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Abstract: In this paper, we propose and evaluate a novel light-emitting diode (LED) nonlinearity
estimation and compensation scheme using probabilistic Bayesian learning (PBL) for spectral-efficient
visible light communication (VLC) systems. The nonlinear power-current curve of the LED transmitter
can be accurately estimated by exploiting PBL regression and hence the adverse effect of LED
nonlinearity can be efficiently compensated. Simulation results show that, in a 80-Mbit/s orthogonal
frequency division multiplexing (OFDM)-based nonlinear VLC system, comparable bit-error rate
(BER) performance can be achieved by the conventional time domain averaging (TDA)-based LED
nonlinearity mitigation scheme with totally 20 training symbols (TSs) and the proposed PBL-based
scheme with only a single TS. Therefore, compared with the conventional TDA scheme, the proposed
PBL-based scheme can substantially reduce the required training overhead and hence greatly improve
the overall spectral efficiency of bandlimited VLC systems. It is also shown that the PBL-based LED
nonlinearity estimation and compensation scheme is computational efficient for the implementation
in practical VLC systems.

Keywords: light emitting diode; nonlinearity estimation and compensation; probabilistic Bayesian
learning; visible light communication

1. Introduction

Visible light communication (VLC) relying on white illuminating light-emitting diodes (LEDs)
has attracted extensive interest in recent years, due to its inherent advantages such as unregulated
spectrum, relatively low implementation cost, enhanced physical-layer security, and electromagnetic
interference-free operation [1,2]. The emerging VLC technology has revealed great potential for
a lot of practical applications such as high-speed communications, wireless networking, human
sensing, ranging and detecting [3,4]. Nevertheless, white LEDs have several limitations which might
greatly hinder the development and implementation of VLC systems in practical applications. One
limitation is the small modulation bandwidth (typically a few MHz) due to the physical mechanism
in the LED quantum well [5] and the long photoluminescence lifetimes of the phosphor, resulting in
inter-symbol interference [6]. Several techniques have already been reported for capacity improvement
of VLC systems, such as spectral efficiency enhancement employing orthogonal frequency division
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multiplexing (OFDM) with high-order quadrature amplitude modulation (QAM) constellations [7] and
non-orthogonal multiple access [8-11], multiple-input multiple-output (MIMO) transmission [12,13],
bandwidth extension using various frequency-domain equalization schemes [14,15], and so on.

Another limitation is that white LEDs suffer from intrinsic nonlinearity which is mainly caused
by the thermal effects. It has been shown that LEDs are the major source of nonlinearity in
typical VLC systems [16]. Due to LED nonlinearity, the input signal could be severely distorted,
especially for OFDM signals which usually have high peak-to-average power ratios (PAPRs) [17].
Generally, there are two approaches to mitigate LED nonlinearity: one is estimation and compensation
at transmitter or receiver side and the other is nonlinear equalization. For the first approach,
the nonlinear power-current curve of the LED is first estimated, which is then used to compensate
the LED nonlinearity. In [18-20], transmitter-side LED nonlinearity estimation and compensation,
i.e., pre-distortion, has been considered. In [21,22], receiver-side LED nonlinearity estimation and
compensation, i.e., post-distortion, has been applied. For pre-distortion, the estimated nonlinear
power-current curve of the LED is treated as a priori information and hence an additional feedback
channel is required. In contrast, no feedback is required for post-distortion. For both pre-distortion
and post-distortion, time domain averaging (TDA) is usually adopted for accurate estimation of the
nonlinear power-current curve of the LED before LED nonlinearity compensation. Nevertheless,
conventional TDA usually needs a relatively large number of training symbols (TSs) to achieve
the expected performance, which inevitably reduce the spectral efficiency of VLC systems. For the
second approach, LED nonlinearity is mitigated by employing various nonlinear equalizers, such
as Volterra series-based equalizers [17,23], clustering-based equalizers [24,25], deep learning-based
equalizers [26,27], and so on. However, nonlinear equalizers usually require a relatively large training
overhead and also suffer from high computational complexity, which might not be suitable for
implementation in practical VLC systems due to the limited computing capability of user terminals.

As a widely used machine learning technique, support vector machine (SVM) has already been
applied for the mitigation of fiber nonlinearity in coherent optical OFDM systems [28]. However,
SVM is a non-probabilistic machine which usually requires a large number of kernels to approximate
the optimal solution and hence its application in practical systems is limited. Recently, probabilistic
program induction was proposed, which can substantially improve the accuracy of machine learning
algorithms when only a few examples are available [29]. In [30], a probabilistic Bayesian learning (PBL)
framework was introduced which can obtain a similar generalization performance as that of SVM but
needs much fewer basis functions. The PBL technique has many potential applications such as channel
estimation [31], radar imagery [32] and frequency-hopping spectrum estimation [33].

In this paper, we for the first time propose a PBL-based LED nonlinearity estimation and
compensation scheme for OFDM-based nonlinear VLC systems. The LED nonlinearity, i.e., nonlinear
power-current curve, can be accurately estimated by PBL regression and hence the adverse effect of LED
nonlinearity can be efficiently compensated at the receiver side. Numerical simulations are performed
to validate the feasibility of the proposed PBL-based LED nonlinearity estimation and compensation
scheme in a 80-Mbit/s OFDM-based nonlinear VLC system and performance comparison between
the proposed PBL-based scheme and the conventional TDA scheme is provided. The computational
complexity of the proposed PBL-based LED nonlinearity estimation and compensation scheme is
also analyzed.

The rest of this paper is organized as follows. In Section 2, we first introduce the mathematical
model of an OFDM-based nonlinear VLC system. Section 3 presents the principle of the proposed
PBL-based LED nonlinearity estimation and compensation scheme. The simulation setup is described
in Section 4 and the detailed results and discussions are provided in Section 5. Finally, Section 6
concludes the paper.
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2. System Model

In this section, we introduce the model of an OFDM-based nonlinear VLC system and the block
diagram of the system model is illustrated in Figure 1. As we can see, the input bits are first modulated
into real-valued OFDM symbols and then TSs are added for efficient LED nonlinearity estimation
and compensation at the receiver side. The obtained digital signal is subsequently transformed into
an analog signal through digital-to-analog conversion (DAC), and then a direct current (DC) bias is
further added to convert the bipolar signal into a unipolar signal in order to generate a real-valued
nonnegative driving signal for the LED transmitter. After that, the generated signal is fed into a white
LED which suffers from nonlinearity. In order to support a long transmission distance and a large
communication coverage area in typical indoor environments, a relatively high modulation index (MI)
is generally required when modulating the signal to the LEDs in practical VLC systems. However,
the input signal could be significantly distorted when using a high MI due to LED nonlinearity [34].

Input _ Real-valued pFDhl L Add LipackH Add N LEP wit'h
bits modulation TS DC nonlinearity
[ VLC
v channel
Output, | Real-valued OFDM LED nonlinearity est.
. K k1 PD
bits demodulation and comp. using PBL ADC

Figure 1. Block diagram of an OFDM-based nonlinear VLC system using PBL-based LED nonlinearity
estimation (est.) and compensation (comp.).

The visible light radiated from the white LED propagates through the free-space VLC channel
for simultaneous illumination and communication. For simplicity and without loss of generality, it is
reasonable to only consider the line-of-sight (LOS) component in the system model [12]. Assuming that
the LED follows a generalized Lambertian pattern, the LOS optical channel gain can be calculated by [1]

_ (mA1)pA
h= 208 (¢)GfGjcos(0), 1)
where m is the order of Lambertian emission which is given by m = —In2/In(cos(¥)) with ¥ being

the semi-angle at half power of the LED transmitter; p and A are the responsivity and the active area
of the photodetector (PD), respectively; d is the distance between the LED and the PD; ¢ and 6 are the
corresponding emission angle and incident angle, respectively; Gf and G; are the gains of the optical

filter and the optical lens, respectively. The gain of the optical lens is given by G; = siﬁiicb’ where 7 and
@ are the refractive index and the half-angle field-of-view (FOV) of the optical lens, respectively. Please
note that the LOS channel gain becomes zero if the incident light is outside the FOV of the receiver.

At the receiver side, the light is detected by a PD and the obtained electrical OFDM signal can be
expressed by [31]

y(t) = Pohg f(t) + n(t), @

where P is the average output optical power of the LED, / is the optical channel gain defined in
Equation (1), ¢ is the MI of the LED, f,(t) is the distorted version of the transmitted OFDM signal x(t)
due to LED nonlinearity, and n(t) is the additive white Gaussian noise (AWGN) including both shot
and thermal noises. The detailed expressions of the noise variances can be found in [31]. The obtained
analog OFDM signal is then converted to a digital signal through analog-to-digital conversion (ADC).
In order to mitigate the adverse effect of LED nonlinearity in VLC systems, PBL-based LED nonlinearity
estimation and compensation are subsequently executed. The detailed procedures of LED nonlinearity
estimation and compensation using PBL are described in the next section. After that, the compensated
OFDM signal is achieved which is further demodulated to generate the output bits. The principle of
real-valued OFDM modulation/demodulation can be found in [31], which is omitted here for brevity.
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3. PBL-Based LED Nonlinearity Estimation and Compensation in VLC

3.1. PBL Regression

Following the PBL regression model described in [30,35], for a given data set of input-target pairs
{sn, Tn}nN:1 with length N, the target samples {1.',1}711‘]:1 can be predicted by a linear combination of
basis functions: y
T = Z @ (sn) + €n = u' P(sn) + €n, (3)

m=1

where = [y, 12, -+, um|T is the parameter vector with length M, {¢u(s.)}M | is a set of
M basis functions and the basis vector is expressed by ¢(sn) = [P1(sn), ¢2(su), -+, dm(sn)]T,
and € = [e1,€,- -+, en]! is the error vector due to the additive noise in the VLC system. Assuming
that the error samples {€, }V_, are independently and identically distributed Gaussian with zero mean

and variance ¢, a multivariate Gaussian likelihood for the target vector T = [, To, - - -, TN]T can be
written as follows [30]
—~N/2 —_® 2
p(r|mo?) = (210?) " Cexp (—'72(,(2)"”> @)

where ®(s) = [¢(s1), ¢(s2), -+, ¢p(sn)]Tisan N x (N + 1) design matrix with M = N + 1. According
to [30], the basis vector with a bias is defined as ¢(s,) = [1,K(su,s1),K(sn,s2)," - ,K(su,sn)]T,
in which K(s;, s;) is the kernel function. In this work, the Gaussian kernel is adopted and hence the
kernel function is given by K(s;, s;) = exp(—Al| s; —s; 1%), where A is known as the width parameter.

From the Bayesian perspective, we can constrain the parameters by defining a zero-mean Gaussian
prior distribution over them which takes the form:

N

pula)=TTNGal0,a,"), (5)

n=0

where & = [xg, a1,a,- -+ ,an]” is a vector of N + 1 independent hyperparameters and each one is
used to individually control the strength of the prior over its associated parameter [30]. By combining
the likelihood and the prior within Bayes’ rule, the posterior parameter distribution conditioned on

can be obtained by )
Pl 7 0%) = LT T ILE), ©
which is Gaussian N (w, £) and
- (a—2c1>T<1> + diag(m)) - @)
w=0c Lol ®)

Since it is analytically intractable to include Bayesian inference over those hyperparameters,
a type-II maximum likelihood procedure can be used to find a most-probable point estimate app [30].
Therefore, PBL is formulated as the local maximization with respect to « of the marginal likelihood
p(7 | a,0%) and the logarithm of the marginal likelihood is given by [35]

log(p(t | ,6) =log [ p(r | m,0*)p(u | a)dn
- ©
= —% (Nlog27r+log |C |+ TTC_l'L') ,
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where C = ¢?I + ®(diag(a))~'®T and I is an identity matrix. Hence, a point estimate wyp for the
weights can be obtained by evaluating Equation (8) with @ = app. As a result, the final prediction of
target T is given by = ®(s)wyp.

3.2. LED Nonlinearity Estimation and Compensation Using PBL Regression

The principle of the proposed PBL-based LED nonlinearity estimation and compensation scheme
is depicted in Figure 2. For simple and efficient LED nonlinearity (i.e., the nonlinear power-current
curve of the LED) estimation, a sawtooth-based vector z with N samples, i.e., z = (21,22, - - - ,ZN]T,
is adopted as the TS for LED nonlinearity estimation using PBL regression in this work. The TS is
known and shared by all the receivers within the coverage of the VLC system. After transmitting
through the nonlinear VLC system, a corresponding vector r = [rq,72,- -+ ,7n]T can be detected at the
receiver side, which can give the raw estimation of the LED nonlinearity. In order to obtain an accurate
estimation of the LED nonlinearity, PBL regression is performed which takes the raw estimation of
the LED nonlinearity r as the input and the actual LED nonlinearity T as the target. Although the
design matrix is generated by using the input in [30,35], it has been found in our study that the
sawtooth-based training vector z can be directly used to generate the design matrix ®(z), which can
achieve comparable performance as that using the input r. Taking r as the input and using the design
matrix ®(z), PBL regression can be successfully performed to obtain an accurate estimation of T,
ie, T.

Transmitted Received
sawtooth TS OFDM signal
z} v)]
Design matrix Amplitude
generation scaling
D(z g(t)
( )‘[ Predicted LED ‘I’
Received PBL nonlinearity LUT LUT-based Compensated
sawtooth TS r regression % generation | [ z] | compensation | ()" OFDM signal

Figure 2. Principle of PBL-based LED nonlinearity estimation and compensation.

As shown in Figure 2, after obtaining z and 1, a corresponding look-up table (LUT), i.e., £ = ['i' z],
can be generated. By using the generated LUT, LED nonlinearity compensation can be executed
regarding the received OFDM signal. First, the amplitude of the received OFDM signal is scaled by a
factor Pyh¢ so as to match the amplitude of the transmitted OFDM signal, and hence the scaled OFDM
signal is expressed by

oyt n(t)

§(1) = prz = SO+ o (10)
Then, using the obtained = [f1, %, -, tn]7, the index i(t) of the element in * which is closest to
7(t) can be identified as

i(t) = argn}(in{]](t) — %}, ke{1,2,---,N}, (11)
and hence the compensated OFDM signal can be obtained by §i(t) = ().

4. Simulation Setup

Numerical simulations using MATLAB are performed to investigate the performance of the
proposed PBL-based LED nonlinearity estimation and compensation scheme in an OFDM-based
nonlinear VLC system. Key parameters of the simulation setup are listed in Table 1. The LED has a
semi-angle at half power of 60° and an output optical power of 10 W. The gain of the optical filter
is 0.9. The refractive index and the half-angle FOV of the optical lens are 1.5 and 72°, respectively.
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The PD has an active area of 16 mm? and a responsivity of 0.53 A/W. The vertical distance between
LED and PD is set to 2 m and the horizontal offset between LED and PD is also assumed to be
2 m. A modulation bandwidth of 20 MHz is considered and 16QAM constellation is adopted in
real-valued OFDM modulation/demodulation. Hence, the raw data rate of the OFDM-based nonlinear
VLC system is 80 Mbit/s. In OFDM modulation/demodulation, the size of fast Fourier transform
(FFT)/inverse fast Fourier transform (IFFT) is set to 512. Due to the Hermitian symmetry constraint,
only 128 subcarriers are used to carry valid data. A total of 1000 OFDM symbols are transmitted for
bit-error rate (BER) calculation.

Table 1. Simulation parameters.

Parameter Value
Semi-angle at half power of LED 60°
LED output optical power 10W
Gain of optical filter 0.9
Refractive index of optical lens 1.5
Half-angle FOV of optical lens 72°
Active area of PD 16 mm?
Responsivity of PD 0.53 A/W
Vertical distance between LED and PD 2m
Horizontal offset between LED and PD 2m
Modulation bandwidth 20 MHz
QAM constellation order 16
Raw data rate 80 Mbit/s
Size of FFT/IFFT 512
Number of data subcarriers 128

In the simulation setup, a commercially available white LED (Cree PLCC4) is used and the
measured nonlinear power-current curve is illustrated in Figure 3. It can be observed that the
normalized output optical power of the LED exhibits strong nonlinearity with the normalized input
current. Since only unipolar signal can be modulated onto the luminous intensity, a DC bias current
is generally applied to convert the bipolar OFDM signal to a unipolar one. Hence, the nonlinear
distortion is mainly caused by two factors: the DC bias current and the peak-to-peak current of the
signal. To investigate the LED nonlinearity effect on the transmission performance, as shown in
Figure 3, we define the MI as the ratio of the maximum current variation of the signal to the maximum
current variation supported by the LED without clipping, and the DC-bias index (DI) as the ratio of
the DC bias current of the signal to the maximum current variation supported by the LED without
clipping. In this simulation investigation, the LED is assumed to be biased at the middle point of its
dynamic range, i.e., DI = 0.5. Although a static LED nonlinearity characteristic is considered in this
work, the proposed PBL-based LED nonlinearity estimation and compensation scheme can be easily
generalized into an adaptive scheme by adopting the method reported in [36], which is applicable in
VLC systems with dynamic LED nonlinearity characteristics.

Moreover, the frequency selective fading effect of a VLC system is mainly caused by the LED,
which can be easily compensated by using the frequency domain pre-equalization techniques [14,34].
Thus, a flat system frequency response is considered here without loss of generality.
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Figure 3. Measured nonlinear power-current curve of white LED Cree PLCC4.

The original PBL regression model proposed in [30] starts with all the M = N + 1 basis functions.
The update rules for the hyperparameters depend on computing the posterior weight co-variance
matrix which requires a Cholesky decomposition operation with a complexity of O(M?). As a result,
the computational complexity of PBL regression could be very high for practical applications. To reduce
computational complexity, a fast marginal likelihood maximization method has been proposed in [35].
Based on an accelerated training algorithm, PBL regression is initialized with a single basis function,
i.e., the bias. Sequentially, the basis functions are added to increase the marginal likelihood and also
modify their weightings, and meanwhile the redundant basis functions are deleted to increase the
objective function. Hence, the new PBL regression model can achieve comparable performance as
the original one but with greatly reduced computational complexity, which is adopted here to realize
efficient LED nonlinearity estimation and compensation in OFDM-based nonlinear VLC systems.
Specifically, the width parameter of the Gaussian kernel is set to A = 2 and the maximum number
of iterations is set to 10. For the purpose of comparison, the conventional TDA scheme employing
multiple consecutive TSs is also considered in the simulations.

5. Results and Discussion

In this section, simulation results based on the setup described above are presented and the
corresponding discussions are also provided. Figure 4 depicts the normalized signal amplitude vs. the
normalized input current for different MI values, where DI = 0.5 and the length of the sawtooth-based
TS is N = 64. As we can observe, for both MI = 0.6 and 0.8, the amplitude of the received TS has a
significant variation due to the additive noise in the VLC system. However, after performing PBL
regression, the predicted power-current curve of the LED becomes much smoother which matches
the actual power-current curve of the LED very well, indicating an accurate estimation of the LED
nonlinearity by using only a single sawtooth-based TS.

We further analyze the impact of the number of TSs on the estimation accuracy of both the
conventional TDA scheme and the proposed PBL-based scheme. Figure 5 shows the average estimation
error vs. the number of TSs with MI = 0.8, DI = 0.5 and N = 64. For the conventional TDA scheme,
it can be seen that the average estimation error is gradually reduced with the increase of the number of
TSs and it becomes stable at about 1.7 x 10~3 when the number of TSs reaches 20. In contrast, for the
proposed PBL regression scheme, a comparable average estimation error can be achieved by using
only a single TS.



Appl. Sci. 2019, 9, 2711

1 1 1 T T
X,
X
osf @ x ]
& "gl"ugx
=} x_gB9% X X
g N a&‘;
-
0.4 g8 .
o
X
& X8
W X
=
So3t &sigl -
= gl
g xn; x
V-4 .inx o Acutal
aﬂg x Received TS
0.2 fax o PBL predicted| |
1 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8
Normalized Input Current
0.6 T | 1 1 T 1 1
(b) -
0.5 o]
i e
2 a8
= n
="
Eo4f o -
< 22
o
703 ,gﬂa"*x .
T ;.5-!
N
= o
§ 02 g,.ﬁ .
Z R o Acutal
§£'<. x Received TS
0.14° ° PBL predicted| _|
1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized Input Current

8of 12

Figure 4. Normalized signal amplitude vs. normalized input current for (a) MI = 0.6 and (b) MI = 0.8.
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The impact of the length of the TS on the BER performance of the OFDM-based nonlinear VLC
system is also analyzed. Figure 6 shows the BER vs. the length of the TS for the conventional
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TDA scheme with different numbers of TSs and the proposed PBL-based scheme with a single TS,
with MI = 0.8 and DI = 0.5. Evidently, for both conventional TDA and the proposed PBL-based scheme,
the BER performance is substantially improved with the increase of the length of the TS and stable
BERs can be guaranteed when the length of the TS is about 64.

-A TDA, 5 TSs
-v TDA, 10 TSs
p -O- TDA, 20 TSs
" —-0-PBL, 1 TS

16 32 64 128
Length of Training Symbol

Figure 6. BER vs. length of training symbol.

Based on the analysis above, we evaluate and compare the BER performance vs. MI for the
OFDM-based nonlinear VLC system without and with LED nonlinearity compensation, where DI = 0.5
and the length of the TS is fixed at N = 64. As shown in Figure 7, when no LED nonlinearity
compensation is considered, the BER reduces with the increase of the MI and an MI of 0.87 is required
to reach the BER threshold of 10~3. Moreover, the BER improvement becomes insignificant by further
increasing MI when Ml is larger than 0.9, suggesting the adverse effect of LED nonlinearity on the
BER performance of the OFDM-based nonlinear VLC system. However, when the conventional
TDA scheme is applied, the BER performance can be substantially improved. For TDA with 5 TSs,
the required MI to reach BER = 1073 is reduced to 0.80. By further increasing the number of TSs,
the BER performance can be further enhanced. In contrast, when the proposed PBL-based scheme
with a single TS is adopted, the required MI to reach BER = 1072 is only about 0.77. Furthermore,
nearly the same BER performance can be achieved by the conventional TDA scheme with totally
20 TSs and the proposed PBL-based scheme with a single TS. Therefore, a substantial reduction of the
training overhead for LED nonlinearity mitigation can be achieved by using the proposed PBL-based
scheme in comparison to the conventional TDA scheme, which indicates a greatly improved overall
spectral efficiency of the OFDM-based nonlinear VLC system. The corresponding 16QAM constellation
diagrams are also shown as insets in Figure 7.
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Figure 7. BER vs. MI without and with LED nonlinearity compensation.

Finally, we analyze the computational complexity of the proposed PBL-based LED nonlinearity
estimation and compensation scheme. For the fast PBL regression model adopted here, PBL regression
is initialized with the bias only and the basis functions are iteratively added, updated or deleted to
increase the marginal likelihood [35]. Since adding basis functions requires most of the computations,
the worst case is that a new basis function is added at each iteration and the worst-case computational
complexity is given by O(N;;M?) with Nj; being the iteration number and M being the number
of basis functions. However, the worst case scenarios are highly impossible to occur due to the
inherent sparsity of PBL regression. As introduced in [31], for common cases, an approximation of
the computational complexity is about O(N;;N2,) with Nj,; being the number of non-zero elements
in the weight vector wyp. More specifically, by using the fast marginal likelihood maximization
method, only three elements out of totally M = 65 elements in wyp are non-zero, i.e., Ny; = 3.
Consequently, the proposed PBL-based LED nonlinearity estimation and compensation scheme is
computational efficient which is suitable for the implementation in practical VLC systems with
computing capability-limited user terminals.

6. Conclusions

In this paper, we have proposed a novel LED nonlinearity estimation and compensation scheme
based on PBL regression for OFDM-based nonlinear VLC systems. The performance of the proposed
PBL-based scheme has been evaluated by numerical simulations and further compared with the
conventional TDA scheme. The obtained simulation results have shown that the proposed PBL-based
scheme can accurately estimate the nonlinear power-current curve of the LED and hence efficiently
compensate the adverse effect of LED nonlinearity. More specifically, the proposed PBL-based scheme
with a single TS can achieve a comparable BER performance as the conventional TDA scheme with
totally 20 TSs. Therefore, the required training overhead for LED nonlinearity mitigation can be
substantially reduced and the overall system spectral efficiency can be greatly improved by adopting
the proposed PBL-based scheme. It is also shown that the proposed PBL-based LED nonlinearity
estimation and compensation scheme is computational efficient, which is suitable for potential
application in practical VLC systems.
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