Supplementary Materials: Molecular Specific and Sensitive Detection of Pyrazinamide and Its Metabolite Pyrazinoic Acid by Means of Surface Enhanced Raman Spectroscopy Employing In Situ Prepared Colloids

Anna Muehlig, Izabella J. Jahn, Jan Heidler, Martin Jahn, Karina Weber, Patricia Sheen, Mirko Zimic, Dana Cialla-May and Juergen Popp

Figure S1. Droplet based microfluidic chip used for in situ nanoparticle synthesis and automated and reproducible SERS measurements. Port 1: Mineral oil, port 2: AgNO₃/NH₃, port 3: Sodium citrate, port 4: N₂H₄, port 5: Sample containing the target molecule, port 6: Aggregation agent and port 7: Waste.

Figure S2. Determination for the limit of detection for PZA and POA solved in high purity water measured in LoC-SERS device applying in situ produced AgNPs (y-AgNPs).

PZA WavenumberWavenumber Lit.ExperimentalB3LYP/6-31G(d) [1]		Assignment		
471	497	NH2 rocking		
718	739	The OCN bending, out of plane		
1021	1000	In almost and in a silvestice of the associate size		
1055	1037	in-plane bending vibration of the pyrazine ring		
1218	1206	Symmetric stretching of the amide group		
1270	1274	In-plane bending of the C-H groups		
1366	1397	Ring vibration +NH2 in-plane bending		
1440	1457	NH2 bending		
1528	1556	CN stretching vibrations of the pyrazine ring		
1580 1569		Symmetric ring stretching		
3066 3075		CH stretching		

Table S1. Band assignment for PZA and POA according to the cited literature.

POA Wavenumber Experimental	Wavenumber Lit. B3LYP/6-31G(d) [2] Assignment	
448	451	OCO rocking
734	739	The OCO bending, out of plane
852	852	Ring breathing
1021	1000	In-plane bending vibration of the pyrazine ring
1055	1037	
1186	1189	CH In plane bending
1380	1376	Sym. OCO vibration
1410	1411	Ring vibration
1528	1556	CN stretching vibrations of the pyrazine ring
1565 1565		Asym. OCO vibration
3066 3075		CH stretching

Measurement Overview for All Spectra Depicted in Figures 1-5 of the Main Manuscript:

Figure 1. Reference Raman and SERS spectra of PZA and POA.

For the Raman measurements the analyte in a powder form was placed on a microscope glass slide, the laser light was focused on the sample surface via a $20\times/0.4$ N.A. objective. The power incident on the PZA powder was 20 mW, whereas for POA 5 mW was used. Each spectrum is the result of 10 accumulations of 1 s each. For recording the SERS spectra the same objective, 20 mW and 1 s with 10 accumulations was employed.

Figure 2: Varying flowrates for mineral oil, $AgNO_3$ *with* NH_3 *and* N_2H_4 *in the microfluidic chip device. The flowrates of* PZA (10^{-4} M) *and* $NaNO_3$ *were kept constant at* 10 *nl/s. With addition of citrate* (10^{-5} M) *depicted in black, without citrate plotted in gray. In light gray the standard deviation values are indicated.*

Flow rates:

Port 1	Port 2	Port 3	Port 4	Port 5	Port 6
Mineral oil	AgNO3/NH3	Citrate 10 ⁻⁵ M	N2H4	Analyte	Na2NO3
5–30 nl/s	5–30 nl/s	5 nl/s	5–30 nl/s	10 nl/s	10 nl/s

Figures 3 and 4: Average LoC-SERS spectra of different PZA concentrations (Figure 3) and different POA concentrations (Figure 4) in water.

Flow rates:

Port 1	Port 2	Port 3	Port 4	Port 5	Port 6
Mineral oil	AgNO3/NH3	Citrate 10-5 M	N_2H_4	Analyte	Blocked
20 nl/s	20 nl/s	5 nl/s	20 nl/s	40 nl/s	

Figure 5: Average LoC-SERS spectra of mixtures of PZA and POA in water. Mixing ratios of analyte stock solutions (10-4 M) are indicated in the graph. Mixing was done before injection into the chip.

Flow rates: Figure 5a

	Port 1	Port 2	Port 3	Port 4	Port 5	Port 6		
	Mineral oil	AgNO3/NH3	Citrate 10-5 M	N_2H_4	Analyte PZA/POA	NaNO3/HNO3		
	20 nl/s	20 nl/s	5 nl/s	20 nl/s	30 nl/s	10 nl/s		

References

- 1. Chiş, V., Pirnau, A., Jurca, T., Vasilescu, M., Simon, S., Cozar, O., David, L. Experimental and DFT study of pyrazinamide. *Chem. Phys.* **2005**, *316*, 153–163, doi: 10.1016/j.chemphys.2005.05.004
- Castro, J.L., Montanez, M.A., Otero, J.C., Marcos, J.I. Enhanced Raman Scattering from Pyrazinoic Acid on Silver and Gold Sols. *Spectrosc. Lett.* 1993, 26, 237–244, doi: 10.1080/00387019308011528