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Abstract: Composite structure often shows undesirably significant uncertainty in its mechanical
properties, which may consequently result into large stochastic variation of its natural frequency.
This study provides stochastic natural frequency analysis of typical composite structures based on
micro-scale (constituent-scale) and meso-scale (ply-scale) uncertainty. Uncertainty propagation across
micro-scale and meso-scale is investigated. Response surface method (RSM) based on finite element
modeling is employed to obtain approximate natural frequency of structures with complex shape
or boundary conditions, and mean value and standard deviation of natural frequency of composite
plate and cylindrical shell are derived. Differences in natural frequency statistics of composite
plates and cylindrical shells derived by considering uncertainty at different scales are quantified
and discussed. Significant statistical correlation between ply elastic properties and ply density is
observed, and the statistical correlation is demonstrated to lay great influence on the statistics of
structure natural frequency.
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1. Introduction

Fibre reinforced composite material and structures are extensively used in diverse engineering
applications such as aircraft, rockets, ships, wind turbines, buildings, etc. Due to complexity in
material microstructure and manufacture process, composite structure often shows undesirably large
uncertainty in its mechanical performance, such as structure deflection [1,2], load capacity [3,4],
buckling behaviour [5,6] and dynamic response [7]. Therefore, structure design in stochastic or
probabilistic approaches is especially important for composite structures [8].

Since engineering composite structures are commonly required to have natural frequencies away
from the operating value to avoid structure resonance, stochastic natural frequency of composite
structures has received increased attention in recent years. Oh and Librescu [9] adopted stochastic finite
element method (SFEM) to investigate stochastic natural frequency of composite cantilever beams.
Dey et al. [10,11] derived natural frequency statistics of composite plates by an RS-HDMR approach and
later used a surrogate model. Chakraborty et al. [12] investigated stochastic free vibration behaviour of
laminated composite plates using polynomial correlated function expansion and also response surface
method (RSM). Tawfik et al. [13] presented a neural network-based second order reliability method
to obtain probabilistic natural frequency of composite plates. Yin et al. [14] investigated stochastic
variability of natural frequencies of laminated plates by modal stability procedure probabilistic
approach. Singh et al. [15] provided a free vibration analysis of composite cylindrical panels with
random material properties by first-order perturbation technique, and similar study is shown in [16]
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but for composite conical shell structure. It is noticed that these current studies are based on meso-scale
(ply-scale) uncertainty such as uncertainty in ply elastic properties, ply orientation, ply density and
thickness, and these meso-scale random variables are considered to be independent with one another.
It is known that uncertainty of ply properties is essentially caused by stochastic variation of micro-scale
(constituent-scale) parameters such as properties of fibre/matrix, fibre volume ratio, micro-structure,
void, etc. [17]. Although probabilistic analysis based on meso-scale uncertainty takes less computation
effort, uncertainty consideration started from micro-scale would provide insight into propagation
of uncertainty across different scales [18] and also possible coupling between meso-scale random
variables [19–24]. Still, it seems that little work has been reported about achieving comprehensive
understanding on stochastic natural frequency of composite structures by considering uncertainty
at different scales. Naskar et al. [25] showed difference in natural frequency statistics of composite
plates derived from different scale uncertainty, but the uncertainties at different scales are somehow
not connected. Therefore, it would be valuable to conduct comprehensive comparison on achieving
natural frequency statistics of composite structures from meso-scale and micro-scale uncertainty, and
any difference on the results would provide good indication or enlightenment to achieve complete
description over uncertainty at different scales.

This study provides natural frequency analysis of typical composite structures based on micro-scale
and meso-scale uncertainty. Meso-scale statistics are derived from micro-scale uncertainty by
a combination of Monte-Carlo simulation and micromechanical model, and especially statistical
correlation between meso-scale random variables is discussed. Response surface method (RSM) based
on finite element modeling is employed to obtain approximate natural frequency of structures with
complex shape or boundary condition. Statistics of natural frequencies of laminate plate and cylindrical
shell are derived by a combination of Monte-Carlo simulation and the RSM. Statistics of structure
natural frequency derived from different uncertainty considerations are compared and discussed.

2. Material Statistics

2.1. Micro-Scale Statistics

Statistics of mechanical and physical properties of common E-glass fibre and epoxy are shown in
Table 1. Random variables considered in micro-scale mainly include Ef (Young’s modulus of fibre),
νf (Poisson’s ratio of fibre), ρf (density of fibre), Em (Young’s modulus of matrix), νm (Poisson’s ratio
of matrix), ρm (density of matrix) and Vf (fibre volume ratio). It has been experimentally shown that
E-glass fibre tends to be mechanically isotropic [26]. Experimental observation on the statistics of fibre
and matrix properties is generally rarely reported. In Table 1, the coefficient of variation (standard
deviation/mean value) is assumed to be 5% if a reference is not given. All micro-scale properties shown
in Table 1 are assumed to follow normal distribution in this study.

Table 1. Statistics of properties of fibre and matrix.

Mean Value Standard Deviation Distribution Type

E-Glass Fibre

Ef 72 GPa 5 GPa [27] Normal
νf 0.25 0.05 [26] Normal
ρf 2540 kg/m3 127 kg/m3 Normal

Epoxy

Em 3.45 GPa 0.086 GPa [27] Normal
νm 0.35 0.0175 Normal
ρm 1100 kg/m3 55 kg/m3 Normal

Fibre Volume Ratio

Vf 0.60 0.03 Normal
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2.2. Meso-Scale Statistics

Statistics of meso-scale properties of unidirectional (UD) E-glass/epoxy are derived from
micro-scale properties by a combination of Monte-Carlo simulation and bridging micromechanical
model [28]. For E-glass/epoxy composite, the bridging micromechanical model is expressed as:

E1 = E f V f + EmVm (1)

E22 =
(V f + Vma11)(V f + Vma22)

(V f + Vma11)(V f S f 22 + a22VmSm22) + V f Vm(Sm12 − S f 12)a12
(2)

ν12 = ν f V f + νmVm (3)

G12 =
(G f + Gm) + V f (G f −Gm)

(G f + Gm) −V f (G f −Gm)
(4)

where a11, a22, a12, Sf11, . . . , Sm12 are functions of the elastic properties of fibre and matrix as given in
Huang [28]; Vm denotes matrix volume ratio (Vm = 1 − Vf). Gm(Gf) is the shear modulus of matrix
(fibre) which is dependent on Em and νm (Ef and νf) due to isotropy of matrix (fibre). E1 denotes
normal modulus in the fibre direction; E2 denotes the normal modulus in the transverse direction; ν12

denotes the in-plane major Poisson’s ratio; G12 denotes the in-plane shear modulus. In a composite
material coordinate, 1 denotes fibre direction and 2 denotes transverse direction (perpendicular to fibre
direction). Lamina density is derived by the rule of mixture which is written as:

ρ = ρ f V f + ρmVm (5)

In Monte-Carlo method, the accuracy (ζ) on the estimation of a parameter P is expressed as [29]:

ς ≈
s/
√

N
P̂

(6)

where P̂ is estimation of P, N is sampling number, and s is standard deviation of P which is estimated as:

s =

√√√√
1
N

N∑
k=1

g(Xk)
2
− (

1
N

N∑
k=1

g(Xk))

2

(7)

where Xk is the k-th sample of random variables, and g(Xk) is a function on Xk such as Equations (1)–(5).
ζ represents the relative difference between the mathematical expectation of a group of samples and the
true mean value of corresponding random variable. Equation (6) indicates that a large enough number
of samples would provide very accurate estimation on random parameters in Monte-Carlo simulation.
In this work, 1 × 105 group of samples were drawn for the micro-scale random variables listed in
Table 1 and they were substituted into Equations (1)–(5) to derive statistics of meso-scale properties.
According to Equation (6), the sampling number of 1 × 105 provides estimation accuracy on meso-scale
random variables better than 0.02%. The derived mean values, coefficient of variation (CoV) and linear
correlation coefficients of UD E-glass/epoxy are shown in Table 2. The probabilistic distribution of
derived ply mechanical properties was determined by Kolmogorov–Smirnov and Anderson–Darling
tests, and it was shown that E11, E22, ν12, G12 and ρ all follow normal distribution with a confidence
level at 95%.
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Table 2. The statistics of UD E-glass/Epoxy composite.

Random
Variables

Linear Correlation Coefficient
Mean CoV

Experiment
[30]E1 E2 G12 υ12 ρ

E1 (GPa) 1 44.5 0.083 45.6
E2 (GPa) 0.65 1 13.2 0.077 16.2
G12 (GPa) 0.63 0.98 1 4.93 0.078 5.83
υ12 −0.06 −0.10 −0.20 1 0.29 0.107 0.28
ρ (kg/m3) 0.43 0.72 0.71 −0.07 1 1964 0.029

Table 2 shows that significant statistical correlation exists between ply mechanical properties
(E1, E2, G12, υ12), which agrees with observation in [19,20,22]. A new observation is that statistical
correlation between ply density (ρ) and ply elastic properties (E1, E2, G12) was also significant, and this
correlation seems to be rarely reported or noticed in previous studies. Actually, experimental data
in Huang [28] provided a clear positive correlation between Vf (fibre volume ratio) and E1, E2, G12.
Since it is known that ply density is positively dependent on the Vf, the theoretically predicted positive
correlation between ply density and E1, E2, G12 shown Table 2 is reasonable. Statistical correlation
associated with ply density may affect stochastic vibration of composite structures as structure vibration
is known to be mass dependent. Studies in later sections will demonstrate the effect of statistical
correlation between E1, E2, G12 and ρ on the stochastic free vibration of composite structures.

3. Analysis of Stochastic Natural Frequency

3.1. Laminated Plate

In this work, stochastic natural frequency of several different configurations of laminated plates
subjected to different boundary conditions as listed in Table 3 was investigated, including cross-ply
laminate, angle-ply laminate, quasi-isotropic laminate and laminate of random ply orientations. For
each laminate configuration, statistics of first order natural frequency were derived in three scenarios:
(a) considering micro-scale uncertainty of constituent material properties as listed in Table 1, termed
in short as ‘micro-scale uncertainty’; (b) considering meso-scale uncertainty as listed in Table 2, and
their statistical correlation was also considered, termed in short as ‘correlated meso-scale uncertainty’;
(c) considering meso-scale uncertainty of ply properties as listed in Table 2, but the statistical correlation
between ply mechanical properties and also the density was neglected, termed in short as ‘independent
meso-scale uncertainty’. The flowchart of calculation process of stochastic natural frequency by
considering the three different scenarios of uncertainty is shown in Figure 1. It is important to
notice that most current studies (as introduced in Section 1) were based on ‘independent meso-scale
uncertainty’, and it is necessary to discuss whether ‘independent meso-scale uncertainty’ provides
reasonable estimation on the statistics of resonance frequency of composite structures.

Table 3. Laminate plate configurations.

No. Ply Thickness Ply Orientation Size Boundary Condition

Laminate 1 0.45 mm (0/90)4 0.6 × 0.2 m Simply supported
Laminate 2 0.45 mm [(±60)2]s 0.6 × 0.2 m Simply supported
Laminate 3 0.45 mm [0/±45/90]s 0.6 × 0.2 m Clamped
Laminate 4 0.45 mm [15/45/60/90/30/0/10/20] 0.6 × 0.2 m Clamped
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Figure 1. Flowchart of calculation of natural frequency statistics by different uncertainty consideration.

The statistics of first order natural frequency were derived by a combination of Monte-Carlo
simulation and FE modeling. Four-node linear-elastic shell element (Shell181 in Ansys 14.5) is used to
model the laminate. A mesh convergence study was conducted, which showed that a mesh size of
0.01 × 0.01 m provided a convergent solution on the first order natural frequency. Considering heavy
computation cost of direct Monte-Carlo simulation on FE modeling, response surface method (RSM)
with quadratic expression was employed to derive an approximate surrogate model to map random
variables to the first order natural frequency, as shown in Equation (8):

g(X) = a + bi

n∑
i=1

xi + ci j

n∑
i=1

xi

n∑
i=1

x j (8)

where g represents the first order natural frequency, xi represents micro-scale or meso-scale random
variable shown in Table 1 or Table 2, and a, b and c are regression terms. In this work, the regression
terms were determined by central composite design method [31]. The central composite design was
composed of one central point, two axis points per input variable and factorial points at the corners of
the hypercube. Twenty-seven design points were employed for the meso-scale uncertainty scenario
and 79 design points were employed for the micro-scale uncertainty scenario. In comparison to other
experimental design methods such as the Box–Behnken method, the central composite design method
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could provide high quality predictions over the entire design space, and it is more flexible considering
the number of input random variables [32].

For all laminate configurations shown in Table 3, 1 × 105 group samples of random variables
were drawn to conduct stochastic analysis based on the surrogate model derived by the RSM, and
corresponding relative error on estimation of the mean value of first order natural frequency was
less than 0.01% (calculated by Equation (6)). For the scenario of ‘correlated meso-scale uncertainty’,
Gibbs sampling was employed to draw samples of meso-scale random variables to account for their
correlation [21], by the procedure as follows:

(1) Initiation of random variable xi (i = 1, 2, . . . , n);
(2) For t = 0, 1, 2, . . . , do the iterative sampling as follows:

1. x(t+1)
1 ∼ p(x1|x t

2, xt
3, · · · xt

n)

2. xt+1
2 ∼ p(x2|x t+1

1 , xt
3, · · · xt

n)

3. · · · · · · · · ·

4. xt+1
j ∼ p(x j|x t+1

1 , · · · , xt+1
j−1 , xt

j+1 · · · x
t
n)

5. · · · · · · · · ·

6. xt+1
n ∼ p(xn|x t+1

1 , xt+1
2 , · · · xt+1

n−1)

where t denotes the number of sample, and p() denotes probability density function.
Table 4 lists mean value and standard deviation of derived first order natural frequency of different

laminate plates. It is seen that mean values of the first order natural frequency derived from the three
different consideration of uncertainty were almost identical, with a difference less than 0.01%. The
standard deviations of the first order natural frequency derived from ‘micro-scale uncertainty’ and
‘correlated meso-scale uncertainty’ were also very similar, with a difference less than 2%. This small
difference could be introduced by the process of probabilistic density function fitting of meso-scale
random variables. However, significant difference was seen between the standard deviation derived
by ‘independent meso-scale uncertainty’ and ‘correlated meso-scale uncertainty’ or ‘micro-scale
uncertainty’, where the standard deviation derived by ‘independent meso-scale uncertainty’ was
around 10% larger.

Table 4. Statistics of first order natural frequencies of laminate plate (unit in Hz).

No.
Micro-Scale Correlated Meso-Scale Independent Meso-Scale

Mean Std Mean Std Mean Std

Laminate 1 167.2 5.17 167.3 5.19 167.3 5.61
8.1% *

Laminate 2 181.0 5.89 181.0 6.00 181.0 6.53
8.8% *

Laminate 3 290.5 8.12 290.5 8.25 290.7 8.72
5.7% *

Laminate 4 275.6 7.65 275.7 7.88 275.8 8.88
12.7% *

* Difference from its counterpart value of ‘Correlated Meso-Scale’.

Figure 2 shows histogram and probability distribution of the first order natural frequency of
Laminate 1 derived from ‘independent meso-scale uncertainty’ and ‘correlated meso-scale uncertainty’.
From the histogram shown in Figure 2a, it is shown that the ‘correlated meso-scale uncertainty’ provides
more samples at the middle region and less samples at the tail region. By Kolmogorov–Smirnov and
Anderson–Darling tests, the probability distribution of the first order natural frequency tended to follow
normal distribution. From the fitted probability density function by normal distribution as shown
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in Figure 2b, it is seen that there is notable difference in the tail region between the two probability
density functions. The cumulative probability of the first order natural frequency is shown in Figure 3,
which shows that the ‘independent meso-scale uncertainty’ provides a notable overestimation on the
cumulative probability. This demonstrates a necessity to account for statistical correlation between
meso-scale uncertainty to derive accurate stochastic natural frequency.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 12 

account for statistical correlation between meso-scale uncertainty to derive accurate stochastic 

natural frequency. 

  

(a) (b) 

Figure 2. Probabilistic distribution of first order frequency of Laminate 1 by considering correlated 

and independent meso-scale random variables: (a) histogram; (b) fitted by normal distribution. 

f (Hz)

P
ro

b
a

b
ili

ty

 

Figure 3. Cumulative probability of first order frequency of Laminate 1, derived by considering 

correlated and independent meso-scale random variables. 

To achieve better understanding on the contribution of different uncertainty to the stochastic 

variation of the natural frequency, linear correlation coefficients between the first order natural 

frequency of Laminate 1 and meso-scale random variables were derived, as shown in Figure 4. The 

linear correlation coefficient reflected a stochastic dependence or sensitivity of stochastic variation 

of the natural frequency over input random variables. It is seen that neglecting correlation between 

meso-scale uncertainty suppressed the stochastic dependence on E22 and G12, which was similar to 

observation in [1] where stochastic deflection of a laminate structure was investigated. An 

interesting observation is on the dependence over laminate density. If the statistical correlation 

between the meso-scale input random variables was ignored, the stochastic dependence of the first 

order natural frequency over ply density was negative. It seems to be under expectation as it is 

known that larger density results into smaller natural frequency if plate stiffness and boundary 

conditions remain unchanged. However, from a multi-scale viewpoint, the ply density is actually 

positively correlated with ply modulus, and a larger ply density also indicates a larger stiffness. 

Hence, for the case of ‘correlated meso-scale uncertainty’, a positive correlation was seen between 

Figure 2. Probabilistic distribution of first order frequency of Laminate 1 by considering correlated and
independent meso-scale random variables: (a) histogram; (b) fitted by normal distribution.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 12 

account for statistical correlation between meso-scale uncertainty to derive accurate stochastic 

natural frequency. 

  

(a) (b) 

Figure 2. Probabilistic distribution of first order frequency of Laminate 1 by considering correlated 

and independent meso-scale random variables: (a) histogram; (b) fitted by normal distribution. 

f (Hz)

P
ro

b
a

b
ili

ty

 

Figure 3. Cumulative probability of first order frequency of Laminate 1, derived by considering 

correlated and independent meso-scale random variables. 

To achieve better understanding on the contribution of different uncertainty to the stochastic 

variation of the natural frequency, linear correlation coefficients between the first order natural 

frequency of Laminate 1 and meso-scale random variables were derived, as shown in Figure 4. The 

linear correlation coefficient reflected a stochastic dependence or sensitivity of stochastic variation 

of the natural frequency over input random variables. It is seen that neglecting correlation between 

meso-scale uncertainty suppressed the stochastic dependence on E22 and G12, which was similar to 

observation in [1] where stochastic deflection of a laminate structure was investigated. An 

interesting observation is on the dependence over laminate density. If the statistical correlation 

between the meso-scale input random variables was ignored, the stochastic dependence of the first 

order natural frequency over ply density was negative. It seems to be under expectation as it is 

known that larger density results into smaller natural frequency if plate stiffness and boundary 

conditions remain unchanged. However, from a multi-scale viewpoint, the ply density is actually 

positively correlated with ply modulus, and a larger ply density also indicates a larger stiffness. 

Hence, for the case of ‘correlated meso-scale uncertainty’, a positive correlation was seen between 
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correlated and independent meso-scale random variables.

To achieve better understanding on the contribution of different uncertainty to the stochastic
variation of the natural frequency, linear correlation coefficients between the first order natural
frequency of Laminate 1 and meso-scale random variables were derived, as shown in Figure 4. The
linear correlation coefficient reflected a stochastic dependence or sensitivity of stochastic variation
of the natural frequency over input random variables. It is seen that neglecting correlation between
meso-scale uncertainty suppressed the stochastic dependence on E22 and G12, which was similar to
observation in [1] where stochastic deflection of a laminate structure was investigated. An interesting
observation is on the dependence over laminate density. If the statistical correlation between the
meso-scale input random variables was ignored, the stochastic dependence of the first order natural
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frequency over ply density was negative. It seems to be under expectation as it is known that larger
density results into smaller natural frequency if plate stiffness and boundary conditions remain
unchanged. However, from a multi-scale viewpoint, the ply density is actually positively correlated
with ply modulus, and a larger ply density also indicates a larger stiffness. Hence, for the case of
‘correlated meso-scale uncertainty’, a positive correlation was seen between the natural frequency and
the ply density. This highlights the importance to consider statistical correlation between meso-scale
mechanical properties to achieve comprehensive understanding on the stochastic free vibration of
laminate plates.
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Figure 4. Linear correlation coefficient between first order natural frequency of laminate plate and
meso-scale random variables.

For Laminates 2, 3 and 4 listed in Table 3, similar characteristics of the standard deviation,
cumulative probability and sensitivity of the first order natural frequency were obtained as compared
to Laminate 1, considering the discrepancy between the three different uncertainty considerations.

3.2. Laminated Cylindrical Shell

Laminated cylindrical shell structures are widely used in airspace, aerospace and energy
engineering fields, with applications such as the dual launch system (SYLDA) and interstage skirt
structure (ISS) of Ariane 5 launcher [33]. Especially, circular cut-outs are made on the laminated
cylindrical shell of the SYLDA. In this section, stochastic natural frequency of a laminated cylindrical
shell with circular cut-outs is investigated. The geometry of the laminated cylindrical shell is shown
in Figure 5a, which was based on a scaled model of the SYLDA of Ariane 5 launcher where the shell
diameter is equal to the shell length and the cut-out diameter is around 0.1–0.2 times of shell length. The
laminate was set as eight-layered E-glass fibre/epoxy material, and the ply orientation was (±θ)4. A ply
with an orientation at 0 indicates that fibre is aligned in the cylinder length direction. Ply thickness
was selected as 0.45 mm. Both ends of the laminated cylindrical shell were clamped. FE modeling was
employed to obtain its first order natural frequency, as shown in Figure 5. The laminate was modeled
by four-node linear-elastic shell element (Shell181 in Ansys 14.5), and a mesh size of 5 × 5 mm was
found to be fine enough to provide a convergent solution. FE solution on the first order vibration mode
of (±45)4 laminate cylindrical shell is shown in Figure 5b.

Similar to the analysis of laminate plates in last section, a combination of RSM and Monte-Carlo
simulation is adopted to obtain the statistics of the first order natural frequency, by considering
‘micro-scale uncertainty’, ‘independent meso-scale uncertainty’ and ‘correlated meso-scale uncertainty’.
The derived standard deviation of the first order natural frequency is shown in Figure 6. It is seen
that the difference on the standard deviation between the three difference uncertainty consideration
was fairly small for θ at 0◦, 30◦, 45◦ and 60◦. However, for the situation of θ = 90◦, the standard
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deviation derived from ‘independent meso-scale uncertainty’ was 10.4% larger than that of ‘correlated
meso-scale uncertainty’ or ‘micro-scale uncertainty’. This difference agrees with that of laminate plates
shown in Table 4, which again demonstrates that ignoring the statistical correlation between meso-scale
uncertainty probably leads to overestimation of the standard deviation of structure natural frequency.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 12 
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4. Discussion

Fibre reinforced composite is essentially a type of multi-scale material. Uncertainty consideration
from different scales would provide more comprehensive understanding on accurate uncertainty
characterization. Previous work has highlighted possible existence of significant correlation between
ply mechanical properties [19,22]. This correlation would affect reliability of composite structures
considering structure failure defined by structure deformation, fracture or buckling [20]. It is known
that natural frequency of composite structures not only depends on ply elastic properties but also
laminate density. Therefore, as a new observation on the statistical correlation associated to ply density,
it would be interesting to see how much the correlation contributes to the statistics of structure natural
frequency. Here, a further comparison is conducted on deriving the statistics of structure natural
frequency by considering two scenarios: (1) considering only correlation between ply mechanical
properties (E11, E22, G12, ν12); (2) considering correlation between ply mechanical properties and also
density (E11, E22, G12, ν12, ρ). The derived standard deviations of the first order natural frequency of
Laminate 1 (see Table 3) and (90)8 laminate cylindrical shell are shown in Table 5. It is interesting to
observe that neglecting correlation associated with ply density results into 30–50% overestimation of
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the standard deviation, while neglecting all correlation between meso-scale uncertainty results into
around 10% overestimation.

Table 5. Standard deviation of first order natural frequency considering different uncertainty.

Meso-Scale Correlation
(E11, E22, G12, ν12, ρ)

Meso-Scale Correlation
(E11, E22, G12, ν12)

Meso-Scale
Independent

(0/90)8 plate 5.10 Hz 6.70 Hz 5.61 Hz
– (31.4%) * (10.0%) *

(90)8 cylindrical shell 37.8 Hz 56.0 Hz 42.2 Hz
– (48.2%) * (11.6%) *

* Difference from its counterpart value of ‘meso-scale correlation (E11, E22, G12, ν12, ρ)’.

Overestimation of standard deviation by 30–50% would lead to very large error in corresponding
cumulative probability estimation. Therefore, it is important to account for the statistical correlation
associated with ply density to obtain accurate stochastic free vibration behaviour of laminated structures.

A recent study [25] reports that larger standard deviation of natural frequency was obtained for the
case of ‘micro-scale uncertainty’ than that of the ‘independent meso-scale uncertainty’, which seems to
contradict with our observations in Table 4 and Figure 5. Actually, the comparison in [25] was conducted
by assuming identical coefficient of variation (CoV) for both meso-scale and micro-scale uncertainties,
for example the CoV of all of meso-scale and micro-scale random variables were assumed to be 5%.
However, Tables 1 and 2 tell that micro-scale uncertainty with CoV at 5% actually results in CoV of
meso-scale uncertainty at around 10%. The uncertainty amplification from micro-scale to meso-scale
was also addressed in [18]. The uncertainty amplification explains why larger standard deviation was
obtained for the case of ‘micro-scale uncertainty’ in [25]. Meanwhile, statistical correlation between
meso-scale uncertainty was not considered and discussed in [25].

5. Conclusions

The present study provides statistical natural frequency of composites structures derived from
micro-scale and meso-scale uncertainty, for the circumstance composite structures are composed of
plies with unidirectional fibre reinforcement. Meso-scale uncertainty is obtained from micro-scale
uncertainty by a combination of Monte-Carlo simulation and bridging micromechanical model. It is
observed that significant statistical correlation may not only exist between ply elastic properties but
also associated with ply density. The statistical correlation between meso-scale physical properties is
commonly ignored in current study on stochastic free vibration of composite structures. Comparison
is conducted on natural frequency statistics of composite plates and cylindrical shell considering
‘micro-scale uncertainty’, ‘correlated meso-scale uncertainty’ and ‘independent meso-scale uncertainty’.
Several conclusions are drawn as follows:

1. Natural frequency statistics of composite structures could be reasonably derived from either
micro-scale random variables or meso-scale random variables but their statistical correlation
needs to be well characterised;

2. Ignoring the statistical correlation between meso-scale uncertainty may result in large
overestimation of standard deviation of structure natural frequency;

3. If the natural frequency statistics of composite structures are calculated by meso-scale uncertainty,
it is especially important to consider the statistical correlation associated with ply density, which
is somehow not noticed by previous studies. It also shows that dependence of the stochastic
variation of natural frequency over ply density is positive rather than negative.

It is very important to achieve accurate statistics of structure natural frequency in engineering
design, so that potential structure resonance could be well avoided. Therefore, this work further
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suggests establishing standard experimental approaches to obtain statistical correlation between ply
elastic properties and ply density.
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