tube.

Table 3. Comparison results of different algorithms.

Method Average Classification Accuracy (%) Execution Time (Seconds)

PCA + KNN [20] 91.65 9.11
GA + DNN [21] 94.67 15.3
SFP + SVM [22] 95 6.5

Proposed 99.25 11.8

5. Conclusions

In this paper, a leak detection and classification model of a boiler tube was presented. The main
objective of this work was to perform data-driven health assessment of boiler tubes that are normally
used in thermal power plants. To achieve this, acoustic emission signals were recorded for normal
and leaked states (0.63 mm, 1 mm, 2 mm) of a boiler tube. To explore the salient information of the
AE signals, wavelet packet decomposition of the signal was carried out. The relative wavelet packet
energy and entropy of the nodes were considered as features for leakage detection and the classification
model. The wavelet packet decomposition provides a unique pattern for the feature distribution that
could easily help differentiate between the health states of a boiler tube. The wavelet features extracted
were provided to a deep neural network (DNN). Stacked autoencoders could easily extract salient
information from the well clustered input data. The results of the proposed model were superior
compared to the other state-of-the-art fault diagnosis algorithms. The proposed model yielded an
average classification accuracy of 99.25%, which is at least 4.25% better than any of the state-of-the-art
fault diagnosis algorithms to which it was compared. Therefore, it can be concluded that the proposed
model can be used to effectively detect and classify leaks in a boiler tube.
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