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Abstract: To eliminate the negative impacts of waste stone powder that arises from stone processing,
the waste was recycled into aerated bricks with a porous structure that exhibited exceptional properties
when applied in buildings. However, the pores easily absorb rainwater and dust, causing performance
degradation and mold growth inside. In this paper, we have developed through hydrothermal
reactions an environmentally friendly aqueous suspension, containing homemade highly dispersive
TiO2 nanoparticles modified with super-hydrophobic groups on the surface. The suspension was
coated onto the aerated bricks, creating a super-hydrophobic surface with a highly textured hierarchical
structure. A large contact angle of 146◦ tested on the surface and negligible water absorption for 24 h
immersion demonstrate the excellent water proofing performance, holding a great promise for large
scale applications in construction and buildings.

Keywords: aerated brick; waste recycling; hydrophobic; surface modification; TiO2 nanoparticle;
highly dispersive

1. Introduction

Owing to the increasing demand for stone construction and decoration materials world wide
because of the continuing growth in the world’s population, a tremendous amount of stone powder
waste has been generated in the natural and artificial stone industry during the cutting and carving
processing stages, which could account for up to 35% of the weight of the stone that was used.
The waste powder ranging from nanometers to millimeters is disposed of in landfills or arbitrarily
discharged to the surrounding environment, and is prone to drift in air, which has not only caused
severe environmental and ecological damage, but also carried risks to public health [1]. Fortunately,
a growing awareness of these issues has been raised by both local municipal managers and many
researchers from different fields.

Several methods have been adopted and implemented to recycle the waste stone powder.
At present, the reuse strategies concentrate upon incorporating the stone byproduct as additives
into the traditional construction materials, such as cement and concrete, to regulate their mechanical
properties [2–5]. Other applications for reusing the stone powder have been developed by researchers
in the area of functional nanomaterials, such as a self-cleaning coating based on waste marble [6],
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or a marble powder derived paint for indoor air quality improvement [1]. However, the stone
powder is reused as a type of auxiliary material, which consumes a pretty negligible amount of waste.
Moreover, adding the stone powder into the products sometimes degrades the performances of the
products. Recently, a recycling strategy of converting the waste stone powder into aerated bricks has
gained considerable interest, since it makes full use of the stone powder as a main source for massive
production, and has great application potential in the building and construction areas. Additionally,
the manufacturing cost is relatively low.

The aerated brick made from the waste stone powder exhibits a porous structure, which leads to
its exceptional properties, such as light weight, low bulk density, high heat resistance, excellent sound
insulation, and small shrinkage [7,8]. However, it is precisely because of the pores that the aerated
bricks easily absorb rainwater and suffer from water erosion, which degrades the mechanical and
thermal performances and facilitates mold growth [8]. In order to solve the water invasion problem
and maintain the edge of the aerated bricks, some reports have utilized rick husk ash to reduce the
water absorption of the aerated bricks [9], or combined fly ash with silica to form dense matrixes
for water resistance [10]. However, most of the above approaches make the manufacturing process
more complicated and costly. Instead, creating hydrophobic surface by means of surface modification
to achieve waterproof function would be more cost-effective and convenient for mass production.
Inspired by the lotus leaf, a super-hydrophobic surface could be built through a highly textured
epidermis layer combined with extremely low water affinity materials [6,11–15].

In this paper, an environmentally friendly aqueous based super-hydrophobic suspension
was prepared, which contains homemade highly dispersed TiO2 nanoparticles modified by
super-hydrophobic groups deriving from perfluorooctyltriethoxysilane (PFOTS). The particle size of
the nano-TiO2 in anatase phase dispersed in water concentrates at about 0.28 µm with a relatively
narrow distribution, indicating an extremely high degree of water dispersion. The aerated bricks were
fabricated in a factory near the stone processing plants in Fujian Province, China, where our studies
were conducted. Then the bricks were coated with the above suspension, creating a super-hydrophobic
surface. A contact angle of 146◦ has been achieved on the modified surface of the aerated brick,
demonstrating the excellent water repellency. Compared to a 55.1% increase in weight for the bare
brick immersed in water for 24 h, the negligible water absorption in the brick with surface modification
has proven the outstanding water proofing performance in practice. This super-hydrophobic surface
modification enables the aerated bricks from stone powder waste recycling to possess strong water
repellency ability, holding great promise for large scale applications in construction and buildings.

2. Materials and Methods

2.1. Fabrication of Aerated Bricks with Surface Modification

The recycling process from stone powder waste to aerated bricks was performed in Fengzhu
Novel Construction Materials Co., LTD in Fujian Province, China. The stone waste was firstly milled
by using a ball grinder, and then pumped to a slurry tank. Then lime, concrete, sand, and foaming
agent were added at an appropriate ratio into the tank, followed by stirring with water. The slurry was
then introduced into the injection molds and delivered to a still kettle after solidification. Under steam
curing in the still kettle, porous aerated bricks were produced.

In this study, the aerated brick surface was coated with a novel homemade self-dispersed
TiO2 nanoparticle to form the hydrophobic hierarchical double structure. The TiO2 particles were
synthesized through a controllable hydrothermal reaction, as described in our previous studies [1,6,16].
In this research, firstly, 5 g of TiO2 nanoparticles were dispersed into 20 ml of a mixture solution
of water and ethylene glycol (purchased form Sigma-Aldrich) at a ratio of 1:1. Then, 0.8 wt.% of
1H,1H,2H,2H- perfluorooctyltriethoxysilane (PFOTS, purchased from Nanjing Quanxi Chemical Co.,
LTD, China) and 2 wt.% of tetraethoxysliane (TEOS, purchased from Aladdin, China) were added into
the mixture under a stirring condition at a speed of 500 r/min. After another 2 h of continuous stirring,
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a super-hydrophobic suspension could be obtained. Finally, the hydrophobic surface of the aerated
bricks was achieved through dip coating or spray method.

2.2. Characterizations

The crystal phases of the samples were investigated by X-ray diffraction (XRD) using a Rigaku
Smartlab 9 kW X-ray diffractometer, equipped with a Cu-Kα1 radiation source (λ = 1.5406 Å).
The microstructure of the materials was visualized using scanning electron microscopy (SEM) by
employing a JEOL 6490 microscope at an accelerating voltage of 20 kV, while the elemental analysis
of the samples was examined by using an energy dispersive spectrometer (EDS), which is attached
to the JEOL 6490 microscope. Atomic force microscopy (AFM) was utilized to survey the surface
morphology of the samples, which was performed on a Bruker NanoScope 8 in tapping mode using a
silicon cantilever with a tip radius of less than 10 nm and resonance frequency of 278 kHz. The mean
particle size and the width of the particle distribution of the prepared TiO2 nanoparticles dispersed in
deionized water were determined by using a Malvern Mastersizer 3000 laser particle size analyzer.
Fourier transform infrared spectroscopy (FT-IR) measurements were carried out to examine the atomic
bonding in the prepared coating by using a Bruker Vertex-70 spectrometer, and the absorption spectra
were collected in the range of 400–1400 cm−1 applying a spectral resolution of 2 cm−1. The surface
wettability of the modified aerated brick was quantified by the contact angle, which was performed on
a PowerEach JC2000D contact angle meter using the 5-point fitting method with a droplet volume of
2 µL.

3. Results and Discussion

The stone powder is mainly composed of silicon dioxide, calcium carbonate, and other aluminum
silicate containing calcium [17], which is identified by XRD measurement shown in the lower red curve
in Figure 1 and EDS element detection presented in Table S1 in the Supplementary Materials. The stone
powder was mixed with concrete and sand, and then fabricated into aerated bricks. As displayed in
Figure 1, an approximate coincidence of diffraction peaks between the two curves confirms that the
composition of aerated brick is nearly the same as that of the waste stone powder. The unchanged
composition from waste stone powder to aerated bricks was also verified by comparison of the
chemical elements employing EDS, which is shown in Figure S1, Table S1 and Table S2 in the
Supplementary Materials.
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Figure 1. XRD patterns of the waste stone powder (lower red curve) and the aerated brick (upper
blue curve).

Figure 2 shows the microstructure and morphology of the fabricated aerated brick visualized by
using SEM at different magnifications. It is observed that the aerated brick is composed of flakes with
a diameter of several micrometers and a thickness of hundreds of nanometers, being cross-linked and
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exhibiting a porous structure with the pore size on the micrometer scale. This porous structure enables
the aerated brick to possess outstanding properties such as good thermal shielding, sound insulation,
light weight, and large pressure tolerance. However, the pores, in turn, could also easily absorb
water from rains, consequently facilitating mold growth, suffering from corrosion, and degrading the
performances of the bricks.
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To address the issue of water invasion of the aerated bricks, creating a water-repellent surface
is an effective way, by modifying the surface with micro- and nanostructure and nanomaterials.
Learning from the lotus effect, a hierarchical double structure, consisting of a characteristic epidermis
equipped with micrometer-sized papilla arrays and the covering waxes [13,15], significantly reduces
the contact area and the adhesion force between water droplets and the surface, thus enables the water
repellency of the surface.

As shown in the schematic diagram in Figure 3, homemade highly dispersive TiO2 nanoparticles
were employed to coat on the aerated brick surface by dip coating method, creating a rough epidermis
of the surface with TiO2 nanoparticle clusters. On the other hand, the TiO2 nanoparticles clad
with TEOS undergo hydrolysis, forming –OH terminal groups on the surface. At the same time,
the –Si-OH groups in the hydrolyzed PFOTS are dehydrated with the –OH group on the TiO2

surface by means of a self-assembling process and eventually build the hierarchical architecture.
According to the Cassie-Baxter wetting model [18], this artificial highly textured surface modified with
super-hydrophobic groups is responsible for water repellency, holding great potential for self-cleaning
and water-proofing applications [19–21].
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Figure 3. Schematic diagram of the surface modification.

The highly dispersive TiO2 nanoparticles in water were prepared, enabling the preparation
of environmentally friendly aqueous based suspension. Being a wide gap semiconductor [22,23]
and nontoxic material, TiO2 has been extensively used in areas of solar cells [23], photocatalysis [1],
whitening, and ultraviolet shielding. The crystal phase of the prepared TiO2 was revealed by XRD
(Figure S2 in the Supplementary Materials). The diffraction peaks located at 25.2◦, 37.7◦, 48.0◦, 53.9◦,
62.6◦ were well indexed to its (101), (004), (200), (105) and (204) reflections respectively (JCPDS Card
Number 21-1272), indicating anatase crystal structure of TiO2 [1]. The dispersion characteristic of TiO2,
which can be evaluated by the degree of nanoparticles aggregation in water, is of crucial importance
to the aqueous based suspension fabrication. As shown in Figure 4, the median size of secondary
particles is about 0.28 µm, and the narrow distribution ranging between 0.1 and 0.6 µm implies a high
degree of dispersion for the prepared TiO2 in water.
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The surface morphology of the TiO2 nanoparticles with super-hydrophobic modification coated
on a silicon wafer is visualized in Figure 5. From the AFM topographic image and the sectional view
of the height variation, it is estimated that the diameter of a single TiO2 particle is about 50 nm on
average, while the clusters range on the sub micrometer scale, in agreement with the secondary particle
size distribution presented in Figure 4. The aerated brick was dipped into the TiO2 based aqueous



Appl. Sci. 2019, 9, 2619 6 of 10

super-hydrophobic suspension, introducing the micro- and nanostructure on the outmost surface of
the brick. Along with the micrometer-sized pores in the brick, a certain rough surface modified with
super-hydrophobic groups was built, as shown in Figure S3 in the Supplementary Materials.
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As displayed in Figure 6, FT-IR was employed to characterize the functional groups and the
molecular bonding in the modified TiO2 nanoparticles with PFOTS. The upper blue curve in Figure 6
shows the absorption peaks of PFOTS (including TEOS), in which the existence of C-F bonds in the form
of CF, CF2 and CF3 are situated at 520, 739, 954, 1120 and 1205 cm−1 [24]. The peaks at 1078 cm−1 and
800 cm−1 are associated with the asymmetric stretching vibration and bending mode of Si-O-Si bonds
formed by dehydrate reaction of the silane coupling agent, respectively [25,26]. The peak located at
897 cm−1 is assigned to the C-H bonds [25,26]. The Si-O-C bond appears at 1142 cm−1, which confirms
that the functional groups from PFOTS are linked to the silica network [27].
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The middle red curve in Figure 6 shows the infrared absorption of the PFOTS modified nano-TiO2,
while the bottom black line gives the spectrum of nano-TiO2 before treatment. It can clearly be seen
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that the middle spectrum is a superposition of the upper and bottom ones, which implies that the
PFOTS is attached to the TiO2 nanoparticles.

The hydrophobicity of the surface can be determined by its contact angle. As displayed in Figure 7,
a contact angle of 146◦ on average demonstrates an excellent water-repellency performance of the
aerated brick surface with hierarchical structure and super-hydrophobic material modification.
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To further investigate the water-proofing performance of the bricks with a hydrophobic surface,
a water immersion experiment was carried out, as shown in Figure 8. The sample with surface
modification is shown in the left in Figure 8a,b), while the right in Figure 8a,b displays the bare brick.
It is apparently observed that the brick with surface modification was floating on the water like a boat,
while the control brick sank to the bottom of the water. The water-repellent surface dams the water
into the pores of the brick, shielding the porous interior and forming relatively lower density than that
of the water. By contrast, the water can easily permeate into the bare brick through the pores. To be
more specific, the weight variations of the two brick samples were recorded before and after immersed
into the water. A weight increment of 55.1% was detected for the bare brick after 24 h immersion,
as shown in Figure 9. On the other hand, the weight of the brick with surface modification showed
a small increase of about 4.3%, implying an excellent water resistance. This water immersion test
preliminarily demonstrated the water proofing performance of the super-hydrophobic coating on the
aerated bricks. Further investigation on the aging test and weather fastness would be carried out to
encourage the widespread application.
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in water.

The highly dispersive TiO2 nanoparticles modified with super-hydrophobic agent were prepared
as aqueous based suspension, which is coated onto the aerated brick to create water-repellent surface.
This property could effectively prevent the aerated bricks made of stone powder waste from rainwater
invasion and corrosion, maintaining the outstanding performance of the bricks and keeping fresh
appearance of the buildings. Tailoring the aerated brick to the water-proofing needs by utilizing
nanomaterials in an environmentally friendly way introduces a new strategy for waste recycling and
enlarges the application scale of super-hydrophobic technology.

4. Conclusions

In this study, the stone powder waste from stone processing was recycled into aerated bricks,
which possess a pore structure that makes them prone to rainwater erosion. In order to block the outside
water and make sure the bricks keep their edge, a strategy of making the brick surface water-repellent
was introduced. Homemade highly dispersive TiO2 nanoparticles modified with hydrophobic groups
deriving from PFOTS were prepared as an aqueous suspension. It is coated onto the aerated brick by
means of a dip coating method, creating a super-hydrophobic surface. The contact angle for water
droplet on the surface reached 146◦, indicating exceptional water-proofing performance. Compared to
an increase by 55.1% in weight for a bare brick immersed in water for 24 h, negligible water absorption
for the brick with surface modification also practically verified the outstanding water repellency and
the effectiveness. This approach opens up the possibility of applying nanomaterials and technologies
to improve the performances of products from waste recycling, and expands the application scope of
the prepared aqueous based hydrophobic coating.
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