
applied
sciences

Article

Payload-Based Traffic Classification Using
Multi-Layer LSTM in Software Defined Networks †

Hyun-Kyo Lim 1 , Ju-Bong Kim 2, Kwihoon Kim 3, Yong-Geun Hong 3 and Youn-Hee Han 2,*
1 Interdisciplinary Program in Creative Engineering, Korea University of Technology and Education,

Cheonan 31253, Korea; glenn89@koreatech.ac.kr
2 Department of Computer Science & Engineering, Korea University of Technology and Education,

Cheonan 31253, Korea; rlawnqhd@koreatech.ac.kr
3 Electronics and Telecommunications Research Institute, Daejeon 34129, Korea; kwihooi@etri.re.kr (K.K.);

yghong@etri.re.kr (Y.-G.H.)
* Correspondence: yhhan@koreatech.ac.kr; Tel.: +82-10-3912-0900
† This paper is an extended version of the conference paper presented in the 1st International Conference on

Artificial Intelligence in Information and Communication (ICAIIC 2019) [40].

Received: 8 May 2019; Accepted: 19 June 2019; Published: 21 June 2019
����������
�������

Abstract: Recently, with the advent of various Internet of Things (IoT) applications, a massive
amount of network traffic is being generated. A network operator must provide different quality
of service, according to the service provided by each application. Toward this end, many studies
have investigated how to classify various types of application network traffic accurately. Especially,
since many applications use temporary or dynamic IP or Port numbers in the IoT environment,
only payload-based network traffic classification technology is more suitable than the classification
using the packet header information as well as payload. Furthermore, to automatically respond
to various applications, it is necessary to classify traffic using deep learning without the network
operator intervention. In this study, we propose a traffic classification scheme using a deep learning
model in software defined networks. We generate flow-based payload datasets through our own
network traffic pre-processing, and train two deep learning models: 1) the multi-layer long short-term
memory (LSTM) model and 2) the combination of convolutional neural network and single-layer
LSTM models, to perform network traffic classification. We also execute a model tuning procedure to
find the optimal hyper-parameters of the two deep learning models. Lastly, we analyze the network
traffic classification performance on the basis of the F1-score for the two deep learning models,
and show the superiority of the multi-layer LSTM model for network packet classification.

Keywords: traffic classification; recurrent neural network; long short-term memory; convolutional
neural network; software defined networks

1. Introduction

Recently, the importance of network operation and management has been emphasized due to the
emergence of various services and applications. In particular, due to the rapid growth of the Internet
of Things (IoT), various related applications and services are being provided through the network.
Therefore, network packets or flows should be differentiated according to applications or services
provided through the network. In particular, video and voice services require fast transmission. On the
other hand, text services can provide adequate performance without fast transmission. In addition,
peer-to-peer (P2P) services, such as BitTorrent, account for a significant proportion of the global Internet
traffic and, thus, have a significant impact on the overall network speed. Therefore, the IoT network
operators try to provide smooth quality of service (QoS) by assigning different priorities according to
each service.

Appl. Sci. 2019, 9, 2550; doi:10.3390/app9122550 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-8807-1158
https://orcid.org/0000-0002-5835-7972
http://dx.doi.org/10.3390/app9122550
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/12/2550?type=check_update&version=2

Appl. Sci. 2019, 9, 2550 2 of 16

Network traffic classification [1–4] for providing different QoS according to each application has
been being actively researched. There are various methods for network traffic classification, such as
rule-based, correlation-based, and payload-based methods. Rule-based methods are widely used for
network traffic classification [5–7]. They classify packets entering the network according to predefined
rules. The classification methods usually use the header information of the network packet, and they
are performed on the basis of the source and destination IP addresses and port numbers of the packet
headers. Although these methods classify network traffic by well-known application port numbers
or specific rules based on packet header information, the traffic is not well classified for unknown
applications because network operators do not know the port number or specific rules in advance.
Moreover, it is inconvenient for a network operator to manually add a rule or port number to provide
a new network service.

Correlation-based network classification methods classify network traffic by selecting packets
with high correlation between traffic packets considering the correlation between network traffic.
They usually find statistical flow characteristics in network traffic flow, and incorporate them into
machine learning techniques, e.g., logistic regression, decision tree, and support vector machine [8–10].
As such statistical characteristics, packet size, packet arrival rate, flow duration, and inherent business
is usually used. It has been reported that the classification accuracy is relatively high. However,
they require additional calculations for correlations in each flow, and additional consumption occurs
when constructing datasets based on the correlation.

Payload-based network classification methods classify network traffic by using the pure application
layer payload information excluding the packet header information of the entire network traffic [11–14].
Currently, it is no longer accurate to classify network traffic with packet header information containing
the well-known port numbers or IP addresses [15], since many IoT devices and mobile devices use
private or dynamic IP addresses and variable port numbers. Payload-based network classification
methods overcome the IP address and port number dependency problem because they are not affected
even if the header information is changed. They are usually deployed with deep packet inspection
(DPI) techniques. Through DPI, it is possible to compare the contents of packet payload against a
set of rules, which are usually written in a string format. However, the usage of such format rules
imposes strong limitations such as limited expressiveness and inability to cope with various complex
services [16].

The study in the field of machine learning have progressed actively, and machine learning
has been adopted in various areas [2]. Thus, network traffic classification using machine learning
has been researched extensively [17–29]. Additionally, network traffic classification methods using
machine learning in software defined networks (SDNs) are actively researched [21–29]. In particular,
deep learning models [30–32] have been recently studied for network traffic classification since their
performance is known to be usually better than other machine learning algorithms [27–29]. In the
existing network traffic classification methods based on deep learning models [27,28], however,
classification is usually performed by the header information as well as the payload of packets as
the learning feature. The limitation of such an approach can arise in case the head information is
collected into a limited dataset collected within a local network and the deep learning model training
is performed with such a dataset. In a real network that extends beyond the local limits, it is difficult
to perform classification well by using the previously trained model, since the header information is
usually varied in the real network due to tunneling, network address translation, security policy, etc.

In this study, we propose a payload-based traffic classification using deep learning models in
SDNs for providing efficient QoS or scheduling for each application. In SDNs, the separated control
plane can apply routing or QoS or scheduling decisions to the network equipment of the data plane.
We add new deep learning-based classifier modules to the control plane and allow the classification
results to be used for determining and applying appropriate routing or QoS or scheduling policy
into data plane. We develop a traffic data preprocessing method to create deep learning datasets by
using the only payload of packets, train deep learning models with the datasets, and evaluate the

Appl. Sci. 2019, 9, 2550 3 of 16

performance of the models. Our goal of deep learning using only payload information is to let the
learned model fit of unseen packets well. A model with strong generalization ability can fit the whole
data sample space well. Excluding header information that has a typical structure and inconsistent
values helps improve such generalization performance.

We treat the payload of packets as image data, which have been actively used as deep learning
dataset in the artificial intelligence research area, so that we try to apply the representative deep
learning models into the network traffic classification problem and investigate their performance.
The imaged packets are collected for each application and flow-based datasets are constructed from
them. The two deep learning models, which include the multi-layer long short-term memory (LSTM)
model and the combination of convolutional neural network (CNN) and single-layer LSTM models
(hereinafter called CNN + LSTM) [28], are trained to classify network traffic using the generated
datasets. The multi-layer LSTM and CNN + LSTM models are suitable for learning sequential datasets,
and the two models are trained with the flow-based datasets that include the sequential data of network
traffic. We also execute a model tuning procedure to find the optimal hyper-parameters of each deep
learning model and enhance the performance of network traffic classification. Then, we compare the
performance of the two deep learning models on the basis of the F1-score measure, and demonstrate
the effectiveness of the models.

The remainder of this paper is organized as follows. In Section 2, we review related studies and
state the motivation for our work. In Section 3, we propose an SDN-based network architecture with
deep learning sub-system for traffic classification. In Section 4, we explain the data preprocessing step.
In Section 5, we describe the two deep learning model architectures for network traffic classification.
In Section 6, we introduce the model tuning method for searching the optimal hyper-parameters.
In Section 7, we present and analyze the experimental results on the performance of the two models.
In Section 8, we describe how to classify traffic flow using the learned model in the flow classifier of
the proposed SDN-based network architecture. Lastly, we provide concluding remarks in Section 9.

2. Related Work

Many studies have focused on network traffic classification technologies. Classical studies involve
rule-based or statistical correlation-based network traffic classification. Machine learning has been
researched extensively and studies on network traffic classification using machine learning have been
actively conducted [18,19,21–29].

Shafiq et al. [17] attempted to classify network traffic by machine learning using different kinds of
datasets. They used the three ML algorithms: multi-layer perceptron, C4.5 decision tree, and support
vector machine. As a result, the C4.5 decision tree algorithm showed better performance than the other
two algorithms. Singh et al. [18] used an unsupervised machine learning approach for network traffic
classification. In this paper, the unsupervised K-means and the expectation maximization algorithm
were used to cluster the network traffic application based on the similarity between them.

SDN is an emerging networking paradigm that gives hope to change the limitations of current
network infrastructures. SDN as a concept separates data plane and control plane to confront limitations
and challenges of today’s networking. In particular, since the SDN is logically centralized, controllers
have a global visibility of the whole network unlike current networking. Furthermore, traffic scheduling
and QoS control become easier and feasible for network administrators. Huang et al. [19] considered
traffic scheduling in SDN where several DPI proxy nodes are available for serving flows from ingress
switches. Additionally, they studied a problem to minimize the delay of DPI processing, and designed a
two-phase algorithm that can quickly select proxy and find routing paths for incoming flows. They also
proposed a rule multiplexing scheme [20], in which a set of rules deployed on each node apply to
the whole flow of a session going through yet toward different paths to deal with an efficient rule
placement in QoS guaranteed multipath routing.

Additionally, research on traffic classification using traditional machine learning is actively
underway. Parsaei et al. [21] introduced a network traffic classification that occurs in software-defined

Appl. Sci. 2019, 9, 2550 4 of 16

networking (SDN). Four neural network estimators were used to classify traffic from SDN networks:
Feedforward Neural Network, Multi-layer Perceptron (MLP), Levenberg-Marquardt (NARX),
and Native Bayes (NARX). The four Neural Network Estimators provided 95.6%, 97%, 97%, and 97.6%
in terms of accuracy, respectively. Yu et al. [22] proposed a novel SDN flow classification framework
using DPI and semi-supervised learning multiple classifiers. Three types of mechanisms known as
Heteroid Tri-Training, Tri-Training, and Co-Training were used as semi-supervised multiple classifiers.
Based on the result of semi-supervised multiple classifier, the proposed architecture classified network
traffic flows into different QoS categories. Amaral et al. [23] deployed a simple architecture in an
enterprise network that gathers traffic data using the OpenFlow protocol. After the traffic collected
through the OpenFlow protocol was generated as training data, the network traffic was classified using
Random Forests, Stochastic Gradient Boosting, and Extreme Gradient Boosting algorithms. However,
these previous works do not utilize recent deep learning models. Most traditional machine learning
requires a feature engineering process to reduce the complexity of data and find patterns in the dataset.
The feature engineering requires experts to create a process for identifying data and extracting patterns
themselves, and takes a long time. However, the deep learning models reduce the task of extracting
new features from all input data. In general, the deep learning models learn the low-level features of
input data in the initial layer and then the high-level representation of data in the layer. In addition,
deep learning models perform far better than traditional machine learning algorithms as the amount
of learning data increases. The deep learning method has achieved very good performance in many
domains including image classification and speech recognition [11,12].

Recently, network traffic classification using deep learning has begun to be studied. Wang et al. [27]
used a CNN model to classify malware traffic and general traffic. First, if a five-tuple (source IP/port,
destination IP/port, protocol) is the same among the packets. One flow is defined as one dataset.
The constructed dataset is used to train the CNN model to classify malware traffic and general traffic.
The accuracy to classify malware traffic and general traffic was not low. Lopez-Martin et al. [28]
performed network traffic classification using a deep learning model that combines CNN and LSTM.
The packet data, extracted from the header information and payload data in the packet using the
DPI tool, was used as the learning data. The extracted learning data was used as input data for the
combined model of CNN and LSTM. With datasets including the short length of packets in a flow,
they showed that the combination of CNN and LSTM models perform better than the individual CNN
and LSTM models. However, these previous works include packet header information in their traffic
dataset, while we use a payload-based dataset excluding packet header information in this paper.
In addition, we use the multi-layer LSTM model with deeper layering architecture.

In Reference [29], we already used payload-based datasets excluding the IP and TCP/UDP headers,
and developed CNN and ResNet models for traffic classification. The results of network traffic
classification show that CNN and models have the F1-score values of 0.95625 and 0.96875, respectively,
and ResNet model is superior to the CNN model.

In this study, we extend the previous work and develop a new multi-layer LSTM model for
network traffic classification when the datasets consist solely of the payload of the packets. In addition,
this study shows that the multi-layer LSTM model performs better than the CNN and LSTM model
(proposed by Reference [28]). In addition, we propose a new SDN-based network architecture that
can generate flow rules according to QoS of various applications by utilizing the network traffic
classification result of the learned deep learning model.

3. Proposed SDN Architecture for Deep Learning-Based Traffic Classification

Our proposed network architecture for traffic classification is configured on an SDN architecture.
The SDN separates the data plane from the control plane. The data plane remains only in the network
equipment and focuses only on packet transmission, while the control plane determines the packet
routing path or QoS policy in a central external controller. It can use the OpenFlow protocol for
communication between the two separated planes. In addition, the use of open source APIs reduces

Appl. Sci. 2019, 9, 2550 5 of 16

the dependence on network equipment companies and enables the development and use of various
network software.

Figure 1 shows the proposed SDN architecture for traffic classification. In the proposed architecture,
the new two sub-systems, ‘labeled packet collector’ and ‘classifier,’ are located in the data plane and
the control place, respectively. On the data plane, the labeled packet collectors collect and label the
network packets generated by the application program run on end-hosts. In addition, the labeled
packet collector sends to the classifier the bundled flow dataset in which the packets with the same five
attributes, source IP, source Port, destination IP, destination Port, and protocol, are bundled into the
same flow, and a label is also attached into the flow. In the classifier, the training dataset is generated
through the feature selector and data preprocessing process. The generated dataset is also used for
the learning process of multi-layer LSTM or CNN + LSTM model as well as parameter tuning of
the models.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 16

open source APIs reduces the dependence on network equipment companies and enables the
development and use of various network software.

Figure 1 shows the proposed SDN architecture for traffic classification. In the proposed
architecture, the new two sub-systems, ‘labeled packet collector’ and ‘classifier,’ are located in the
data plane and the control place, respectively. On the data plane, the labeled packet collectors collect
and label the network packets generated by the application program run on end-hosts. In addition,
the labeled packet collector sends to the classifier the bundled flow dataset in which the packets with
the same five attributes, source IP, source Port, destination IP, destination Port, and protocol, are
bundled into the same flow, and a label is also attached into the flow. In the classifier, the training
dataset is generated through the feature selector and data preprocessing process. The generated
dataset is also used for the learning process of multi-layer LSTM or CNN + LSTM model as well as
parameter tuning of the models.

Figure 1. Proposed architecture in software defined network (SDN)-based Network.

The learned model is used to classify network traffic in the flow classifier. In Section 8, we
describe in more detail how the flow classifier classifies network traffic using the learned model.
Then, appropriate flow rules can be generated according to the QoS or scheduling policy of each
application by using the classification results. Such flow rules are applied into OpenFlow switches
(e.g., Open vSwitches) of data plane. Afterward, the Open Switches forward network traffic based on
new flow rules. Overall, SDN-based architecture proposed in this section can classify traffic using a
deep learning model and generate appropriate flow rules, according to QoS or scheduling policy of
each application.

4. Data Preprocessing

In this study, the labeled Packet Capture (PCAP) traces provided by the UPC’s Broadband
Communications Research Group [33] is used for training and testing the deep learning models. The
PCAP trace file capture and store network packets using programs such as Wireshark and tcpdump.
The size of the original PCAP trace file provided is around 59 GB, with a total of 769,507 flows in the
file. An additional information file provided with the PCAP trace file includes the labels (application
name) of the traffic data and provides the ground truth for the prediction based on deep learning (To
collect and accurately label the traffic flows, a volunteer-based system was used. For the details of it,
refer to Reference [33]).

For the preprocessing of the supplied data, based on the number of flows, eight types of
applications with more than 1000 flows were selected. The eight applications’ label names are the
Remote Desktop Protocol (RDP), Skype, SSH, BitTorrent, HTTP-Facebook, HTTP-Google, HTTP-
Wikipedia, and HTTP-Yahoo. The application layer payload data of the selected applications are
filtered and extracted, and the learning data are generated using the extracted payload data.

Figure 1. Proposed architecture in software defined network (SDN)-based Network.

The learned model is used to classify network traffic in the flow classifier. In Section 8, we describe in
more detail how the flow classifier classifies network traffic using the learned model. Then, appropriate
flow rules can be generated according to the QoS or scheduling policy of each application by using the
classification results. Such flow rules are applied into OpenFlow switches (e.g., Open vSwitches) of
data plane. Afterward, the Open Switches forward network traffic based on new flow rules. Overall,
SDN-based architecture proposed in this section can classify traffic using a deep learning model and
generate appropriate flow rules, according to QoS or scheduling policy of each application.

4. Data Preprocessing

In this study, the labeled Packet Capture (PCAP) traces provided by the UPC’s Broadband
Communications Research Group [33] is used for training and testing the deep learning models.
The PCAP trace file capture and store network packets using programs such as Wireshark and tcpdump.
The size of the original PCAP trace file provided is around 59 GB, with a total of 769,507 flows in the
file. An additional information file provided with the PCAP trace file includes the labels (application
name) of the traffic data and provides the ground truth for the prediction based on deep learning
(To collect and accurately label the traffic flows, a volunteer-based system was used. For the details of
it, refer to Reference [33]).

For the preprocessing of the supplied data, based on the number of flows, eight types of applications
with more than 1000 flows were selected. The eight applications’ label names are the Remote
Desktop Protocol (RDP), Skype, SSH, BitTorrent, HTTP-Facebook, HTTP-Google, HTTP-Wikipedia,

Appl. Sci. 2019, 9, 2550 6 of 16

and HTTP-Yahoo. The application layer payload data of the selected applications are filtered and
extracted, and the learning data are generated using the extracted payload data.

Learning Data Generation

This subsection describes the process to convert the above-mentioned application layer payload
data into the learning data suitable for deep learning models.

The overall learning data for each application are generated by arbitrarily extracting packets of
eight applications (RDP, SSH, Skype, BitTorrent, Facebook, Wikipedia, Google, and Yahoo) from the
application layer payload data. In each application, random flow’s packets were extracted. All bits in
the payload data of a packet are divided by 4 bits and grouped into one pixel of imaged data. Therefore,
one pixel of the imaged data represents the decimal numbers 0 (=0x0000) to 15 (=0x1111). According
to the pre-defined image size values, 36 (= 6 × 6), 64 (= 8 × 8), 256 (= 16 × 16), and 1024 (= 32 × 32),
the pixels of one image data are taken from the beginning of each packet, and the size of one image
data is readjusted to 36, 64, 256, and 1024 pixels. Figure 2 shows the case of the imaged packet data of
256 pixels for an arbitrary packet of each application. If the extracted payload size is smaller than the
pre-defined size, the image is adjusted by zero-padding to match the pre-defined size.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 16

4.1. Learning Data Generation

This subsection describes the process to convert the above-mentioned application layer payload
data into the learning data suitable for deep learning models.

The overall learning data for each application are generated by arbitrarily extracting packets of
eight applications (RDP, SSH, Skype, BitTorrent, Facebook, Wikipedia, Google, and Yahoo) from the
application layer payload data. In each application, random flow’s packets were extracted. All bits in
the payload data of a packet are divided by 4 bits and grouped into one pixel of imaged data.
Therefore, one pixel of the imaged data represents the decimal numbers 0 (=0x0000) to 15 (=0x1111).
According to the pre-defined image size values, 36 (= 6 × 6), 64 (= 8 × 8), 256 (= 16 × 16), and 1024 (= 32
× 32), the pixels of one image data are taken from the beginning of each packet, and the size of one
image data is readjusted to 36, 64, 256, and 1024 pixels. Figure 2 shows the case of the imaged packet
data of 256 pixels for an arbitrary packet of each application. If the extracted payload size is smaller
than the pre-defined size, the image is adjusted by zero-padding to match the pre-defined size.

Figure 2. Sampled images of network packets extracted from the Packet Capture (PCAP) data.

The application layer payload data is converted into the flow-based dataset. In this study, a
network flow is defined as a unidirectional sequence of packets between two endpoints with five
common attributes as well as the source IP/port, destination IP/port, and protocol. The flow-based
learning dataset is also arbitrarily selected for each application in the application layer payload data.
One selected flow-based data consists of a series of the first N packets in the corresponding flow. The
number N is set to 30, 60, and 100. Each of the packets is pre-processed in the same manner as
previously described and converted into imaged packet data. For each of the eight applications, we
extract 2000 flows from the application layer payload data, and the flow-based learning dataset has
a total of 16,000 flows.

Lastly, for target data of eight applications, each label is expressed as a one-hot vector with eight
lengths. A one-hot vector is a 1 × 8 matrix with all 0s and a single 1 used to distinguish the label
representing an application.

5. Deep Learning Models

This section describes deep learning models used to classify network traffic. The selected deep
learning models are LSTM and CNN + LSTM [28] in this study. The LSTM model is specialized for
repetitive and sequential data learning. Therefore, the previous learning data is reflected in the
current learning data using the circulation structure. It is generally used for the composition of
speech, wave, and text. In the CNN + LSTM model, the convolution layer extracts the features from
the original input data, and then the features are used for the input data to the LSTM model. That is,
artificially refined sequential data is used in the classification work in the CNN + LSTM model. In

Figure 2. Sampled images of network packets extracted from the Packet Capture (PCAP) data.

The application layer payload data is converted into the flow-based dataset. In this study,
a network flow is defined as a unidirectional sequence of packets between two endpoints with five
common attributes as well as the source IP/port, destination IP/port, and protocol. The flow-based
learning dataset is also arbitrarily selected for each application in the application layer payload data.
One selected flow-based data consists of a series of the first N packets in the corresponding flow.
The number N is set to 30, 60, and 100. Each of the packets is pre-processed in the same manner
as previously described and converted into imaged packet data. For each of the eight applications,
we extract 2000 flows from the application layer payload data, and the flow-based learning dataset has
a total of 16,000 flows.

Lastly, for target data of eight applications, each label is expressed as a one-hot vector with eight
lengths. A one-hot vector is a 1 × 8 matrix with all 0s and a single 1 used to distinguish the label
representing an application.

5. Deep Learning Models

This section describes deep learning models used to classify network traffic. The selected deep
learning models are LSTM and CNN + LSTM [28] in this study. The LSTM model is specialized for
repetitive and sequential data learning. Therefore, the previous learning data is reflected in the current

Appl. Sci. 2019, 9, 2550 7 of 16

learning data using the circulation structure. It is generally used for the composition of speech, wave,
and text. In the CNN + LSTM model, the convolution layer extracts the features from the original
input data, and then the features are used for the input data to the LSTM model. That is, artificially
refined sequential data is used in the classification work in the CNN + LSTM model. In this study,
the two models are used to classify flow-based learning data that contain sequential information of
network traffic.

5.1. The Multi-Layer LSTM Architecture

An LSTM [34,35] is a network architecture that can accept the arbitrary length of inputs, and it
can be implemented flexibly and in various ways, as required. Therefore, the LSTM architecture used
in this study is composed of multiple layers, as shown in Figure 3. In the multi-layer LSTM model,
a number of sequential packets per flow (30, 60, or 100) are received at the input layer to train the
flow-based dataset. In the flow-based dataset, the first packet of one flow is input to the first cell of the
LSTM layer. The result obtained from the first LSTM cell is used as input at the time of arrival of the
next packet at the input. Therefore, the result of the first cell affects the operation of the second cell.
Furthermore, the operation result of the first cell is also used as the input of the second LSTM layer.
At the same time, the operation result of the first cell of the second LSTM layer is used as the input of
the second cell of the layer. Afterward, the operation result of the second cell of the third LSTM layer is
used as the input of the third cell of the layer. The final target output at the end of the sequence is a
label classifying the eight applications through the output layer.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 16

this study, the two models are used to classify flow-based learning data that contain sequential
information of network traffic.

5.1. The Multi-Layer LSTM Architecture

An LSTM [34,35] is a network architecture that can accept the arbitrary length of inputs, and it
can be implemented flexibly and in various ways, as required. Therefore, the LSTM architecture used
in this study is composed of multiple layers, as shown in Figure 3. In the multi-layer LSTM model, a
number of sequential packets per flow (30, 60, or 100) are received at the input layer to train the flow-
based dataset. In the flow-based dataset, the first packet of one flow is input to the first cell of the
LSTM layer. The result obtained from the first LSTM cell is used as input at the time of arrival of the
next packet at the input. Therefore, the result of the first cell affects the operation of the second cell.
Furthermore, the operation result of the first cell is also used as the input of the second LSTM layer.
At the same time, the operation result of the first cell of the second LSTM layer is used as the input
of the second cell of the layer. Afterward, the operation result of the second cell of the third LSTM
layer is used as the input of the third cell of the layer. The final target output at the end of the sequence
is a label classifying the eight applications through the output layer.

Figure 3. The long short-term memory (LSTM) learning model architecture. It consists of three LSTM
layers.

The LSTM model also determines whether the weight value is maintained by adding another
feature layer called a cell state in an LSTM cell. The LSTM model has the ability to remove or add
information to the cell state, which is carefully regulated by structures called gates. Gates are a way
to optionally let information through and they are responsible for adding or deleting past
information, so that LSTM is pretty persistent. The LSTM model can control the long-term memory
as well as the result, so that it works a lot better for most tasks.

5.2. The CNN and LSTM Combination Network Model Architecture

The learning model combining CNN and LSTM is a combination of two convolution layers of
the CNN model and one LSTM layer (This architecture is the same as the one of the best model

Figure 3. The long short-term memory (LSTM) learning model architecture. It consists of three
LSTM layers.

The LSTM model also determines whether the weight value is maintained by adding another
feature layer called a cell state in an LSTM cell. The LSTM model has the ability to remove or add
information to the cell state, which is carefully regulated by structures called gates. Gates are a way to
optionally let information through and they are responsible for adding or deleting past information,

Appl. Sci. 2019, 9, 2550 8 of 16

so that LSTM is pretty persistent. The LSTM model can control the long-term memory as well as the
result, so that it works a lot better for most tasks.

5.2. The CNN and LSTM Combination Network Model Architecture

The learning model combining CNN and LSTM is a combination of two convolution layers of the
CNN model and one LSTM layer (This architecture is the same as the one of the best model provided
by Reference [28]). As shown in Figure 4, when the flow-based dataset is input to the convolution
layer, the image data are compressed through the filters of the layer. The result of the convolution
layer is adjusted to the input size of the LSTM layer through a reshaping process before it enters the
input of the LSTM layer. As in the previous LSTM learning process, the result of the first cell affects
how the second input is calculated. When the final input data comes in, the calculation of the last cell
is affected by the result of the previous cells, and the final classification result is extracted.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 16

provided by Reference [28]). As shown in Figure 4, when the flow-based dataset is input to the
convolution layer, the image data are compressed through the filters of the layer. The result of the
convolution layer is adjusted to the input size of the LSTM layer through a reshaping process before
it enters the input of the LSTM layer. As in the previous LSTM learning process, the result of the first
cell affects how the second input is calculated. When the final input data comes in, the calculation of
the last cell is affected by the result of the previous cells, and the final classification result is extracted.

Figure 4. The convolutional neural network (CNN) and LSTM combination learning model
architecture. It consists of two convolution layers, reshaping process, and single-layer LSTM.

6. Model Tuning

Each of the models has various hyper-parameters that determine the network structure (e.g.,
number of filters) and how the network models are trained (e.g., type of optimizer). The performance
of a model can vary considerably according to the selected set of hyper-parameters. Toward this end,
we use the grid-search [36] as the method to find hyper-parameters optimized for each deep learning
model, according to the datasets. The grid search method searches for the best hyper-parameter for
a dataset by trying every possible combination of hyper-parameters based on the dataset. We also
verify the validity of the model by performing k-fold cross-validation [37] in addition to finding the
optimal hyper-parameters. In k-fold cross-validation, the dataset is randomly partitioned into k
equal-sized sub-datasets. Of the k sub-datasets, a single sub-dataset is retained as the validation data
for testing the model, and the remaining k-1 sub-datasets are used as training data. The cross-
validation process is then repeated k times, with each of the k sub-datasets used exactly once as the
validation data. The k results can then be averaged to produce a single estimation. The advantage of
this method over repeated random sub-datasets is that all observations are used for both training and
validation, and each observation is used for validation exactly one time.

Figure 5 shows the overall process of evaluating a selected deep learning model with optimal
hyper-parameters. First, we separate the flow-based dataset into learning and test data. Next, the
learning data is separated into training and validation data, and k-fold cross-validation based on a
grid search is performed. It performs the verification of the model on the basis of the pre-set hyper-
parameter set and the k-fold value. Then, the model is trained by using the optimal hyper-parameters
and the model performance is measured using the test data.

Figure 4. The convolutional neural network (CNN) and LSTM combination learning model architecture.
It consists of two convolution layers, reshaping process, and single-layer LSTM.

6. Model Tuning

Each of the models has various hyper-parameters that determine the network structure (e.g.,
number of filters) and how the network models are trained (e.g., type of optimizer). The performance
of a model can vary considerably according to the selected set of hyper-parameters. Toward this end,
we use the grid-search [36] as the method to find hyper-parameters optimized for each deep learning
model, according to the datasets. The grid search method searches for the best hyper-parameter for a
dataset by trying every possible combination of hyper-parameters based on the dataset. We also verify
the validity of the model by performing k-fold cross-validation [37] in addition to finding the optimal
hyper-parameters. In k-fold cross-validation, the dataset is randomly partitioned into k equal-sized
sub-datasets. Of the k sub-datasets, a single sub-dataset is retained as the validation data for testing
the model, and the remaining k-1 sub-datasets are used as training data. The cross-validation process
is then repeated k times, with each of the k sub-datasets used exactly once as the validation data.
The k results can then be averaged to produce a single estimation. The advantage of this method
over repeated random sub-datasets is that all observations are used for both training and validation,
and each observation is used for validation exactly one time.

Figure 5 shows the overall process of evaluating a selected deep learning model with optimal
hyper-parameters. First, we separate the flow-based dataset into learning and test data. Next,
the learning data is separated into training and validation data, and k-fold cross-validation based
on a grid search is performed. It performs the verification of the model on the basis of the
pre-set hyper-parameter set and the k-fold value. Then, the model is trained by using the optimal
hyper-parameters and the model performance is measured using the test data.

Appl. Sci. 2019, 9, 2550 9 of 16
Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 16

Figure 5. Process of hyper-parameter selection and model evaluation with the cross-validated grid-
search.

6.1. Multi-Layer LSTM and CNN + LSTM Model Tuning

For the multi-layer LSTM and CNN + LSTM models, the flow-based datasets are constructed by
arbitrarily fetching 2000 flows from the eight applications. In addition, we choose 36, 64, 256, and
1024 pixels as the imaged payload sizes of a packet in a flow. The number of sequential packets in a
flow is set to 30, 60, and 100. Therefore, the final shapes of the datasets are as follows.

• (16,000, 30, 36), (16,000, 30, 64), (16,000, 30, 256), and (16,000, 30, 1024) for 30 packets in a flow

• (16,000, 60, 36), (16,000, 60, 64), (16,000, 60, 256), and (16,000, 60, 1024) for 60 packets in a flow

• (16,000, 100, 36), (16,000, 100, 64), (16,000, 100, 256), and (16,000, 100, 1024) for 100 packets in
a flow

For the hyper-parameters of the multi-layer LSTM model, we consider 1) output size, 2) kernel
initializer, 3) recurrent initializer, 4) dropout rate, 5) output activation type, 6) optimization type, and
7) batch size. The output size is the dimensionality of the output space. The kernel initializer
represents the strategy to initialize the kernel weight vector values used for the linear transformation
of the inputs. The recurrent initializer represents the strategy to initialize the weight vector values
used for regularization. Furthermore, the dropout rate indicates the fraction of the hidden units to
drop for the linear transformation of the recurrent state. The meanings of output activation type,
optimization type, and batch size are the same as those used in any deep learning model. In the multi-
layer LSTM models, the values used to perform the grid search for the hyper-parameters are listed in
Table 1.

For the CNN + LSTM model, a total of nine hyper-parameters are considered and listed in Table
2. The meaning of the seven hyper-parameters is the same as the ones in the LSTM model. The two
hyper-parameters added for CNN + LSTM are as follows: 1) number of filters and 2) kernel size. The
number of filters represents the number of the output filters of one convolution layer. The kernel size
is the size of the kernel used in one filter.

Table 1. The grid search hyper-parameter sets for the LSTM model.

 Hyper-Parameter Values
output size {64, 128, 256}

kernel initializer {normal, uniform, glorot_uniform}
recurrent initializer {normal, uniform, glorot_uniform}

dropout rate {0.0, 0.2, 0.3, 0.4}
output activation type {tanh, relu, softmax}

Figure 5. Process of hyper-parameter selection and model evaluation with the cross-validated grid-search.

Multi-Layer LSTM and CNN + LSTM Model Tuning

For the multi-layer LSTM and CNN + LSTM models, the flow-based datasets are constructed by
arbitrarily fetching 2000 flows from the eight applications. In addition, we choose 36, 64, 256, and 1024
pixels as the imaged payload sizes of a packet in a flow. The number of sequential packets in a flow is
set to 30, 60, and 100. Therefore, the final shapes of the datasets are as follows.

• (16,000, 30, 36), (16,000, 30, 64), (16,000, 30, 256), and (16,000, 30, 1024) for 30 packets in a flow
• (16,000, 60, 36), (16,000, 60, 64), (16,000, 60, 256), and (16,000, 60, 1024) for 60 packets in a flow
• (16,000, 100, 36), (16,000, 100, 64), (16,000, 100, 256), and (16,000, 100, 1024) for 100 packets in a flow

For the hyper-parameters of the multi-layer LSTM model, we consider (1) output size, (2) kernel
initializer, (3) recurrent initializer, (4) dropout rate, (5) output activation type, (6) optimization type,
and (7) batch size. The output size is the dimensionality of the output space. The kernel initializer
represents the strategy to initialize the kernel weight vector values used for the linear transformation
of the inputs. The recurrent initializer represents the strategy to initialize the weight vector values used
for regularization. Furthermore, the dropout rate indicates the fraction of the hidden units to drop for
the linear transformation of the recurrent state. The meanings of output activation type, optimization
type, and batch size are the same as those used in any deep learning model. In the multi-layer LSTM
models, the values used to perform the grid search for the hyper-parameters are listed in Table 1.

Table 1. The grid search hyper-parameter sets for the LSTM model.

Hyper-Parameter Values

output size {64, 128, 256}
kernel initializer {normal, uniform, glorot_uniform}

recurrent initializer {normal, uniform, glorot_uniform}
dropout rate {0.0, 0.2, 0.3, 0.4}

output activation type {tanh, relu, softmax}
optimization type {adam, rmsprop}

batch size {1, 10, 100}

For the CNN + LSTM model, a total of nine hyper-parameters are considered and listed in Table 2.
The meaning of the seven hyper-parameters is the same as the ones in the LSTM model. The two
hyper-parameters added for CNN + LSTM are as follows: (1) number of filters and (2) kernel size.
The number of filters represents the number of the output filters of one convolution layer. The kernel
size is the size of the kernel used in one filter.

Appl. Sci. 2019, 9, 2550 10 of 16

Table 2. The grid search hyper-parameter sets for the CNN + LSTM model.

Hyper-Parameter Values

number of filters payload size/2
kernel size {3 × 3, 5 × 5, 7 × 7}

kernel initializer {normal, uniform, glorot_uniform}
output size {64, 128, 256}

recurrent initializer {normal, uniform, glorot_uniform}
dropout rate {0.0, 0.2, 0.3, 0.4}

output activation type {tanh, relu, softmax}
optimization type {adam, rmsprop}

batch size {1, 10, 100}

For each size of the imaged payload (36, 64, 256, and 1024 pixels) and the selected number of
sequential packets in a flow (30, 60, and 100 packets) in the multi-layer LSTM and CNN + LSTM
models, Tables 3 and 4 show the optimal hyper-parameter values found through the cross-validated
grid search process, respectively. As we can know from the tables, the optimal parameter values seem
to be random for each hyper-parameter type. Nevertheless, we can find some pattern about the optimal
parameter values. First, the output activation type is always “softmax” across all cases of payload size and
the number of packets. The nonlinear logistic activation function can make the models’ performance the
best. Second, the “adam” optimizer produces the best model performance in most cases. Lastly, the model
performance is enhanced when the batch size is relatively high (100 data samples).

Table 3. The optimal hyper-parameter values for the multi-layer LSTM model (U: uniform, N: normal,
G: glorot uniform, S: softmax, R: rmsprop, A: adam).

Payload Size and Number of Packets per Flow

36 64 256 1024

30 60 100 30 60 100 30 60 100 30 60 100

output size 128 128 64 256 128 64 256 128 128 128 128 64
kernel initializer U U U U U U U U G G G G

recurrent initializer U U U U U U U G G G G G
dropout rate 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.3 0.4

output activation type S S S S S S S S S S S S
optimization type A A A A A A A R R A R R

batch size 100 100 100 100 100 100 100 100 100 100 100 100

Table 4. The optimal hyper-parameter values for the CNN + LSTM model (U: uniform, N: normal, G:
glorot uniform, S: softmax, R: rmsprop, A: adam).

Payload Size and Number of Packets per Flow

36 64 256 1024

30 60 100 30 60 100 30 60 100 30 60 100

number of filters 18 18 18 32 32 32 128 128 128 512 512 512
kernel size 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 7 × 7 7 × 7
output size 64 64 64 256 128 64 256 128 128 128 128 64

kernel initializer G G G G G U U U G G G G
recurrent initializer N N U U U U U G G G G G

dropout rate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.3
output activation type S S S S S S S S S S S S

optimization type A A A A A A A A A A A A
batch size 100 100 100 100 100 100 100 100 100 100 100 100

7. Experimental Evaluation

In this section, we compare the model prediction performance across the two models.

Appl. Sci. 2019, 9, 2550 11 of 16

7.1. Experimental Environment

Our experiments are executed on Ubuntu 16.04 LTS with 32 GB of RAM and two GPU cards
(NVIDIA GTX 1080Ti 11 GB). For the experimental implementation, we used Tensorflow-gpu 1.8 and
Keras 2.2.0 operated with Python 3.6. The two models are constructed, trained, and tested by Keras
using the Tensorflow-gpu backend.

According to the process shown in Figure 5, the three-fold cross-validated grid search is first
performed for one dataset (k = 3) and the optimal hyper-parameters are found through each model
tuning. The model training is performed using the found optimal hyper-parameters for each dataset,
as listed in Tables 3 and 4. For such model training, we use the hyperbolic tangent function as the
activation function of the LSTM layer. The number of learning epochs is set to 200. Lastly, the learning
rate of optimizers (i.e., rmsprop and adam) is set to 0.001.

7.2. Performance Metrics

An unambiguous and thorough way to present the prediction results of a deep learning mode
is to use a confusion matrix. Table 5 shows the confusion matrix produced by the test process of the
multi-layer LSTM model with the optimal hyper-parameters and a flow-based dataset. For example,
the model correctly predicts 681 cases of RDP, 571 cases of Skype, 670 cases of SSH, 694 cases of
BitTorrent, 642 cases of HTTP-Facebook, 637 cases of HTTP-Wikipedia, 656 cases of HTTP-Google,
and 598 cases of HTTP-Yahoo. It also misclassified 250 cases (all cases outside the diagonal positions
in Table 5) out of the total number of all predicted cases. It also shows that the F1-scores of each
application label retain at the high level with strong robustness, which confirms that the multi-layer
LSTM model can effectively and stably distinguish network application.

Table 5. The multi-class confusion matrix by the multi-layer LSTM model test with the dataset of
60 sequential packets per flow and 1024 pixels of payload size (The bold line is used to convert this
multi-class confusion matrix into the binary confusion matrix of the RDP application label shown in
Table 6).

Application Label Predicted

RDP Skype SSH BitTorrent HTTP-
Facebook

HTTP-
Wikipedia

HTTP-
Google

HTTP-
Yahoo Sum F1-score

A
ctual

RDP 681 1 0 0 0 0 0 0 682 1.00
Skype 0 571 0 11 0 0 0 0 582 1.00
SSH 2 0 670 0 0 0 0 0 672 1.00

BitTorrent 0 2 0 694 0 1 0 0 697 1.00
HTTP-Facebook 0 1 3 0 642 25 1 2 674 0.97
HTTP-Wikipedia 0 0 0 0 45 637 1 26 709 0.97

HTTP-Google 0 0 0 0 26 6 656 0 688 0.99
HTTP-Yahoo 0 0 0 0 40 57 0 598 695 0.98

Overall F1-score 0.98

Table 6. The binary confusion matrix for the RDP application label in the multi-layer LSTM model test.

Predictive

n = 5400 Positive Negative

Actual
Positive 681 (True Positive: TP) 1 (False Negative: FN)

Negative 2 (False Positive: FP) 4716 (True Negative: TN)

However, the accuracy can be misleading when there is an imbalance on the number of application
labels. A model can predict the label of the majority application for all predictions and achieve a high
classification accuracy, and the model is not useful in the problem domain. For every application label,
therefore, we convert the multi-class confusion matrix into the binary confusion matrix. Table 6 is an
example of the binary confusion matrix for the RDP application label, which is derived from Table 5.

Appl. Sci. 2019, 9, 2550 12 of 16

In the binary confusion matrix described by Table 6, we observe that, out of the total of 5400 RDP
prediction cases, the multi-layer LSTM model predicts 683 (= 681 + 2) cases as RDP, and predict 4717 (=
1 + 4716) cases at the others. In actual, 682 (= 681 + 1) test datasets are RDP, while 4718 (= 2 + 4716) test
datasets are the others. The true positive (TP) indicates the cases in which the actual label is positive
(RDP) and the model prediction is also positive correctly. The false negative (FN) indicates the cases in
which the actual label is positive, but the model prediction is negative incorrectly. The false positive
(FP) indicates the cases in which the actual label is negative (that is, not RDP), but the model prediction
is positive incorrectly. Lastly, the true negative (TN) indicates the cases in which the actual label is
negative and the model prediction is also negative correctly.

To overcome the problem of accuracy measurement, we compute the F1-score [38] as well as
accuracy to evaluate the two models. They are defined by using the binary confusion matrix as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

F1− score =
2 × Precision × Recall

Precision + Recall
(2)

where Recall = TP/(TP + FP) and Precision = TP/(TP + FN). The F1-score represents the harmonic mean
of precision and recall, and indicates the classification performance of a deep learning model relatively
accurately. We compute the accuracy, recall, precision, and F1-score values of all eight application
labels. Then, we average them to get the overall accuracy and F1-score measurements for performance
comparison of the two models.

7.3. Experimental Results

The experiment is performed to compare the performance of the multi-layer LSTM and CNN +

LSTM models with the flow-based datasets. Figure 6 shows the comparison of the overall accuracy
and F1-score values for the two models with the eight application labels in terms of the three numbers
of packets per flow and the four imaged payload sizes. It can be seen in the figure that the overall
accuracy and F1-score values increase with the payload size of packets. Furthermore, as the number of
sequential packets per flow increases, they increase, too. As shown in Figure 6a, the overall accuracy
of the multi-layer LSTM model is higher than that of the CNN + LSTM model. When the number of
packets per flow is 30 and the payload size is 36, the accuracy values of the multi-layer LSTM and the
CNN + LSTM are 61.66% and 60.96%, respectively. On the other hand, when the number of packets
per flow is 100 and the payload size is 1024, the corresponding accuracy values are 99.65% and 98.86%,
respectively. With F1-score values, similar results are shown in Figure 6b. When the number of packets
per flow is 30 and the payload size is 36, the F1-score values of the multi-layer LSTM and CNN + LSTM
models are 0.89375 and 0.885, respectively, which are the lowest values. On the other hand, when the
number of packets per flow is 100 and the payload size is 1024, the corresponding F1-score values are
0.99575 and 0.9925, respectively, which are the highest values.

We also know that the F1-score of the multi-layer LSTM model is higher than the one of the CNN
+ LSTM model for all cases of the number of packets per flow and the payload size of packets. As the
payload size increases, the F1-score values of the multi-layer LSTM and CNN + LSTM models become
similar. For most cases of payload size, however, the multi-layer LSTM’s F1-score is higher and more
stable than the CNN + LSTM’s one when many sequential packets in a flow are used for the datasets.
That is, we know that the multi-layer LSTM model alone can provide good performance.

Figure 7 shows the comparison of the overall F1-score values for the number of LSTM layers in
terms of two datasets: (1) the smallest dataset of 30 packets per flow and 36 payload sizes (Figure 7a),
and (2) the largest dataset of 100 packets per flow and 1024 payload sizes (Figure 7b). As shown in
Figure 7a, the F1-score values of the single-layer, two-layer, and three-layer LSTM models are 0.875,
0.89375, and 0.9875, respectively. The multiple LSTM layers help increase the model performance.
The similar results are shown in Figure 7b and we can also know that the two-layer or three-layer

Appl. Sci. 2019, 9, 2550 13 of 16

LSTM models can classify the network traffic almost completely when the training data set is large
enough. The corresponding F1-score values are 0.99575 and 0.9975, respectively, while it is 0.9625
when a single-layer LSTM model is used.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 16

(a)

(b)

Figure 6. Performance comparison of the multi-layer (two-layer) LSTM and CNN + LSTM [28] models
with accuracy and F1-score values in terms of the three numbers (30, 60, and 100) of packets per flow
and the four imaged payload sizes. (a) Accuracy and (b) F1-Score.

Figure 7 shows the comparison of the overall F1-score values for the number of LSTM layers in
terms of two datasets: 1) the smallest dataset of 30 packets per flow and 36 payload sizes (Figure 7a),
and 2) the largest dataset of 100 packets per flow and 1024 payload sizes (Figure 7b). As shown in
Figure 7a, the F1-score values of the single-layer, two-layer, and three-layer LSTM models are 0.875,
0.89375, and 0.9875, respectively. The multiple LSTM layers help increase the model performance.
The similar results are shown in Figure 7b and we can also know that the two-layer or three-layer
LSTM models can classify the network traffic almost completely when the training data set is large
enough. The corresponding F1-score values are 0.99575 and 0.9975, respectively, while it is 0.9625
when a single-layer LSTM model is used.

(a) (b)

Figure 7. Performance comparison of the single or multi-layer (two or three-layer) LSTM models. The
figure on the left shows the F1-score comparison based on the number of LSTM layers using the
dataset of 30 per packet flows and 36 payload sizes. The figure on the right shows it using the dataset
of 100 per packet flows and 1024 payload sizes. (a) The smallest dataset, and (b) the largest dataset.

Figure 6. Performance comparison of the multi-layer (two-layer) LSTM and CNN + LSTM [28] models
with accuracy and F1-score values in terms of the three numbers (30, 60, and 100) of packets per flow
and the four imaged payload sizes. (a) Accuracy and (b) F1-Score.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 16

(a)

(b)

Figure 6. Performance comparison of the multi-layer (two-layer) LSTM and CNN + LSTM [28] models
with accuracy and F1-score values in terms of the three numbers (30, 60, and 100) of packets per flow
and the four imaged payload sizes. (a) Accuracy and (b) F1-Score.

Figure 7 shows the comparison of the overall F1-score values for the number of LSTM layers in
terms of two datasets: 1) the smallest dataset of 30 packets per flow and 36 payload sizes (Figure 7a),
and 2) the largest dataset of 100 packets per flow and 1024 payload sizes (Figure 7b). As shown in
Figure 7a, the F1-score values of the single-layer, two-layer, and three-layer LSTM models are 0.875,
0.89375, and 0.9875, respectively. The multiple LSTM layers help increase the model performance.
The similar results are shown in Figure 7b and we can also know that the two-layer or three-layer
LSTM models can classify the network traffic almost completely when the training data set is large

(a) (b)

Figure 7. Performance comparison of the single or multi-layer (two or three-layer) LSTM models. The
figure on the left shows the F1-score comparison based on the number of LSTM layers using the
dataset of 30 per packet flows and 36 payload sizes. The figure on the right shows it using the dataset
of 100 per packet flows and 1024 payload sizes. (a) The smallest dataset, and (b) the largest dataset.

Figure 7. Performance comparison of the single or multi-layer (two or three-layer) LSTM models.
The figure on the left shows the F1-score comparison based on the number of LSTM layers using the
dataset of 30 per packet flows and 36 payload sizes. The figure on the right shows it using the dataset
of 100 per packet flows and 1024 payload sizes. (a) The smallest dataset, and (b) the largest dataset.

In the CNN + LSTM model, the convolution layers extract the features from the payload data,
and then the features are used for the input data to the LSTM layer. Although the features extracted
from the convolution layers contain important information for the traffic classification, we know that
the unchanged original payload itself can be useful for the traffic classification of the unchanged
information located at the front of a flow is well utilized to classify the flow. The multi-layer LSTM

Appl. Sci. 2019, 9, 2550 14 of 16

model is a special kind of recurrent neural networks capable of learning the long-term dependency
over the sequence of packets in the front of a flow. In addition to that, the multi-layer LSTM model
has multiple hidden LSTM layers where each layer contains multiple memory cells. In general,
the multi-layer LSTM model learns the low-level features of traffic data in the initial layer and then
the high-level representation of traffic data in the upper layer. The deeper multi-layer LSTM is used,
the better it performs usually [39,40].

8. Discussion: Flow Classifier in SDN

With the learned multi-layer LSTM model, it is necessary to suggest ways to achieve the essential
purpose of this paper. In this section, therefore, we describe how to classify traffic flow using the
learned model in the flow classifier of the proposed SDN-based network architecture (see Figure 1).

The OpenFlow protocol should be extended to feed the payload information to the traffic
classification model. When a packet arrives at an Open vSwitch, the switch looks up its flow table and
executes an action such as dropping or forwarding to the packet. If there is no action rule in the flow
table, the packet-in message is sent to the controller. The packet-in message is expanded such that it
contains the beginning of the packet’s payload. That is, the pre-defined 36, 64, 256, or 1024 pixels from
the front of the packet payload are contained in the packet-in message (one pixel indicates the four bits
of the payload data). To use our LSTM model, consecutive N packet payloads per flow are needed
(N = 30, 60, or 100). Therefore, the controller continually sends to the Open vSwitch the packet-out
message containing ‘null action’ rule until receiving N packet-in messages for the packet arrivals in
the same flow. The ‘null action’ indicates that the Open vSwitch does not create any action rule for
the packet. When the controller receives the N-th packet-in message including packet information
generated in the same flow, the sequence of N packet’s payload information is fed into the learned
multi-layer LSTM model and the flow classification is performed. At this point, the controller sends to
the Open vSwitch the packet-out message containing rules, according to the scheduling or QoS policy
based on the classified flow.

9. Conclusions

In this paper, we first propose an SDN-based network architecture for traffic classification using
deep learning. In the SDN control plane, a well-trained traffic classifier can detect traffic of data plane
without a network administrator and helps the QoS module apply new flow rules into OpenFlow
switches. In such an SDN architecture, we propose traffic classification schemes using the two deep
learning models: multi-layer LSTM and CNN + LSTM. Imaged packet payload data are generated
through our own pre-processing method, and the flow-based payload dataset is created by gathering
such imaged packets for each of the eight applications. We also execute the cross-validated grid
search to find the optimal hyper-parameters that maximize the performance of the deep learning
models. Through our intensive experiments, we know that the deep learning models can classify
the network traffic fairly well, and the multi-layer LSTM model performs better than the CNN +

LSTM model. Our dataset consists solely of the payload of the packets. In the CNN + LSTM model,
the features extracted from the convolution layer are used for the input data to the LSTM layer.
However, the unchanged original payload itself is more useful for the traffic classification if the problem
of the long-term dependency is handled by a proper strategy. We can conclude that the multi-layer
LSTM model can solve the problem in the case of the network traffic classification.

Author Contributions: Conceptualization, H.-K.L., Y.-G.H., and Y.-H.H. Data curation, J.-B.K. Formal analysis,
J.-B.K. and Y.-H.H. Investigation, K.K. Methodology, J.-B.K. and Y.-G.H. Resources, K.K. Software, H.-K.L.
Supervision, Y.-G.H. Validation, H.-K.L., J.-B.K., and K.K. Writing – original draft, H.-K.L. and Y.-H.H. Writing –
review & editing, Y.-H.H.

Funding: Two Basic Science Research Programs through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education (2018R1A6A1A03025526 and 2016R1D1A3B03933355) supported this research.

Conflicts of Interest: The authors declare no conflicts of interest.

Appl. Sci. 2019, 9, 2550 15 of 16

References

1. Gupta, P.; McKeown, N. Algorithms for packet classification. IEEE Netw. Mag. Glob. Internetwork. 2001, 15,
24–32. [CrossRef]

2. Boutaba, R.; Salahuddin, M.A.; Limam, N.; Ayoubi, S.; Shahriar, N.; Estrada-Solano, F.; Caicedo, O.M.
A comprehensive survey on machine learning for networking: Evolution. J. Internet Serv. Appl. 2018, 9, 16.
[CrossRef]

3. Meidan, Y.; Bohadana, M.; Shabtai, A.; Guarnizo, J.D.; Ochoa, M.; Tippenhauer, N.O.; Elovici, Y. Profiliot:
A machine learning approach for IoT device identification based on network traffic analysis. In Proceedings
of the SAC’17 Symposium on Applied Computing, Marrakech, Morocco, 3–7 April 2017; pp. 506–509.

4. Li, L.; Kianmehr, K. Internet traffic classification based on associative classifiers. In Proceedings of the
2012 IEEE International Conference on Cyber Technology in Automation, Control. and Intelligent Systems
(CYBER), Bangkok, Thailand, 27–31 May 2012; pp. 263–268.

5. Li, F.; Kakhki, A.M.; Choffnes, D.; Gill, P.; Mislove, A. Classifiers unclassified: An efficient approach to
revealing IP traffic classification rules. In Proceedings of the 2016 Internet Measurement Conference, ser.
IMC’16, Santa Monica, CA, USA, 28–30 October 2016; pp. 239–245.

6. Nguyen, T.T.; Armitage, G. A survey of techniques for internet traffic classification using machine learning.
IEEE Commun. Surv. Tutor. 2008, 10, 56–76. [CrossRef]

7. Udrea, O.; Lumezanu, C.; Foster, J.S. Rule-based static analysis of network protocol implementations.
Inf. Comput. 2008, 206, 130–157. [CrossRef]

8. Breslau, L.; Zhang, Y.; Paxson, V.; Shenker, S. On the characteristics and origins of internet flow rates.
In Proceedings of the 2002 Conference on Applications, Las Vegas, NV, USA, 24–27 June 2002; pp. 309–322.

9. Lan, K.; Heidemann, J. On the Correlation of Internet Flow Characteristics; Technical Report ISI-TR-574;
USC/Information Sciences Institute: Los Angeles, CA, USA, 2003.

10. Zhang, J.; Xiang, Y.; Wang, Y.; Zhou, W.; Xiang, Y.; Guan, Y. Network Traffic Classification Using Correlation
Information. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 104–117. [CrossRef]

11. Risso, F.; Baldi, M.; Morandi, O.; Baldini, A.; Monclus, P. Lightweight, Payload-Based Traffic Classification:
An Experimental Evaluation. In Proceedings of the 2008 IEEE International Conference on Communications,
Beijing, China, 19–23 May 2008; pp. 5869–5875.

12. Bernaille, L.; Teixeira, R.; Salamatian, K. Early application identification. In Proceedings of the 2006
CoNEXT’06 ACM CoNEXT Conference, Arlington, VA, USA, 6–11 November 2006; p. 6.

13. Erman, J.; Mahanti, A.; Arlitt, M.; Williamson, C. Identifying and discriminating between web and peer-to-peer
traffic in the network core. In Proceedings of the 16th International Conference, Banff, AB, Canada, 8–12 May
2007; pp. 883–892.

14. Haffner, P.; Sen, S.; Spatscheck, O.; Wang, D. ACAS: Automated construction of application signatures.
In Proceedings of the 2005 ACM SIGCOMM Workshop on Mining network Data, Philadelphia, PA, USA,
26 August 2005.

15. Zander, S.; Nguyen, T.; Armitage, G. Automated traffic classification and application identification using
machine learning. In Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary
(LCN’05)l, Sydney, New South Wales, Australia, 17 November 2005; pp. 250–257.

16. Finsterbusch, M.; Richter, C.; Rocha, E.; Muller, J.-A.; Hanssgen, K. A Survey of Payload-Based Traffic
Classification Approaches. IEEE Commun. Surv. Tutor. 2014, 16, 1135–1156. [CrossRef]

17. Shafiq, M.; Yu, X.; Wang, D. Network traffic classification using machine learning algorithms. In Advances in
Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2018; Volume 686, pp. 621–627.

18. Singh, H. Performance Analysis of Unsupervised Machine Learning Techniques for Network Traffic
Classification. In Proceedings of the 2015 Fifth International Conference on Advanced Computing &
Communication Technologies, Washington, DC, USA, 20–21 February 2015; pp. 401–404.

19. Huang, H.; Li, P.; Guo, S. Traffic scheduling for deep packet inspection in software-defined networks. Concurr.
Comput. Pract. Exp. 2017, 29, e3967. [CrossRef]

20. Huang, H.; Guo, S.; Li, P.; Ye, B.; Stojmenovic, I. Joint Optimization of Rule Placement and Traffic Engineering
for QoS Provisioning in Software Defined Network. IEEE Trans. Comput. 2015, 64, 3488–3499. [CrossRef]

21. Parsaei, M.R.; Sobouti, M.J.; Khayami, S.R.; Javidan, R. Network Traffic Classification using Machine Learning
Techniques over Software Defined Networks. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 220–225.

http://dx.doi.org/10.1109/65.912717
http://dx.doi.org/10.1186/s13174-018-0087-2
http://dx.doi.org/10.1109/SURV.2008.080406
http://dx.doi.org/10.1016/j.ic.2007.05.007
http://dx.doi.org/10.1109/TPDS.2012.98
http://dx.doi.org/10.1109/SURV.2013.100613.00161
http://dx.doi.org/10.1002/cpe.3967
http://dx.doi.org/10.1109/TC.2015.2401031

Appl. Sci. 2019, 9, 2550 16 of 16

22. Yu, C.; Lan, J.; Xie, J.; Hu, Y. QoS-aware Traffic Classification Architecture Using Machine Learning and Deep
Packet Inspection in SDNs. Procedia Comput. Sci. 2018, 131, 1209–1216. [CrossRef]

23. Amaral, P.; Dinis, J.; Pinto, P.; Bernardo, L.; Tavares, J.; Mamede, H.S.; Henrique, S.M. Machine Learning in
Software Defined Networks: Data Collection and Traffic Classification. In Proceedings of the 2016 IEEE 24th
International Conference on Network Protocols (ICNP), Singapore, 8–11 November 2016; pp. 1–5.

24. Ayyub Qazi, Z.; Lee, J.; Jin, T.; Bellala, G.; Arndt, M.; Noubir, G. Application-Awareness in SDN.
ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 487–488. [CrossRef]

25. Pei, J.; Hong, P.; Li, D. Virtual Network Function Selection and Chaining Based on Deep Learning in SDN
and NFV-Enabled Networks. In Proceedings of the 2018 IEEE International Conference on Communications
Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6.

26. Yan, J.; Yuan, J. A Survey of Traffic Classification in Software Defined Networks. In Proceedings of the 2018
1st IEEE International Conference on Hot Information-Centric Networking (HotICN), Shenzhen, China,
15–17 August 2018; pp. 200–206.

27. Wang, W.; Zhu, M.; Zeng, X.; Ye, X.; Sheng, Y. Malware traffic classification using convolutional neural
network for representation learning. In Proceedings of the 2017 International Conference on Information
Networking (ICOIN), Da Nang, Vietnam, 11–13 January 2017; pp. 712–717.

28. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J. Network Traffic Classifier with Convolutional
and Recurrent Neural Networks for Internet of Things. IEEE Access 2017, 5, 18042–18050. [CrossRef]

29. Lim, H.-K.; Kim, J.-B.; Heo, J.-S.; Kim, K.; Hong, Y.-G.; Han, Y.-H. Packet-based Network Traffic Classification
Using Deep Learning. In Proceedings of the 2019 International Conference on Artificial Intelligence in
Information and Communication (ICAIIC), Okinawa, Japan, 11–13 February 2019; pp. 46–51.

30. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
31. Qingqing, Z.; Yong, L.; Zhichao, W.; Jielin, P.; Yonghong, Y. The application of convolutional neural network

in speech recognition. Microcomput. Appl. 2014, 3, 39–42.
32. Hatcher, W.G.; Yu, W. A Survey of Deep Learning: Platforms, Applications and Emerging Research Trends.

IEEE Access 2018, 6, 24411–24432. [CrossRef]
33. Carela-Español, V.; Bujlow, T.; Barlet-Ros, P. Is Our Ground-Truth for Traffic Classification Reliable?

In Proceedings of the Computer Vision—ACCV 2018, Perth, Australia, 2–6 December 2018; Volume 8362,
pp. 98–108.

34. Connor, J.T.; Martin, R.D.; Atlas, L.E. Recurrent neural networks and robust time series prediction. IEEE Trans.
Neural Netw. 1994, 5, 240–254. [CrossRef] [PubMed]

35. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

36. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Vanderplas, J. Scikit-learn:
Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

37. Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.
In Proceedings of the 14th IJCAI’95 International Joint Conference on Artificial Intelligence, Montreal, QC,
Canada, 20–25 August 1995; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1995; Volume 2,
pp. 1137–1143.

38. Powers, D.M.W. Evaluation: From precision, recall and f-measure to ROC, informedness, markedness &
correlation. J. Mach. Learn. Technol. 2011, 2, 37–63.

39. Michiel, H.; Benjamin, S. Training and Analysing Deep Recurrent Neural Networks. In Proceedings of the
26th Neural Information Processing Systems, Lake Tahoe, Nevada, 5–10 December 2013; pp. 190–198.

40. Pascanu, R.; Gulcehre, C.; Cho, K.H.; Bengio, Y. How to Construct Deep Recurrent Neural Networks. arXiv
2014, arXiv:1312.6026.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.procs.2018.04.331
http://dx.doi.org/10.1145/2534169.2491700
http://dx.doi.org/10.1109/ACCESS.2017.2747560
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1109/ACCESS.2018.2830661
http://dx.doi.org/10.1109/72.279188
http://www.ncbi.nlm.nih.gov/pubmed/18267794
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed SDN Architecture for Deep Learning-Based Traffic Classification
	Data Preprocessing
	Deep Learning Models
	The Multi-Layer LSTM Architecture
	The CNN and LSTM Combination Network Model Architecture

	Model Tuning
	Experimental Evaluation
	Experimental Environment
	Performance Metrics
	Experimental Results

	Discussion: Flow Classifier in SDN
	Conclusions
	References

