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Abstract: Magnetic resonance imaging (MRI) plays a significant role in the diagnosis of lumbar disc
disease. However, the use of MRI is limited because of its high cost and significant operating and
processing time. More importantly, MRI is contraindicated for some patients with claustrophobia
or cardiac pacemakers due to the possibility of injury. In contrast, computed tomography (CT)
scans are much less expensive, are faster, and do not face the same limitations. In this paper,
we propose a method for estimating lumbar spine MR images based on CT images using a novel
objective function and a dual cycle-consistent adversarial network (DC2Anet) with semi-supervised
learning. The objective function includes six independent loss terms to balance quantitative and
qualitative losses, enabling the generation of a realistic and accurate synthetic MR image. DC2Anet
is also capable of semi-supervised learning, and the network is general enough for supervised or
unsupervised setups. Experimental results prove that the method is accurate, being able to construct
MR images that closely approximate reference MR images, while also outperforming four other
state-of-the-art methods.

Keywords: image cross-modality synthesis; lumbar spine; dual cycle-consistent adversarial network;
semi-supervised learning; adversarial training

1. Introduction

Computed tomography (CT) scanning is a medical imaging technique that is widely used for
diagnostic and therapeutic purposes in a variety of clinical applications. Magnetic resonance imaging
(MRI) is another imaging technique that visualizes anatomical details and is used in radiology and
nuclear medicine. A comparison of the strengths and weaknesses of these imaging approaches is shown
in Table 1. Unlike CT scans, MRI can detect slight differences in soft tissue, ligaments, and organs,
which is beneficial for diagnosis. However, MRI is not only much more expensive, but also requires
more time to produce its results, meaning that patients often prefer CT scans to MRI.

Lumbar disc herniation is common among the elderly and people who sit for long periods. The use
of MRI to observe the spinal cord and the disc signals of the lumbar spine is of great importance in
the treatment of this condition. However, some patients with claustrophobia or cardiac pacemakers
are prevented from receiving an MRI due to possible injury. Thus, the ability to generate a reliable
magnetic resonance (MR) image from a CT scan for these patients is vital. This would not only
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increase the diagnostic value of CT scans, but also provide additional reference information for
diagnosis. Thus, in this study, we propose a synthesis method based on convolutional neural networks
(CNNs) [1,2] with adversarial training [3] to construct a lumbar spine MR image from CT scan data.

Table 1. Comparison between CT scans and MRI.

CT Scans MRI

Principle
Uses multiple X-rays, taken at different
angles to produce cross-sectional images

Uses powerful magnetic fields and
radiofrequency pulses to produce detailed images

Radiation Minimal None

Uses
Excellent for observing bone and very
good for soft tissue, especially with the
use of intravenous contrast dye

Excellent for detecting very slight differences
in soft tissue

Cost Usually less expensive than MRI Often more expensive than CT scans

Time taken
Very quick, taking only about 5 min,
depending on the area being scanned

Depends on the part of the body being examined
and can range from 15 min–2 h

Application
Produces a general image of an area such
as internal organs, fractures, or head trauma

Produces more detailed images of soft tissue,
ligaments, and organs

Benefits
Faster and can provide images of tissue,
organs, and skeletal structure Produces more detailed images

Risks
• Harmful for unborn babies
• A very small dose of radiation
• A potential reaction to the use of dyes

• Possible reactions to metals due to magnets
(e.g., artificial joints, eye implants,
intrauterine devices, pacemakers)
• Loud noises from the machine can cause

hearing issues
• Increase in body temperature during

long MRIs
• Claustrophobia

In recent years, researchers have increasingly searched for ways to replace CT scans with MRI
when planning for radiation therapy [4–6]. However, CT-based MR image construction has received
little attention. It is challenging to generate an MR image directly from a CT image using a linear model
because it is difficult to produce high-level image domains based on low-level ones. In response to this,
we propose a synthesis method based on convolutional neural networks (CNNs) [1] with adversarial
training [3] to produce a lumbar spine MR image from a CT scan. In this process, the development
of an objective function for the deep neural network is essential [7,8]. An objective function is a
combination of loss terms that maps a real number that intuitively represents the “cost” associated
with the performance of a predefined network at a certain status. The optimization process seeks to
minimize this cost by updating trainable variables to determine an optimal network. Synthetic images
in medical imaging need to not only be realistic, i.e., they cannot be distinguished from genuine images
by human experts, but also be very similar to reference images. In this study, we propose a novel
objective function that balances between two quantitative loss terms and three qualitative loss terms to
construct lumbar spine MR images from CT images. A dual cycle-consistent loss is also included for
semi-supervised learning that alternates between optimizing supervised and unsupervised learning in
order to seek a global minimum for the optimal network.

Experimental results based on quantitative and qualitative evaluations prove the superiority of
the proposed method compared with other state-of-the-art methods. The main contributions of this
study are as follows:
• An objective function is proposed to balance quantitative and qualitative loss terms to construct a

realistic and accurate synthetic MR image. This function consists of adversarial, dual cycle-consistent,
voxel-wise, gradient difference, perceptual, and structural similarity losses. Using ablation analysis,
the importance and effectiveness of each of these loss terms are investigated.
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• The dual cycle-consistent adversarial network (DC2Anet) is proposed as a general synthesis
system for semi-supervised learning. Due to its dual cycle-consistent structure, DC2Anet can be
applied to both supervised and unsupervised learning.

This paper first summarizes previous research on the synthesis of medical images in Section 2.
The proposed algorithm is outlined in Section 3, while Section 4 reports the experimental results and
discussion. A conclusion is presented in Section 5.

2. Literature Review of Medical Imaging Synthesis

In medical imaging, a number of methods have been proposed for generating one image domain
from another, e.g., constructing a CT image from MRI data or a positron emission tomography (PET)
image from CT data. Existing methods can be divided into three categories: tissue-segmentation,
learning, and atlas-based methods. Tissue segmentation first divides MR image voxels into different
tissue classes, such as air, fat, soft tissue, and bone, and then, the segmentation classes are refined
manually [5,9]. However, tissue segmentation is difficult, and its performance strongly depends on
segmentation accuracy and the quality of the manual input. Learning-based methods extract features
that represent two different domains and then construct a non-linear map between them. However,
these methods depend on the quality of the feature extraction in terms of how well they can represent
the different domains. Additionally, generating one image domain from another is not as simple as
one-to-one mapping [10,11]. Atlas-based methods apply image registration to align an MR image with
an atlas MR image to approximate the correspondence matrix. The matrix can then be used to warp
the associated atlas CT image to generate the query CT image [12–14]. However, the performance of
atlas-based methods is closely associated with the registration accuracy for the two image domains.
Furthermore, it is difficult to cover pathological differences or significant anatomical variations using
atlas data.

In recent years, CNNs [15,16] have demonstrated outstanding performance in various computer
vision tasks. In particular, several studies have proven that CNNs are useful in medical imaging [17],
such as skin cancer classification [18], X-ray organ segmentation [19], retinal vessel segmentation [20],
and brain lesion detection [21]. In these applications, CNN-based medical image synthesis can be
considered a form of regression in which non-linear mapping functions are stacked from one image
domain to another. For example, Han [22] applied a U-Net [23] architecture consisting of an encoder
network and a decoder network in which some layers were connected by skip connections to construct
a synthetic CT image from an MR image. To train the deep CNN model using a limited dataset,
Han [22] employed transfer learning by initializing the encoder network using a pretrained 16-layer
VGG (VGG16) network [24]. The objective function of the network used voxel-wise loss only to
minimize the difference between the synthetic and reference images. However, because voxel-wise
loss is minimized by averaging all plausible outputs, simply minimizing this loss may produce blurry
results. Additionally, the slight voxel-wise misalignment of training data may further lead to a blurry
constructed image. Designing objective functions that force the CNN to operate as required, e.g.,
to generate sharp, realistic, and accurate synthetic images, remains an unsolved problem and generally
requires both prior knowledge and experimental observations.

In image generation, generative adversarial networks (GANs) [25], which are a form of generative
model [26,27], have been widely employed to produce state-of-the-art, realistic images [28,29] for
applications such as GAN-based image inpainting [30] and video generation [31,32]. An adversarial
loss of GAN learns to satisfy a high-level goal, such as generating an output image indistinguishable
from reality. A discriminator network of GAN is used to distinguish whether an image is real or
synthesized while simultaneously training a generator network to minimize the adversarial loss.
For example, Bi et al. [33] presented a multi-channel GAN with an objective function consisting of
adversarial loss and voxel-wise loss to generate a synthetic PET image from a CT image. Similarly,
Ben-Cohen et al. [34] independently applied the advantages of a fully-convolutional network
(FCN) [35] and a pixel-to-pixel (pix2pix) model [36] to synthesize a realistic PET image from a CT image.
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This method also used adversarial loss and voxel-wise loss together. Extending the above method,
Nie et al. [37] proposed a context-aware GAN that utilized a 3D CNN [38,39] and an auto-context
model [40] to generate a CT sequence from an MR sequence. The voxel-wise loss of the 3D CNN
learns both the spatial and temporal information of the sequence data. In contrast, Wolterink et al. [41]
applied a cycle-consistent GAN (cycleGAN) [42] with least-squares adversarial loss [43] in which the
loss term leads to the stable optimization of the network when synthesizing an MR image using a CT
image. A cycle-consistent loss [42,44] produces not only a synthetic image that looks real, but also one
that is similar to the input under unsupervised learning. A CT-based MR image estimation method
was first proposed by Jin et al. [45]. They proposed a synthesis system referred to as MR-GAN using a
dual cycle-consistent structure. Their MR-GAN is trainable with paired and unpaired data together to
improve performance. In addition to dual cycle-consistent loss, their objective function includes two
other loss terms: adversarial loss and the voxel-wise loss. Table 2 presents a comparison of the network
architectures and objective functions of the deep-neural-network-based medical synthesis methods.
Compared to the methods in Table 2, this study proposes a more general system of the cross-modality
synthesis, DC2Anet, that supports both supervised and unsupervised learning and a new objective
function to balance quantitative and qualitative loss terms.

Table 2. Comparison of synthesis methods based on deep neural networks. pix2pix, pixel-to-pixel.

DCNN
[22]

Multi-channel
GAN
[33]

Context-Aware
GAN
[37]

Deep
MR-to-CT

[41]

DiscoGAN
[44]

MR-GAN
[45]

Application
Brain

MR to CT
Lung

CT to PET
Brain and pelvic

MRI to CT
Brain

MR to CT
Attribute

translation
Brain

CT to MRI

Objective
function Voxel-wise

Adversarial
[25] and

voxel-wise

Adversarial
[25],

voxel-wise,
and gradient

difference
[37]

Least-
squares

adversarial
[43]

and cycle-
consistent

[42]

Adversarial
[25]

and cycle-
consistent

[42]

Adversarial
[25], voxel
-wise, and
dual cycle-
consistent

[45]

Model

Pretrained
VGG16

[24]
with U-Net

[23]

pix2pix
[36]

3D ConvNet
[38,39] and

auto-context
model [40]

cycleGAN
[42]

DiscoGAN
[44]

MR-GAN
[45]

No. of
trainable
parameters

34.9 M 54.5 M Unknown 28.3 M 16.6 M 28.3 M

Generator U-Net [23] U-Net [23] Customized
Residual

Net
[46–48]

Customized
Residual

Net
[46–48]

No. of
layers in the
generator

27 16 8 24 8 24

Discriminator None
Patch
GAN
[36]

Customized
Path
GAN
[36]

Path
GAN
[36]

Path
GAN
[36]

No. of
layers in the
discriminator

None 5 6 5 5 5

Generation
time

56.25
ms.

17.51
ms. Unknown

48.71
ms.

10.88
ms.

47.48
ms.
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The voxel-wise loss function measures the difference between the synthetic and the reference
images, but it cannot reflect the perceptual difference between the two images. For example, even when
two identical images have the same perceptual information, they will have very different voxel-wise
loss measurements if they are offset from each other by just one pixel. Recent work has shown that
high-quality synthetic images can be produced using perceptual loss based on differences between
high-level feature representations extracted from a pretrained CNN [48,49]. Gatys et al. [49] conducted
artistic style transfer by jointly minimizing feature reconstruction loss [50] and style reconstruction
loss based on features extracted from a pretrained VGG16 network [24]. Johnson et al. [48]
produced visually-pleasing results using image style transformation and single-image super-resolution,
with voxel-wise loss replaced by perceptual loss. Structural similarity (SSIM) [51,52] is another
qualitative measurement approach that is based on the human visual system and is used to compare
local patterns of structural information that have been normalized for luminance and contrast. In our
study, a similar structural loss term was proposed to retain the structural patterns of lumbar spine CT
scans in the synthesis of MR images. Additionally, to balance quantitative and qualitative performance,
gradient difference loss and perceptual loss were included based on adversarial, voxel-wise, and dual
cycle-consistent loss.

3. Method

3.1. Converting Supervised Learning to Semi-Supervised Learning

Semi-supervised learning is a form of machine learning that makes use of a small amount of
aligned data and a large volume of unaligned data. It thus represents a combination of supervised
learning (which utilizes completely aligned data) and unsupervised learning (which does not include
aligned data). In our study, the paired CT and MR images were aligned, meaning that the CT image and
its corresponding MR image were from the same slice of the same patient, with some post-processing
such as image registration for coordinate offsetting and manual correction by neuroradiologists.
For image registration, we utilized the contours of the body vertebra in CT and MR images to estimate
the parameters of the affine transformation to register the two images. In contrast, unaligned data
included CT and MR images that were captured from different slices or even different patients.

In medical image synthesis, supervised learning can easily be converted to unsupervised learning.
Supervised learning applies aligned training data where the output image corresponds to each input
image. On the contrary, by disconnecting the aligned data to consist of an input and output set for
training, medical synthesis becomes an unsupervised learning-based synthetic task. A semi-supervised
learning framework can also be constructed to utilize both supervised and unsupervised learning
together. Figure 1 illustrates the conversion from supervised learning to semi-supervised learning.
The left-hand side of the figure displays supervised learning using aligned data. The squares and
circles represent the image domains X and Y, respectively. The three aligned points are indicated
by different colors (red, green, and blue) with parentheses. By disconnecting the aligned data and
recombining the different domains, unaligned data are generated, as shown on the right-hand side
of Figure 1. In this manner, the three aligned data points can be converted into six unaligned data
points, with the unpaired data increasing exponentially. Semi-supervised learning is thus conducted
by combining supervised learning with aligned data and unsupervised learning with unaligned data.
The advantage of this approach is that supervised learning uses the averages of all plausible outputs
to reduce the bias of the domain translation, while unsupervised learning focuses on the structural
pattern of the two image domains, reducing the variance of the model estimation process. Additionally,
semi-supervised learning can more efficiently use a limited volume of paired data by combining the
three paired data points with the six unpaired data points shown in Figure 1. The proposed DC2Anet is
capable of semi-supervised learning, and the network is general enough for both supervised learning
and unsupervised learning.
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Figure 1. Illustration of the conversion of supervised learning to semi-supervised learning.

3.2. Dual Cycle-Consistent Adversarial Network

A GAN [25] is a generative model that is designed to generate synthetic samples directly
from the desired data distribution without the need to model the underlying probability density
function explicitly. It consists of two different networks that are trained simultaneously, with the
generator network focused on image generation and the discriminator network used to distinguish
between real samples and the synthetic images. The idea of using a cycle-consistent approach to
regularize structural data has a long history in visual tracking [53] and structure from motion [54].
The cycle-consistent structure employed in the GAN (cycleGAN) [44] enables unsupervised learning,
stitching two generator networks together head to toe so that the synthetic images can be translated
into a forward cycle. In addition to the forward cycle, the cycleGAN also has a backward cycle to
stabilize the training process and prevent mode collapse. The forward cycle enforces the translation
from the CT domain to the MR domain, while the backward cycle moves from the MR domain to the
CT domain.

The proposed DC2Anet also applies a cycle-consistent structure for its unsupervised learning
setup. However, the proposed network has a dual cycle-consistent structure for the adoption of
semi-supervised learning: one cycle-consistent structure for supervised learning with aligned data
and the other for unsupervised learning with unaligned data. A diagram of DC2Anet is presented in
Figure 2. Because the forward and backward cycle-consistent networks with aligned data or unaligned
data are similar, we only illustrate a forward cycle-consistent adversarial network with unaligned
learning in Figure 2a and a backward cycle-consistent with aligned learning in Figure 2b.

In the forward cycle-consistent adversarial network with unaligned learning, the SynMR network
generates a synthetic MR image from a CT image, and this MR image is then used by the SynCT
network to generate the original CT image in order to learn the domain structures. The input to the MR
discriminator network is either a sample MR image from the real MR data or a synthetic MR image.
The objective function for unaligned learning includes both cycle-consistent and adversarial loss. In the
backward cycle-consistent adversarial network with aligned learning, a synthetic CT image is generated
from an MR image, and this CT image is employed by the SynMR network to generate the original MR
image. The CT discriminator is used to distinguish between the synthetic CT and reference CT images.
In aligned learning, a reference image is matched with the synthetic image to restrain the generated
structure of the output. Based on the cycle-consistent and adversarial loss, the objective function of
aligned learning also considers, due to the use of the reference image, voxel-wise, gradient difference,
structural, and perceptual loss within the pretrained VGG16 network [24]. The four switches are
simultaneously employed to control the data flow from the reference image, and these are connected
in aligned learning, but disconnected in unaligned learning. It is also important to note that the SynMR
and SynCT networks utilized in the forward and backward cycles share the same weights.
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Figure 2. Diagram of the proposed dual cycle-consistent adversarial network (DC2Anet). DC2Anet
consists of a forward cycle-consistent and a backward cycle-consistent network. (a) The forward
cycle-consistent adversarial network with unaligned learning. (b) The backward cycle-consistent
adversarial network with aligned learning.

3.3. Objective Function

Our goal is for the mapping functions between the CT image and MR image domains to be
learned using the given aligned training data. As illustrated in Figure 1, aligned data (ICT , IMR)
are converted into unaligned data ICT , IMR, and the aligned and unaligned data points are utilized
together in semi-supervised learning. DC2Anet includes two synthesis networks, SynMR: CT→MR
and SynCT : MR → CT, and includes two discriminator networks, DisMR and DisCT , where DisMR
aims to distinguish between the reference MR image IMR and the synthetic MR image SynMR(ICT);
in the same way, DisCT aims to distinguish between the reference CT image ICT and the synthetic CT
image SynCT(ICT). Moreover, the four networks are different optimized objectives corresponding to
the supervised and unsupervised learning due to the input aligned or unaligned data. Additionally,
to measure the high-level perceptual and semantic differences between two images, the VGG16
perceptual network is employed in DC2Anet, which was pretrained on the ImageNet dataset [55].
Our objective function contains six loss terms in total: adversarial, dual cycle-consistent, voxel-wise,
gradient difference, perceptual, and structural similarity. A summary of the strengths and weaknesses
of each loss term is given in Table 3.

We apply adversarial loss [3] to both the supervised and unsupervised setups. The forward and
backward mappings SynMR: CT→MR and SynCT : MR→ CT and the discriminators DisMR and DisCT
are expressed as follows:

Lsup−adver(SynMR, DisMR, SynCT , DisCT) = EICT ,IMR∼pdata(ICT ,IMR)

[
log
(

DisMR (ICT , IMR)
)]

+EICT∼pdata(ICT)

[
log
(
1− DisMR (ICT , SynMR (ICT))

)]
+EIMR ,ICT∼pdata(IMR ,ICT)

[
log
(

DisCT (IMR, ICT)
)]

+EIMR∼pdata(IMR)

[
log
(
1− DisCT (IMR, SynCT (IMR))

)]
(1)

where the first two terms are the forward adversarial loss and the last two terms are the
backward adversarial loss. The network SynMR attempts to synthesize images SynMR(ICT),
which look similar to images from the MR domain, while DisMR aims not only to discriminate
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between synthetic MR and reference MR images, but also to ensure it generates images from
the corresponding CT images ICT . For the backward adversarial loss, the synthesis network
SynCT generates the reference CT images SynCT(IMR), which look similar to images from the
CT domain, while DisCT aims to distinguish between synthetic and reference CT images based
on the MR images IMR. The synthesis networks SynMR and SynCT attempt to minimize this
objective function, while the adversarial discriminator networks DisMR and DisCT aim to maximize
it, i.e., Syn∗MR, Syn∗CT = arg minSynMR ,SynCT maxDisMR ,DisCT Lsup−adver (SynMR, DisMR, SynCT , DisCT).
In Equation (2), we introduce a similar form of adversarial loss for unsupervised learning for the
synthesis networks and discriminators. However, the discriminators for unsupervised learning need
to distinguish whether the images are real or synthetic; the source domain images are not input into
the discriminators.

Lunsup−adver(SynMR, DisMR, SynCT , DisCT) = EIMR∼pdata(IMR)
[

log
(

DisMR (IMR)
)]

+EICT∼pdata(ICT)

[
log
(
1− DisMR (SynMR (ICT))

)]
+EICT∼pdata(ICT)

[
log
(

DisCT (ICT)
)]

+EIMR∼pdata(IMR)

[
log
(
1− DisCT (SynCT (IMR))

)]
(2)

Table 3. A summary of the strengths and weaknesses of each loss term used in DC2Anet. In the last
column, the symbols 3 and 7 denote whether the loss term requires aligned training data or not.

Loss term Strengths Weaknesses Aligned Data

Adversarial Realistic output Unstable training 7
Ducal cycle-
consistent Possible unsupervised learning

Heavy computational load (two
synthesis and two discriminator
networks)

7

Voxel-wise
Encourage the output similar to
the reference image Tends to produce blurry output 3

Gradient
difference

Emphasizes the boundaries of
the output

Sensitive to the quality of data
alignment 3

Perceptual
Preserves high-level semantic
similarity

Not a fully-analyzed and task-oriented
problem 3

Structural
similarity

Relaxes misalignment
constraints for data alignment Prefers low illumination 3

In unsupervised learning, adversarial loss alone cannot guarantee that the learned synthesis
network can map an input image to the desired output image. To reduce the possible mapping space
between these two domains, we utilized a dual cycle-consistent structure for aligned and unaligned
data. For an image ICT from the CT domain, the forward cycle-consistent network should be able to
bring ICT back to the original image, i.e., ICT → SynMR(ICT)→ SynCT(SynMR(ICT)) ≈ ICT . Similarly,
the backward cycle-consistent network should extract an image IMR from the MR domain to satisfy
IMR → SynCT(IMR)→ SynMR(SynCT(IMR)) ≈ IMR. The cycle-consistent losses are expressed as follows:

Lsup−cycle (SynMR, SynCT) = EICT ,IMR∼pdata(ICT ,IMR)

[∥∥∥SynCT
(
SynMR (ICT)

)
− ICT

∥∥∥
1

]
+EIMR ,ICT∼pdata(IMR ,ICT)

[∥∥∥SynMR
(
SynCT (IMR)

)
− IMR

∥∥∥
1

] (3)

Lunsup−cycle (SynMR, SynCT) = EICT∼pdata(ICT)

[∥∥∥SynCT
(
SynMR (ICT)

)
− ICT

∥∥∥
1

]
+EIMR∼pdata(IMR)

[∥∥∥SynMR
(
SynCT (IMR)

)
− IMR

∥∥∥
1

] (4)



Appl. Sci. 2019, 9, 2521 9 of 24

where Lsup−cycle and Lunsup−cycle are the cycle-consistent structures for supervised and unsupervised
learning, respectively. Each cycle-consistent loss has two terms: a forward cycle-consistent and a
backward cycle-consistent term.

In general, adversarial loss produces visually-appealing results. However, using only adversarial
loss to match synthetic and reference MR images may cause the model to generate unseen structures.
Voxel-wise loss helps to overcome this problem if aligned data are available. The goal of the
discriminator networks remains unchanged, but the synthesis networks are tasked with not only
cheating the discriminator networks, but also being similar to the reference image at an L1 distance.
The voxel-wise loss of the forward and backward cycle-consistent network is defined as follows:

Lvoxel (SynMR, SynCT) = EICT ,IMR∼pdata(ICT ,IMR)

[∥∥IMR − SynMR (ICT)
∥∥

1

]
+EIMR ,ICT∼pdata(IMR ,ICT)

[∥∥ICT − SynCT (IMR)
∥∥

1

] (5)

Direct optimization of voxel-wise loss produces a suboptimal (i.e., blurry) result by minimizing
the average loss for all plausible outputs. To deal with the inherently blurry results obtained from
voxel-wise loss, gradient difference loss is constrained for the synthesis networks. The gradient
difference loss between a synthetic and reference image is given as follows:

Lgrad (SynMR, SynCT) =

EICT ,IMR∼pdata(ICT ,IMR)

[∥∥∥∥∣∣∣∇(SynMR (ICT)x
)∣∣∣− ∣∣∣∇(IMR

)
x

∣∣∣∥∥∥∥
1
+

∥∥∥∥∣∣∣∇(SynMR (ICT)y
)∣∣∣− ∣∣∣∇(IMR

)
y

∣∣∣∥∥∥∥
1

]
+EIMR ,ICT∼pdata(IMR ,ICT)

[∥∥∥∥∣∣∣∇(SynCT (IMR)x
)∣∣∣− ∣∣∣∇(ICT

)
x

∣∣∣∥∥∥∥
1
+

∥∥∥∥∣∣∣∇(SynCT (IMR)y
)∣∣∣− ∣∣∣∇(ICT

)
y

∣∣∣∥∥∥∥
1

] (6)

where IMR in the first term and ICT in the second term are the reference images in the forward and
backward cycle-consistent networks, respectively, and the x- and y-direction gradients are calculated
to emphasize the boundaries of the structural shape.

A pretrained VGG16 network is incorporated into the optimization of the synthesis networks to
ensure perceptual similarity. We aim for the synthetic and reference images to have similar feature
representations when computed by the pretrained VGG16 network φ. Let φj(ICT) and φj(IMR) be the
activations of the jth convolutional layer of the network φ when processing CT image ICT and MR
image IMR, respectively. The perceptual loss is defined as follows:

Lperc (SynMR, SynCT) = EICT ,IMR∼pdata(ICT ,IMR)

[
1
K

K

∑
j=1

1
HjWjCj

∥∥∥φj
(
SynMR (ICT)

)
− φj

(
IMR
)∥∥∥

1

]

+EIMR ,ICT∼pdata(IMR ,ICT)

[
1
K

K

∑
j=1

1
HjWjCj

∥∥∥φj
(
SynCT (IMR)

)
− φj (ICT)

∥∥∥
1

] (7)

where φj(SynMR(ICT)) and φj(SynCT(IMR)) are the activations of the synthetic images in the forward
and backward cycles, respectively, Hj ×Wj × Cj is the shape of the activations from the jth convolution
layer, and K is the number of layers in the VGG16 network. By utilizing the activations of the higher
layer in the VGG16 network, the synthetic images can preserve the overall spatial structure of the
reference images, but not the texture and exact shape. Perceptual loss causes the synthetic images to
become more perceptually similar to the reference images, but does not lead to an exact match.

The vertebra, spinal nerves, and ligaments in spinal images contain strong interdependencies.
Structural similarity (SSIM) [51] is a perceptually-motivated metric that considers the human visual
system and performs better in terms of visual pattern recognition than do quantitative metrics, e.g.,
mean-based metrics. To enhance the structural and perceptual similarity of the synthetic and reference
images, structural similarity loss is expressed as follows:
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Lstruc (SynMR, SynCT) = EICT ,IMR∼pdata(ICT ,IMR)

[
−log

(
max

(
0, SSIM

(
SynMR(ICT) , IMR

)))]
+EIMR ,ICT∼pdata(IMR ,ICT)

[
−log

(
max

(
0, SSIM

(
SynCT(IMR) , ICT

)))] (8)

SSIM (x, y) =

(
2µxµy + C1

) (
2σxy + C2

)(
µ2

x + µ2
y + C1

) (
σ2

x + σ2
y + C2

)
s.t. SSIM (x, y) ≤ 1,

SSIM (x, y) = 1 i f and only i f x = y

(9)

where C1 and C2 are constants that stabilize the division with the weak denominator and µx, µy,
σx, σy, and σxy represent the mean, standard deviation, and cross-covariance of the synthetic and
reference images.

The objective functions for supervised and unsupervised learning are defined as follows:

Lsup (SynMR, SynCT , DisMR, DisCT) =Lsup−adver (SynMR, SynCT , DisMR, DisCT)

+ λcycle · Lsup−cycle (SynMR, SynCT)

+ λvoxel · Lvoxel (SynMR, SynCT)

+ λgrad · Lgrad (SynMR, SynCT)

+ λperc · Lperc (SynMR, SynCT)

+ λstruc · Lstruc (SynMR, SynCT)

(10)

Lunsup (SynMR, SynCT , DisMR, DisCT) =Lunsup−adver (SynMR, SynCT , DisMR, DisCT)

+ λcycle · Lunsup−cycle (SynMR, SynCT)
(11)

where λcycle, λvoxel , λgrad, λperc, and λstruc are hyper-parameters that balance the relative importance
of adversarial, cycle-consistent, voxel-wise, gradient difference, perceptual, and structural similarity
loss. In summary, the training objective function can be expressed mathematically as:

Syn∗MR = arg min
SynMR ,SynCT

max
DisMR ,DisCT

(
Lsup (SynMR, SynCT , DisMR, DisCT)

+ Lunsup (SynMR, SynCT , DisMR, DisCT)
) (12)

where SynMR and SynCT minimize the objective function, while DisMR and DisCT maximize it.
During the inference process, only the Syn∗MR network is used to produce a synthetic MR image
from an input CT image.

3.4. Optimization of DC2Anet with Semi-Supervised Learning

DC2Anet with semi-supervised learning can be optimized in two different ways, with joint or
alternating optimization:

• Joint optimization: For each training iteration, both the synthesis and discriminator networks
are updated with regards to the objective function using supervised and unsupervised learning
as defined in Equation (12). A pair of aligned data points and a pair of unaligned data points are
sampled from the dataset and fed to DC2Anet to update the networks.

• Alternating optimization: For each training iteration, supervised and unsupervised learning
for the objective function are alternated as defined in Equations (10) and (11). In this case,
only the weights that correspond to the synthesis networks and the particular layers of the
discriminators are updated. This form of training maintains a more stable convergence of
the optimization, and it is easy to balance the synthesis and discriminator networks with
Jensen–Shannon divergence [3]. However, the computational load required for alternating
optimization is nearly twice as high as that of joint optimization in the training stage.
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The most difficult complication of adversarial training is that one network may inevitably
become more potent than the other, and this generally proved to be the discriminator network in
most cases. When the discriminator network becomes too strong, the synthetic images are much
easier to distinguish from the reference images. In this case, the gradients from the discriminator
network approach zero. This results in no guidance for the further training of the synthesis network.
To overcome this issue, alternating optimization is an effective approach for DC2Anet. DC2Anet with
semi-supervised learning is described in Algorithm 1.

Algorithm 1 Mini-batch stochastic gradient descent training of DC2Anet. We used default values of
m = 1, nsup = nunsup = 1, α = 0.0002, β1 = 0.5, and β2 = 0.999.

Require: The batch size m, the number of alternative iterations between supervised learning and
unsupervised learning nsup and nunsup, the learning rate α, and Adam hyperparameters β1 and β2.

1: Construct unaligned data Punaligned{ICT , IMR} based on aligned data Paligned(ICT , IMR).

2: for number of training iterations do

3: for nsup steps do

4: Sample
(

I(i)CT , v(i)MR

)m

i=1
∼ Paligned (ICT , IMR) a batch from the aligned data

5: Update the discriminator networks DisMR and DisCT by ascending their stochastic gradient:

L(i)
sup−adver ← L(i)

sup−adver

(
SynMR, SynCT , DisMR, DisCT , I(i)CT , I(i)MR

)
DisMR, DisCT ← Adam

(
∇DisMR ,DisCT

1
m

m

∑
i=1
−L(i)

sup−adver, DisMR, DisCT , α, β1, β2

)
6: Update the synthesis networks SynMR and SynCT , by descending their stochastic gradient:

L(i)
sup ← L(i)

sup

(
SynMR, SynCT , DisMR, DisCT , I(i)CT , I(i)MR

)
SynMR, SynCT ← Adam

(
∇SynMR ,SynCT

1
m

m

∑
i=1

L(i)
sup, SynMR, SynCT , α, β1, β2

)
7: end for

8: for nunsup steps do

9: Sample
{

I(i)CT , I(i)MR

}m

i=1
∼ Punaligned {ICT , IMR} a batch from the unaligned data

10: Update the discriminator networks DisMR and DisCT , by ascending their stochastic gradient:

L(i)
unsup−adver ← L(i)

unsup−adver

(
SynMR, SynCT , DisMR, DisCT , I(i)CT , I(i)MR

)
DisMR, DisCT ← Adam

(
∇DisMR ,DisCT

1
m

m

∑
i=1
−L(i)

unsup−adver, DisMR, DisCT , α, β1, β2

)
11: Update the synthesis networks SynMR and SynCT , by descending their stochastic gradient:

L(i)
unsup ← L(i)

unsup

(
SynMR, SynCT , DisMR, DisCT , I(i)CT , I(i)MR

)
SynMR, SynCT ← Adam

(
∇SynMR ,SynCT

1
m

m

∑
i=1

L(i)
unsup, SynMR, SynCT , α, β1, β2

)
12: end for

13: end for

14: return SynMR
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3.5. Network Architecture

The synthesis networks SynMR and SynCT in DC2Anet adopt the same architecture as used in the
network reported by Johnson et al. [48], who produced impressive results in real-time style transfer and
single-image super-resolution. The network contained two stride-one convolutions at the beginning
and the end, two stride-two convolutions, nine residual blocks [46,47], and two fractionally-strided
convolutions with a stride of 0.5. Each residual block included two convolutions with 256 filters of
a size of 3× 3 and a stride of one. Instance normalization [56] and a rectified linear unit (ReLU) [57]
activation function followed each convolution except in the final convolutional layer. The hyperbolic
tangent (Tanh) activation function followed the final convolution to guarantee that the output was
within [−1, 1]. A detailed description of the synthesis network is presented in Table 4.

Table 4. Model architecture of the synthesis network. Layers marked with IN indicate that the
convolution layer is followed by the instance normalization layer. The ReLU activation layers are
omitted.

Layer Name/Type Output Size Filter Size/Stride Number of
Conv. Layers

Number of
Parameters

Input image H ×W × 1 None 0 0

Conv 1, IN H ×W × 64 7× 7/1 1 3200

Conv 2, IN H/2×W/2× 128 3× 3/2 1 73, 856

Conv 3, IN H/4×W/4× 256 3× 3/2 1 295, 168

Residual Block 1, IN H/4×W/4× 256 3× 3/2 2 590, 080

Residual Block 2, IN H/4×W/4× 256 3× 3/2 2 590, 080

Residual Block 3, IN H/4×W/4× 256 3× 3/2 2 590, 080

Residual Block 4, IN H/4×W/4× 256 3× 3/2 2 590, 080

Residual Block 5, IN H/4×W/4× 256 3× 3/2 2 590, 080

Residual Block 6, IN H/4×W/4× 256 3× 3/2 2 590, 080

Residual Block 7, IN H/4×W/4× 256 3× 3/2 2 590, 080

Residual Block 8, IN H/4×W/4× 256 3× 3/2 2 590, 080

Residual Block 9, IN H/4×W/4× 256 3× 3/2 2 590, 080

Fractional Conv 1, IN H/2×W/2× 128 3× 3/0.5 1 295, 040

Fractional Conv 2, IN H ×W × 64 3× 3/0.5 1 73, 782

Conv 4, Tanh H ×W × 1 7× 7/1 1 3137

Total number of parameters 6,054,913

Total number of parameters if instance normalization is applied 6,065,217

For the discriminator networks DisMR and DisCT , we used a patch-based GAN (PatchGAN) [36]
architecture, which aims to classify small overlapping image patches as either real or synthetic,
rather than whole images. This patch-level discriminator architecture has fewer parameters than a
whole-image discriminator and can emphasize detailed information in local areas. DC2Anet with
semi-supervised learning has two different input flows, aligned and unaligned, with different shapes
for the input data. The flow size of a volume of aligned data is (N, H, W, 2). N is the batch size; H and
W are the image height and width, respectively; and 2 represents a concatenation of the synthetic and
input images. The flow size of a volume of unaligned data is (N, H, W, 1), in which only a synthetic
image can be used as input (indicated as 1). Therefore, a hybrid discriminator model was designed
that consisted of two input stages, a shared stage, and two output stages. To balance the capability
between synthesis and discriminator networks, the discriminator network was designed to be much



Appl. Sci. 2019, 9, 2521 13 of 24

shallower than the synthesis network because generating images is much more difficult than merely
distinguishing real from synthetic images. Based on the related works presented in Table 2, the number
of discriminator layers was fixed at five, and the variant architectures of the hybrid discriminator are
presented in Figure 3.

Figure 3. The variant architectures of the hybrid discriminator. Models A–F are hybrid discriminators
for the aligned and unaligned data flow. Model G consists of two independent discriminators.

Models A–F represent variations of the input, shared, and output stages. Model G is the
independent discriminator for unaligned and aligned data flows. Each aligned data flow consisted of
a 300× 200 synthetic image and a corresponding 300× 200 input domain image, and each unaligned
data flow had only a 300× 200 synthetic image as input to the discriminator. All convolutions in the
discriminator conducted 4× 4 filters with a stride of 2. A leaky rectified activation (LeakyReLU) [58]
followed each of the convolutions as the activation function, except for the final convolution.

4. Experimental Results and Discussion

4.1. Implementation Details

To stabilize the DC2Anet training process, we used an image pooling technique [59] that updates
the discriminator networks DisMR and DisCT using a history of synthetic images rather than the ones
generated by the latest synthesis networks. We maintained an image pool buffer that stored the
50 previously-synthesized images. We also conducted data augmentation using random horizontal
flipping (−5–5 degree rotation) and the random translation of up to 15 pixels in each spatial dimension
in the training images. DC2Anet was trained with mini-batch stochastic gradient descent (SGD) [60]
with a mini-batch size of one. All weights were initialized from a zero-centered truncated normal
distribution with a standard deviation of 0.02. All networks were trained with a learning rate of
0.0002 for the first 100,000 iterations and a linearly decaying rate that went to zero over the next
100,000 iterations. Adam is one of the most pervasive and robust optimizers used in various
field [61,62]. The model was also optimized using the Adam optimizer [63] with β1 = 0.5 and
β2 = 0.999, as suggested in [28]. For all experiments, the following empirical values were used
to train the synthesis networks: λcycle = 10, λvoxel = 100, λgrad = 100, λperc = 1, and λstruc = 0.05.
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In LeakyReLU, the slope of the leak was set to 0.2. Reflection padding was used to reduce artifacts
instead of zero padding in the convolution layers. The model took about 48 h to train for 200,000
iterations using a single GeForce GTX 1080Ti GPU. The code and pretrained models are available at
https://github.com/ChengBinJin/SpineC2M.

4.2. Data Acquisition

Our lumbar spine dataset consisted of 641 patients, each with CT and MR images. The CT image
was acquired helically on a GE Revolution CT scanner with a tube voltage of 120 kV, an exposure
of 450 mAs, and a slice thickness of 1.00 mm. The MR image for each patient was obtained using a
Siemens 3.0T Trio TIM MR scanner with T2 3D (with a repetition time of 4320 ms, an echo time of
95 ms, and a flip angle of 150◦). To allow the voxel-wise comparison of the synthetic and reference MR
images, the CT image was manually aligned to the MR image to produce voxel-level correspondence.
After alignment, the CT and MR images from the same patient had the same image size and spacing.
Because only the lumbar spine region was considered, we cropped the aligned CT and MR images
to reduce the computational burden, producing a final preprocessed image size of 300× 200× 40
(40–48 slices depending on the alignment quality) with the same voxel size (1.00× 1.00× 1.00 mm).
We randomly separated the 641 patients into two groups: 549 patients for the training set and 92
patients for the test set. Table 5 presents a summary of our dataset, while Figure 4 displays several
sample images.

Table 5. Summary of the lumbar vertebra dataset used in the experiments.

Number of Patients Number of Slices

Training set 549 22,428
Test set 92 4426
Total 641 26,854

Figure 4. Sample images of axial lumbar vertebra CT (upper row) and MR images (lower row).

4.3. Evaluation Metrics

The synthesis and reference MR images were compared using the mean absolute error (MAE)
and root mean squared error (RMSE), which are defined as follows:

https://github.com/ChengBinJin/SpineC2M
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MAE =
1
N

N−1

∑
i=0

∥∥∥IMR (i)− SynMR
(

ICT (i)
)∥∥∥ (13)

RMSE =

√√√√ 1
N

N−1

∑
i=0

(
IMR (i)− SynMR

(
ICT (i)

))2
(14)

where N is the total number of image slices in the aligned voxel. MAE and RMSE measure the average
distance between each pixel in the synthetic and reference MR images. In addition, the voxel-wise
peak-signal-to-noise-ratio (PSNR) can also be calculated:

PSNR = 10 · log10

(
H2

MSE

)
(15)

MSE =
1
N

N−1

∑
i=0

(
IMR (i)− SynMR

(
ICT (i)

))2
(16)

where H is the maximum possible intensity of the pixel and MSE is the mean square error,
which represents the square of difference between IMR and SynMR(ICT). MAE, RMSE, and PSNR
were based on the correct alignment of test images ICT and IMR.

Because of the enormous differences between two image domains, it is difficult to achieve
perfect image alignment. Therefore, the structural similarity (SSIM) index and the Pearson correlation
coefficient (PCC) should also be calculated for patch-wise statistical comparisons, e.g., mean, variance,
and correlation. The definition of the SSIM is given in Equation (9), and the PCC is defined as follows:

PCC =
1
N

N

∑
i=0

(
IMR (i)− µIMR(i)

)(
SynMR

(
ICT (i)

)
− µ

SynMR

(
ICT(i)

))
σIMR(i)σSynMR

(
ICT(i)

) (17)

where µ and σ are the mean and variance of the ith image slice. Lower values for the MAE and RMSE
are preferable, while the reverse is true for the PSNR, SSIM, and PCC.

4.4. Analysis of DC2Anet

Based on our lumbar spine dataset and the metrics described in the previous section,
we quantitatively evaluated the performance of our model in generating an MR image from a
CT image. In Table 6, we compare the performance of DC2Anet with supervised, unsupervised,
and semi-supervised learning. Data alignment of the tuples of the corresponding images in supervised
learning produced a much higher accuracy than did unsupervised learning, while semi-supervised
learning with alternating optimization was better than both supervised and unsupervised learning.
The joint optimization of semi-supervised learning produced substantially weaker results compared to
alternating optimization. Therefore, we concluded that the alternating optimization of DC2Anet led to
a more stable convergence and was critical to effective performance.

Table 6. Comparison between different learning and optimization methods. The best scores are
displayed in bold. PCC, Pearson correlation coefficient.

Learning Optimization MAE RMSE PSNR SSIM PCC

Supervised − 28.873 39.562 64.533 0.242 0.445
Unsupervised − 31.297 42.205 63.976 0.227 0.420
Semi-supervised Joint 29.048 39.801 64.502 0.244 0.439
Semi-supervised Alternating 28.819 39.418 64.553 0.248 0.453
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Table 7 presents a comparison of the performance of the variant architectures for the discriminator
previously displayed in Figure 3. Models A, B, and C had a different number of convolution layers
in the input and output stages, and more than one convolution layer in the shared stage. In contrast,
Models D, E, and F had only one convolution layer in the shared stage with a different number of
convolution layers in the input and output stages. For the two different data flows, an independent
discriminator design was employed in Model G. From the experimental results, three significant
observations are worth noting. First, the independent discriminator architecture (Model G) exhibited
higher performance than Models D, E, and F, due to the high discriminatory capability of the
independent network. Second, Models A, B, and C outperformed the other models. This is because
the deep weight-sharing constraint in the shared stage can learn the joint distribution of the aligned
and unaligned data. Finally, Model C, which consists of two convolutions in the shared stage and two
layers in the output stage, exhibited the most effective discriminatory capability, outperforming all
other models in all metrics except for SSIM.

Table 7. Analysis of the discriminator architecture. The best scores are displayed in bold.

Discriminator MAE RMSE PSNR SSIM PCC

Model A 29.096 39.826 64.460 0.244 0.447
Model B 29.024 39.791 64.472 0.249 0.447
Model C 28.819 39.418 64.553 0.248 0.453
Model D 31.320 42.345 63.933 0.228 0.410
Model E 32.415 43.440 63.722 0.234 0.437
Model F 31.232 42.353 64.937 0.226 0.402
Model G 31.011 41.980 63.931 0.221 0.414

As demonstrated in [48,49], synthesizing an image by minimizing the perceptual loss for the
early layers of the pretrained network tends to focus on low-level information, such as intensity,
texture, and shape. Perceptual loss is helpful when there is misalignment in the training and test
datasets. Layer selection for perceptual loss is a task-oriented problem. We considered five ReLU layers
before max-pooling in the pretrained VGG16 network as in [48,49]. The performance of the different
perceptual layers is summarized in Table 8. The five layers were ReLUs 1_2, 2_2, 3_3, 4_3, and 5_3,
with the high-layer ReLUs always including the early layer ones. Table 8 indicates that perceptual loss
defined by high layers produced more accurate output than did the early layers. We also observed
that the perceptual loss from ReLU {1_2, 2_2, 3_3, 4_3} and ReLU {1_2, 2_2, 3_3, 4_3, 5_3} had minor
quantitative differences.

Table 8. Evaluation of variation in perceptual layers. The best scores are displayed in bold.

Perceptual Layers MAE RMSE PSNR SSIM PCC

ReLU {1_2} 29.147 39.858 64.459 0.241 0.442
ReLU {1_2, 2_2} 29.058 39.787 64.477 0.243 0.449
ReLU {1_2, 2_2, 3_3} 28.882 39.596 64.530 0.245 0.446
ReLU {1_2, 2_2, 3_3, 4_3} 28.825 39.383 64.574 0.241 0.448
ReLU {1_2, 2_2, 3_3, 4_3, 5_3} 28.819 39.418 64.553 0.248 0.453

Our objective function contained six independent loss terms. The experiments reported above
used all of the loss terms. To investigate the strength of each loss term, we employed ablation analysis
to determine how performance was affected by each loss term. We trained each network with a
different objective function five times using different initialization weights and report the average of
the five trials for each objective function. The evaluation results are shown in Table 9. Beginning with
adversarial loss alone, each loss term was added one by one. In this process, five metrics were used to
analyze the change in performance, and relative MAE improvement was also calculated. We considered
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adversarial loss alone to represent 0%, and the inclusion of all loss terms (the final row) was considered
to be 100% when calculating relative MAE improvement.

The synthesis results for the ablation analysis are presented in Figure 5. The performance of
DC2Anet generally improved with the addition of each loss term, with voxel-wise loss the most
useful in terms of relative improvement. This is because voxel-wise loss and MAE are consistent
with a per-pixel mean-error-based measure. Dual cycle-consistent and gradient difference loss
exhibited relative improvement of 12.19% and 6.95%, respectively, while perceptual loss and structural
similarity loss had a limited effect on the improvement of performance compared to the other forms
of loss. However, when all terms were used, the occurrence of unnatural features in the synthetic
MR images was significantly reduced. As a result of the above results, in the remainder of the
experiments, we employed DC2Anet with the following characteristics: alternating optimization of
semi-supervised learning, Model C for the discriminator architecture, perceptual loss from ReLUs
{1_2, 2_2, 3_3, 4_3, 5_3}, and the inclusion of all loss terms.

Table 9. Ablation analysis of the objective function. The results represent the average of five trials.
The best scores are displayed in bold.

Objectives MAE RMSE PSNR SSIM PCC Relative MAE
Improvement (%)

Adversarial alone 33.570 44.654 63.396 0.207 0.329 0.00
+ Dual cycle-consistent 32.991 44.721 63.437 0.208 0.330 12.19
+ Voxel-wise 29.276 39.989 64.402 0.237 0.450 90.38
+ Gradient difference 28.946 39.565 64.520 0.245 0.449 97.33
+ Perceptual 28.855 39.430 64.563 0.245 0.451 99.24
+ Structural similarity 28.819 39.418 64.553 0.248 0.453 100.00

Figure 5. Ablation analysis of the proposed method. From left to right: the input CT, adversarial
loss alone, the addition of dual cycle-consistent loss, the addition of voxel-wise loss, the addition
of gradient difference loss, the addition of perceptual loss, the addition of structural similarity loss,
and the reference MR image.
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4.5. Comparison with Baselines

To compare synthetic MR images produced using different methods quantitatively, we present
box plots in Figure 6 representing the MAE, RMSE, PSRN, SSIM, and PCCs resulting from the use
of multi-channel GAN [33], deep MR-to-CT [41], DiscoGAN [44], MR-GAN [45], and our proposed
method. The circles next to the box plots represent a single image slice from the test dataset. The top
and bottom box limits were calculated from Q25 and Q75, respectively. The green triangles and the
horizontal lines denote the average and the median. The range of the box plot whiskers is given
by
[
Q25− 1.5× (Q75− Q25), Q75 + 1.5× (Q75− Q25)

]
. Any data point that falls outside of this

range is typically considered an outlier and indicated by a red cross. The averages and standard
deviations displayed in Table 10 indicate that our proposed method outperformed the other methods
for all measures, with the lowest MAE and RMSE and the highest PSNR, SSIM, and PCC, thus further
verifying the utility of our architecture. In addition, t-tests were conducted on the results in Table 10,
finding that agreement with the reference MR images was significantly lower (p < 0.05) for images
obtained using the MR-GAN method than for the images obtained using the DC2Anet model.

Figure 6. A comparison of the proposed approach with baseline methods based on (a) MAE, (b) RMSE,
(c) PSNR, (d) SSIM, and (e) PCC metrics.
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Table 10. Overall statistics for five measures of model quality: MAE, RMSE, PSNR, SSIM, and PCC.
The average and standard deviation for each measure from 92 subjects in a lumbar vertebra dataset are
presented for five methods. The best scores are displayed in bold.

Methods MAE RMSE PSNR SSIM PCC

Multi-Channel
GAN [33] 29.245± 7.786 40.038± 8.913 64.428± 1.956 0.240± 0.066 0.447± 0.146

Deep
MR-to-CT [41] 32.632± 8.239 44.320± 9.369 63.524± 1.855 0.219± 0.066 0.388± 0.160

DiscoGAN
[44] 33.863± 9.031 46.317± 9.853 63.130± 1.756 0.209± 0.061 0.334± 0.136

MR-GAN
[45] 29.276± 7.218 39.989± 8.167 64.402± 1.769 0.237± 0.066 0.450± 0.144

DC2Anet 28.819 ± 7.655 39.418 ± 8.660 64.553 ± 1.890 0.248 ± 0.072 0.453 ± 0.146

The MAE and standard deviation for the first 20 of the 92 subjects are plotted in
Figure 7, comparing DC2Anet with multi-channel GAN [33], deep MR-to-CT [41], DiscoGAN [44],
and MR-GAN [45]. It can be seen that DC2Anet generated a smaller MAE than the other approaches
for most of the subjects. However, for some subjects, the MR-GAN [45] approach produced smaller
MAE than did DC2Anet, though the MR-GAN [45] was unstable for some subjects, such as Subject 04
and Subject 08.

Figure 7. MAE computed for the first 20 of the 92 subjects in the test dataset.

Figure 8 presents three examples of synthetic images produced by the proposed DC2Anet
method, alongside the corresponding CT and MR images. The results for multi-channel GAN [33],
deep MR-to-CT [41], DiscoGAN [44], and MR-GAN [45] are also presented for comparison purposes.
The spinal cord region in the central area of the image, the most important element of the image,
is enlarged to evaluate the reconstruction capability of each method. DC2Anet learned to differentiate
between different structures with similar intensity values in CT images, but not in MR images, such as a
vertebra, fat tissue, and disc signals. DC2Anet also preserved the continuity, smoothness, and semantics
of the original images in the synthetic results because our objective function with semi-supervised
learning led the synthetic MR images to be similar to the reference images. In CT-based MR image
generation, the accurate reconstruction of the disc signal, the degree of disc protrusion, the degree
of stenosis, and the thecal sac are essential in the analysis of lumbar vertebra. We can see that the
disc signal and thecal sac in the synthetic MR image obtained using the proposed DC2Anet looked
more similar to the reference MR image compared to the other methods. The structures of the muscle
and fat tissue had a highest similarity. However, the proposed method exhibited limitations in the
reconstruction of the degree of disc protrusion and the degree of stenosis.
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Figure 8. Qualitative comparisons of DC2Anet and baseline methods. Rows 1, 3, and 5 show CT
images, synthetic images, and the reference image. Rows 2, 4, and 6 show the enlarged spinal cord of
the corresponding images. From left to right: input CT image, synthesis MR images from multi-channel
GAN [33], deep MR-to-CT [41], DiscoGAN [44], MR-GAN [45], the proposed DC2Anet, and the
reference MR image.

5. Conclusions

In this work, we proposed an objective function and a general synthesis system, DC2Anet,
that employs semi-supervised learning to generate lumbar spine MR images from single-sequence
CT scans. Our objective function included six independent loss terms. Using ablation analysis,
we assessed in detail the effectiveness and relative importance of each loss term. Performance was
improved by adding each loss term because each had its own particular strengths and weaknesses.
DC2Anet using semi-supervised learning can significantly outperform supervised and unsupervised
learning approaches. To further improve the accuracy and to seek the global minimum of the objective
function, alternating optimizing was much more efficient than the integrated optimization of DC2Anet.
We applied our method to generate MR images from their corresponding CT images, demonstrating
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that our proposed method significantly outperformed four state-of-the-art approaches, thus providing
its suitability for cross-modality image synthesis. Thus, it represents a very promising method that can
be employed in the diagnosis of lumbar disc conditions for patients who are prevented from receiving
an MRI due to claustrophobia or the presence of a cardiac pacemaker. Future research intends to
further validate the quality of the synthesis results for downstream tasks such as segmentation or
classification. Extending the method to handle cross-sectional views (axial, sagittal, and coronal) and
multi-sequence CT images will also be considered in future work.
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