
applied
sciences

Article

Performance Analysis of Feature Selection Methods
in Software Defect Prediction: A Search
Method Approach

Abdullateef Oluwagbemiga Balogun 1,2,*, Shuib Basri 1, Said Jadid Abdulkadir 1 and
Ahmad Sobri Hashim 1

1 Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Perak 32610, Malaysia
2 Department of Computer Science, University of Ilorin, Ilorin 240103, Nigeria
* Correspondence: abdullateef_16005851@utp.edu.my or balogun.ao1@unilorin.edu.ng

Received: 26 April 2019; Accepted: 14 May 2019; Published: 9 July 2019
����������
�������

Abstract: Software Defect Prediction (SDP) models are built using software metrics derived from
software systems. The quality of SDP models depends largely on the quality of software metrics
(dataset) used to build the SDP models. High dimensionality is one of the data quality problems that
affect the performance of SDP models. Feature selection (FS) is a proven method for addressing the
dimensionality problem. However, the choice of FS method for SDP is still a problem, as most of the
empirical studies on FS methods for SDP produce contradictory and inconsistent quality outcomes.
Those FS methods behave differently due to different underlining computational characteristics. This
could be due to the choices of search methods used in FS because the impact of FS depends on the
choice of search method. It is hence imperative to comparatively analyze the FS methods performance
based on different search methods in SDP. In this paper, four filter feature ranking (FFR) and fourteen
filter feature subset selection (FSS) methods were evaluated using four different classifiers over five
software defect datasets obtained from the National Aeronautics and Space Administration (NASA)
repository. The experimental analysis showed that the application of FS improves the predictive
performance of classifiers and the performance of FS methods can vary across datasets and classifiers.
In the FFR methods, Information Gain demonstrated the greatest improvements in the performance
of the prediction models. In FSS methods, Consistency Feature Subset Selection based on Best
First Search had the best influence on the prediction models. However, prediction models based
on FFR proved to be more stable than those based on FSS methods. Hence, we conclude that FS
methods improve the performance of SDP models, and that there is no single best FS method, as
their performance varied according to datasets and the choice of the prediction model. However, we
recommend the use of FFR methods as the prediction models based on FFR are more stable in terms
of predictive performance.

Keywords: software defect prediction; feature selection; high dimensionality; search methods

1. Introduction

Software Defect Prediction (SDP) models are built using software metrics which based on data
collected from the previous developed system or similar software projects [1]. Using such a model, the
defect-proneness of the software modules under development can be predicted. The goal of SDP is
to achieve high software quality and reliability with the effective use of available limited resources.
In other words, SDP involves identifying software modules or components that are prone to defects.
This will avail software engineers to prioritize the utilization of inhibited resources during each phase
of the software development [2,3]. Consequently, reliability and quality for the software assessment, in

Appl. Sci. 2019, 9, 2764; doi:10.3390/app9132764 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/13/2764?type=check_update&version=1
http://dx.doi.org/10.3390/app9132764
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 2764 2 of 20

addition to software quality assurance, are guaranteed [4,5]. Software metrics which includes software
source code complexity and development history are typically used to analyze the efficiency of the
software process, quality, and reliability of the software products. In addition, software engineers
use these software metrics for risk assessment and they are used for defect prediction to identify and
improve the quality of software products [6–8]. Specifically, McCabe and Halstead Metrics, Procedural
Metrics, Process Metrics, etc. are types of engineered software metrics used to determine the quality
and reliability level of a software system [6,9]. A software module or component unit contains a set of
features (metrics) and a class label. The class label depicts the state of the software module, either as
defective or non-defective, while the derived features are used to develop SDP models [10,11]. That is,
SDP uses historical data extracted from software repositories to determine the quality and reliability of
the software modules or components [12,13].

SDP can be regarded as a classification task that involves categorizing software modules either as
defective or non-defective, based on historical data and software metrics or features [14–16]. Software
features or metrics reflect the characteristics of software modules. However, the numbers of metrics
generated are usually high. This is due to various different types of software metric mechanisms used
to determine the quality and reliability of a software system. The proliferation of these mechanisms
consequently generates a large number of metric values, leading to a high-dimensionality problem
when many feature values are generated. In addition, some of these features (metrics) may be
more relevant to the class (defective or non-defective) than others, and some may be redundant or
irrelevant [17,18].

Feature selection (FS) can be used to select high uncorrelated features from the high dimensional
features. In other words, it can select those features that are more relevant and irredundant to the class
label of the dataset among the features. Therefore, introducing FS methods into SDP can solve the high
dimensionality problem [17–19]. FS is a vital data pre-processing step in classification processes as it
improves the quality of data and consequently improves the predictive performance of the prediction
models. Existing research has shown that irrelevant features, along with redundant features, can
severely affect the accuracy of the defect predictors [20–23]. Thus, there is a need for finding an
efficient feature selection method which can identify and remove as much irrelevant and redundant
information as possible, thereby leading to good predictive performance with low computational
cost [24,25]. Supervised feature selection techniques evaluate the available feature’s characteristics and
derive a set of pertinent characteristics based on labeled datasets. The criteria used to determine the
useful feature characteristics depend on the underlining computational characteristics of the technique
utilized. Filter feature-ranking (FFR) methods which are types of supervised FS methods depend on
the computational characteristics of each feature by certain critical factors, and then the analyst culls
some features that are congruous with a particular dataset. On the other hand, filter feature subset
selection (FSS) methods (another type of supervised FS methods) search for a subset of features that
have good predictive capability collectively. In this study, a comparative performance analysis of FFR
and FSS methods based on different search methods are investigated to determine their respective
efficacy in culling a germane set of features.

Recent studies have compared the impact of FS methods on the performance of SDP [26–32].
Some studies conclude that some of the FS methods are better than others [27,28,30,31], while some
studies claimed that there is no significant difference between the performances of FS methods in
SDP [26,29,32]. This contradiction and inconsistency in results by existing studies may be due to the
choice of search mechanism used in FS methods.

In this study, four different FFR methods (Information Gain (IG), ReliefF (RFA), Gain Ratio (GR), and
Clustering Variation (CV)) based on Ranker Search method and two FFS methods: Correlation-based
Feature Subset Selection (CFS) and Consistency Feature Subset Selection (CNS) based on two different
search approaches: Exhaustive Search (Best First Search (BFS) and Greedy Stepwise Search (GSS)
methods) and Heuristic Search (Genetic Search (GS), Bat Search (BAT), Ant Search (AS), Fire-Fly
Search (FS), and Particle Swarm Optimization (PSO) method). Four classification techniques: Naïve

Appl. Sci. 2019, 9, 2764 3 of 20

Bayes (NB), Decision Tree (DT), Logistic Regression (LR), and K-Nearest Neighbor (KNN) were
used to evaluate the effectiveness of these FS methods. The respective models were used on five
software defects dataset from the NASA repository and their predictive performances were measured
comparatively based on accuracy.

From our experimental results, the application of FS improves the predictive performance of the
prediction models and the performance of FS methods varies across datasets and prediction models.
IG recorded the best improvement on prediction models over other FFR methods, while CNS based
on BFS had the best influence on prediction models based on FSS methods. Further analysis showed
that prediction models based on FFR are more stable in terms of performance accuracy than other
FS methods.

The rest of this paper is structured as follows. Section 2 presents a literature review and analysis
of existing related works. Section 3 presents the various FS methods including the search methods,
classifiers, datasets, and the performance metric considered in the experimental works of this study.
Section 4 highlights the experimental procedure, experimental results, and discussion of our findings
for the experimental works. Section 5 presents the threats to the validity of this study. Section 6
concludes the comparative study and summarizes future work.

2. Related Works

A major problem associated with SDP is the dilemma of having a large number of metrics (features).
In other words, using all software metrics in training an SDP model can end up negatively affecting the
predictive performance of the model. As such, many FS approaches have been proposed in addressing
the selection of optimal software metrics. Some studies went to the extent on comparing these methods
in order to identify the best method. However, most of these studies yielded contradictory and
inconsistent conclusions on the effect of FS methods in SDP [26,29,32].

Ghotra et al. [28] performed a large scale impact analysis of twenty-eight FS methods on twenty-one
commonly used classifiers. Their experiment was based on software defect datasets from the NASA
and the PROMISE repositories. They concluded that correlation-based filter-FS method based on the
BF search method outperforms other FS methods across the datasets. This is a good indicator that their
experiment covered a large number of FS methods, classification techniques, and datasets. However,
they only considered BF and GA search methods as search mechanisms for the FSS methods. There are
other heuristics and meta-heuristic search methods such as BAT, AS, FS, etc. that may perform better
than BF and GS in this context.

Afzal and Torkar [26] conducted a benchmark study by empirically comparing state-of-the-art
FS methods. They have considered, IG, RF, Principal Component Analysis (PCA), CFS, CNS and
wrapper subset evaluation (WRP). NB and DT were deployed on Five software defect datasets and the
predictive models were evaluated based on Area Under Curve (AUC). Their results showed that FS is
beneficial to SDP but there was no individual best FS method for SDP. This could be partly due to the
number and type of software defect datasets been considered and the choice of search mechanisms in
the case of the FSS and WRP FS methods.

Gao et al. [27], regarded feature selection as a search problem in software engineering. Their study
was concerned with software quality estimation and they proposed a hybrid FS approach which was
based on Kolmogorov–Smirnov statistic and automatic hybrid search (AHS). Their results showed that
AHS was superior to other methods, and that an elimination of 85% of software metrics may affect
performances of SDP models positively or remain constant.

Akintola et al. [18] performed a comparative analysis of classifiers based on FFS on SDP and
their results gave credit to the usage of FFS, but there can still be further analysis using other FS
methods. It has been proven empirically that wrappers obtain subsets with better performance than
filter feature selection because the subsets were evaluated using a real modeling algorithm [33,34].
Rodriguez et al. [35] have also conducted comparative experiments on FS methods based on three

Appl. Sci. 2019, 9, 2764 4 of 20

different FFR and WRP models on four software defect datasets. Their results showed that smaller
data sets generally maintain predictability with fewer features than the original data sets.

From the aforementioned studies, only a handful of comparative performance studies have been
carried out to evaluate the efficacy of FS methods based on different search mechanisms. Therefore, there
is a need to have a vital comparative evaluation of FS methods based on different search mechanisms
in SDP. This is to create a better understanding of FS methods characteristics and guide researchers
and analysts on the selection of search methods in FS based for SDP. In this paper, a comparative
performance analysis of eighteen FS methods in SDP is presented. Each FS methods was used with four
different classifiers selected based on performance and heterogeneity. The respective SDP models were
tested with five software defect datasets from NASA repository and evaluated based on prediction
accuracy. The performance stability of each prediction model based on FS methods was further
evaluated via the coefficient of variation for each prediction models.

3. Methodology

This section describes the FS methods, the respective search methods, classification algorithms,
experimental setup, software defect dataset and performance metrics used in this study.

3.1. Filter Feature Ranking Method

Filter Feature Ranking (FFR) method uses the computational characteristics of datasets to
independently assess and rank attributes in datasets which are found to be independent of the
prediction model. It grades each attributes base on different characteristics such as statistics, probability,
instance or classifier based indicators. Attributes are thereafter selected based on their score [29].
In this paper, four FFR methods were considered based on different functional characteristics. For the
selection of top-ranked features, log2 N was used in this study, where N is the number of software
metrics in the full software defect dataset. Table 1 presents a description of the FFR methods used in
this study.

Table 1. List of Filter Feature Ranking (FFR) Methods.

Filter Feature Rank Method Search Method Characteristics Reference

Information Gain Attribute
Evaluator (IG) Ranker Search Probability-based [18,32]

Relief Feature Attribute Evaluator
(RFA) Ranker Search Instance-based [29,32]

Gain Ratio Attribute Evaluator (GR) Ranker Search Probability-based [29,32]

Clustering Variation Attribute
Evaluator (CV) Ranker Search Statistics-based [18,29]

3.2. Filter Feature Subset Selection Method

Feature Subset Selection (FSS), just like the FFR, assesses, ranks and select features based on some
properties. However, in the case of FSS, the major focus is the search method which is used to generate
a subset of features that collectively have good prediction potentials. It considers the existence of
better predictive performance when a feature is combined with other features other [32]. Two FSS
methods were considered in this study. As mentioned earlier, FSS is based on various search methods.
Therefore, these search methods traverse the feature space to generate a subset with high predictive
potentials. Consequently, the performance of FSS varies per the search methods [29]. Table 2 presents
a detailed description of the FSS methods used in this study, and Table 3 shows the various search
methods with their parameters used in the FSS methods.

Appl. Sci. 2019, 9, 2764 5 of 20

Table 2. List of Filter Feature Subset Selection (FSS) Methods.

Filter Feature Subset Selection Method Search Method Reference

Correlation-based Feature Subset Selection
(CFS)

Best First Search (BFS) [32,36]

Greedy Stepwise Search (GSS) [29,36]

Ant Search (AS)

Bat Search (BAT)

Firefly Search (FS)

Genetic Search (GS) [32,36]

PSO Search (PSOS)

Consistency Feature Subset Selection (CNS)

Best First Search (BFS) [32,36]

Greedy Stepwise Search (GSS) [29,36]

Ant Search (AS)

Bat Search (BAT)

Firefly Search (FS)

Genetic Search (GS) [32,36]

PSO Search (PSOS)

Table 3. Various Search Methods and Parameter Setting.

Search Methods Parameter Settings

Best First Search Direction = Bi-directional

Greedy Stepwise Search Conservative Forward Selection = True; Search Backwards = False;
NumToSelect = log2 N (N = Number of Features)

Ant Search
AccelerateType = Accelerate; Chaotic co-efficient = 0.4

Chaotic Parameter Type = Chaotic Map: Parameter;
Chaotic Type = logistic map; PopulationSize = 200; Phromone = 2.0

Bat Search
AccelerateType = Accelerate; Chaotic co-efficient = 0.4;

Chaotic Parameter Type = logistic Map: Parameter;
Chaotic Type = logistic map; PopulationSize = 200; loudness = 0.5

Firefly Search

AccelerateType = Accelerate; Chaotic co-efficient = 0.4;
Chaotic Parameter Type = logistic Map: Parameter;
Chaotic Type = logistic map; PopulationSize = 200;

absorption = 0.001; betaMin = 0.33

Genetic Search PopulationSize = 200; MaxGeneration = 20; crossoverProb = 0.6

PSO Search PopulationSize = 200; IndividualWeight = 0.34; InertiaWeight = 0.33;
SocialWeight = 0.33

3.3. Classification Algorithms

For the classification process, four widely used classification algorithms were considered for
evaluating the efficacy of the FS methods. These are Naïve Bayes (NB), Decision Tree (DT), Kernel
Logistic Regression (LR), and K Nearest Neighbor (KNN). This is in line with the aim of this study
to evaluate the efficacy of FFR and FSS methods, which should be independent of the classification
technique. The four classifiers were selected based on different characteristics: NB based on Bayes’
theorem, DT from Tree-based methods, LR from the function-based classification technique and KNN
from the instance based learning classifiers. The heterogeneity of the selected classifiers is to investigate
how different FS methods perform on different classifiers with different characteristics. Table 4 gives a
brief description of these classification algorithms with respect to their classification characteristics and
their parameter settings.

Appl. Sci. 2019, 9, 2764 6 of 20

Table 4. Classification Algorithms.

Classifiers Description Parameter Setting

Naïve Bayes (NB) A Bayes Theorem based
classification technique.

NumDecimalPlaces = 2;
NumAttrEval = Normal Dist.

Decision Tree (DT) A Tree-based classification
technique.

Confidence factor = 0.25;
MinNumObj = 2

Kernel Logistic Regression (LR) A Function-based classification
technique.

Kernel = PolyKernel (E = 1.0;
C = 250007); lambda = 0.01;
Quadratic penalty = BFGS

Optimization

K Nearest Neighbor (KNN) An Instance learning-based
classification technique.

K = 1; NNSearch =
LinearNNSearch (based on

Euclidean Distance)

3.4. Experimental Setup

This section discusses the experimental setup of the comparative performance analysis of FS
methods as depicted in Figure 1. The experimental setup can be described based on three major steps.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 20

Regression (LR) classification technique. 250007); lambda = 0.01; Quadratic
penalty = BFGS Optimization

K Nearest
Neighbor

(KNN)

An Instance
learning-based

classification technique.

K = 1; NNSearch = LinearNNSearch
(based on Euclidean Distance)

3.4. Experimental Setup

This section discusses the experimental setup of the comparative performance analysis of FS
methods as depicted in Figure 1. The experimental setup can be described based on three major
steps.

Figure 1. Experimental Setup.

Step 1: At first, four FFR methods as presented in Table 1 are applied to the original full software
defect datasets. In this case, each of the FFR methods (IG, RFA, GR, and CV based on Ranker Search
method) assesses and ranks the software features based on their respective characteristics. 𝑙𝑜𝑔ଶ 𝑁
features were selected from the ranked list provided by each of the FFR methods. Specifically, the
first six features were selected from the resulting rank list of the FFR methods. The 𝑙𝑜𝑔ଶ 𝑁 (where N
is number of features in each software defect datasets) was adopted according to the work of Gao
et al. [27] which indicated that it is better to cull 𝑙𝑜𝑔ଶ 𝑁 features; many empirical studies have
followed this procedure [26,28,29,32]. According to Table 4, the value for N in this study is (N >= 21)
and this is due to the choice of different software defect datasets for the experiment. In the end,
reduced datasets in terms of attributes are generated.

Step 2: Secondly, the two FSS methods in Table 2 and the respective search methods in Table 3 are
applied to the original full datasets. The two FSS (CFS, CNS) methods with seven search methods
(BFS, BAT, FS, AS, GSS, PSOS, and GS) making fourteen FSS methods to apply on the dataset. Each
of the FSS methods generates a subset of features that have high predictive potentials. The respective
parameter settings of the search methods as depicted in Table 3 were used. As in the case of FFR
methods, reduced datasets are also generated at the end of this step.

Step 3: This step involves the prediction process. That is the application of classifiers in Table 4 on
the software defect dataset (Filtered datasets from Step 1 and 2). Four classifiers (NB, DT, LR, and
KNN) were applied on both the reduced (Filtered datasets from Step 1 and 2) and full datasets. The
essence of this step is to show the efficacy of reduced software features in SDP. Each of the

FULL SDP DATASETS

Filter Feature Ranking
(FFR) Methods (InfoGain,
GR, CV and RFA) based on
Ranker Search Method.

Filter Feature Subset
Selection (FSS) Methods:
(CFS and CNS) based on
BFS, GSS, AS, BAT, FS,
PSOS, and GS Search
Methods

Generate
Features based

on logଶ 𝑁

Automatically
Generate
Features

Classification Process Using

NB, DT, LR and KNN based

on 10-FOLD Cross

Validation

Performance Comparison

Prediction Performance
(Accuracy) and Stability

Performance (SD and CV)

Step 1

Step 2

Step 3

Figure 1. Experimental Setup.

Step 1: At first, four FFR methods as presented in Table 1 are applied to the original full software defect
datasets. In this case, each of the FFR methods (IG, RFA, GR, and CV based on Ranker Search method)
assesses and ranks the software features based on their respective characteristics. log2 N features
were selected from the ranked list provided by each of the FFR methods. Specifically, the first six
features were selected from the resulting rank list of the FFR methods. The log2 N (where N is number
of features in each software defect datasets) was adopted according to the work of Gao et al. [27]
which indicated that it is better to cull log2 N features; many empirical studies have followed this
procedure [26,28,29,32]. According to Table 4, the value for N in this study is (N >= 21) and this is due
to the choice of different software defect datasets for the experiment. In the end, reduced datasets in
terms of attributes are generated.

Step 2: Secondly, the two FSS methods in Table 2 and the respective search methods in Table 3 are
applied to the original full datasets. The two FSS (CFS, CNS) methods with seven search methods
(BFS, BAT, FS, AS, GSS, PSOS, and GS) making fourteen FSS methods to apply on the dataset. Each of

Appl. Sci. 2019, 9, 2764 7 of 20

the FSS methods generates a subset of features that have high predictive potentials. The respective
parameter settings of the search methods as depicted in Table 3 were used. As in the case of FFR
methods, reduced datasets are also generated at the end of this step.

Step 3: This step involves the prediction process. That is the application of classifiers in Table 4 on the
software defect dataset (Filtered datasets from Step 1 and 2). Four classifiers (NB, DT, LR, and KNN)
were applied on both the reduced (Filtered datasets from Step 1 and 2) and full datasets. The essence
of this step is to show the efficacy of reduced software features in SDP. Each of the experiments was
carried out using the 10-folds cross-validation (CV) method. This is to avoid the issue of biases and
overfitting of the prediction models and also to reduce the effect of class imbalance which is one of
the data quality problems in data mining [29,37]. In addition, due to the random nature of the search
methods of the FSS methods, each experiment involving FSS methods were performed 10 times to
validate the result. Eventually, a total of 2900 ((4 FFR methods × 5 datasets × 4 classifiers) + (14 FSS
methods × 5 datasets × 4 classifiers × 10 runs) + (4 classifiers × 5 datasets)) distinct experiments were
carried out in this study.

3.5. Software Defect Datasets

The datasets used in this study are obtained from the National Aeronautics Space Administration
(NASA) Facility Metrics Data Program (MDP) repository [38]. Recently, studies have shown that these
datasets are noisy and need to be cleaned and pre-processed [26,28,29,32]. The cleaned version of the
NASA datasets from Shepperd et al. [39] was used in this study. Table 5 presents the description of the
clean NASA datasets with their number of features and modules.

Table 5. Software Defect Datasets.

S/No. Datasets Language Number of Features Number of Modules

1. CM1 C 37 327

2. KC1 C++ 21 1162

3. KC3 Java 39 194

4. MW1 C 37 250

5. PC2 C 37 722

3.6. Performance Evaluation Metrics

In this study, the performance evaluation method is based on accuracy which measures the
percentage of the correctly classified instances. The metric values were computed using the statistical
values of True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).

Accuracy =
TP + TN

TP + FP + FN + TN
×100% (1)

To determine the performance stability of prediction models, Co-efficient of Variation (C.V)
was applied to the results of the prediction models. C.V which is the percentage ratio of standard
deviation (SD) and average (AVE) is used to remove the effect of average difference on the comparison
stability [15,40]. The formula for C.V is given as thus:

C.V =
SD

AVE
× 100% (2)

Prediction models with high C.V values are regarded as unstable.

Appl. Sci. 2019, 9, 2764 8 of 20

4. Experimental Results

This section presents the experimental results based on the experimental procedure (See Figure 1).
The performances of each prediction models were analyzed based on accuracy and the results were
compared on two cases (with and without application of FS methods). The parameter settings for each
classifier and search method are as shown in Tables 3 and 4. All prediction models were built based on
the WEKA machine learning tool [41]. For replication of this study, all models and datasets used in
this study are readily available in [42].

As mentioned previously, four FFR and fourteen FSS methods were applied one after the other to
five software defect datasets. Four classifiers based on the selected and full features of the datasets
were used to develop the SDP models. Tables 6–9 present the accuracy values of the four classifiers
on the software defect datasets. These accuracy values were from two scenarios (With FS methods
and Without FS methods). Specifically, in each of the tables, the accuracy performance value of each
classifier on the individual datasets (full and reduced) is shown. The search methods for the FSS (CFS
and CNS) were further grouped into two (i.e. Heuristic method and Exhaustive method). This is to
show the distinction of how the respective search methods behaved when used as subset evaluation
methods in FSS. The average performance of these classifiers (NB, DT, LR, and KNN) across all datasets
were computed and the variation of the average performance of each prediction models with FS (FFR
and FSS) methods to the average performance of each prediction model without FS methods were also
computed. This is to show how significant the effectiveness of the application of FS methods in SDP.
As shown in Tables 6–9, it is observed that the accuracy performance of the prediction models based on
FS methods, in this case, FFR and FSS were better than when no FS methods are applied. This further
strengthens the evidence that FS methods can improve the performance of prediction models in SDP.

Table 6. Accuracy Values of Naive Bayes Classifier on Full and Reduced Datasets.

Naïve Bayes (NB) Models
Performance Metrics (Accuracy)/Dataset Average

(%)
Variation

(%)CM1 KC1 KC3 MW1 PC2

NO Feature
Selection NB 81.35 73.58 78.87 81.60 90.30 81.14 0

NB + CFS +
Heuristic Search

NB+GA 84.10 73.84 80.41 84.4 94.18 83.39 2.77
NB+BAT 85.32 74.96 81.96 86 95.01 84.65 4.33
NB+PSO 83.18 73.84 79.90 84.8 94.46 83.24 2.58
NB+FS 82.87 73.92 80.41 84.8 93.91 83.18 2.52
NB+AS 86.49 75.13 80.41 85.2 95.57 84.56 4.22

NB + CFS +
Exhaustive Search

NB+GSS 83.79 73.58 80.93 84.4 93.91 83.32 2.69
NB+BF 83.18 73.84 79.90 84.8 94.32 83.21 2.55

NB + CNS +
Heuristic Search

NB+GA 81.96 73.49 79.38 85.2 94.18 82.84 2.10
NB+BAT 81.65 73.49 78.87 84 94.46 82.49 1.67
NB+PSO 82.87 73.41 80.41 85.6 94.87 83.43 2.83
NB+FS 81.35 73.41 80.41 83.6 93.63 82.48 1.65
NB+AS 82.87 73.49 79.38 83.6 94.46 82.76 2.00

NB + CNS +
Exhaustive Search

NB+GSS 81.65 75.39 79.90 86 93.91 83.37 2.75
NB+BF 85.32 73.32 80.93 84.4 97.78 84.35 3.96

NB + Filter Method

NB+IG 84.10 74.78 80.93 83.6 93.91 83.46 2.87
NB+RFA 80.12 72.63 78.87 84.4 96.68 82.54 1.73
NB+GR 84.10 73.24 80.41 84.4 94.18 83.27 2.62
NB+CV 81.96 74.61 79.38 86.4 95.84 83.64 3.08

Boldface typeface indicates the highest value for each dataset.

Appl. Sci. 2019, 9, 2764 9 of 20

Table 7. Accuracy Values of Decision Tree Classifier on Full and Reduced Datasets.

Decision Tree (DT) Models
Performance Metrics (Accuracy)/Dataset Average

(%)
Variation

(%)CM1 KC1 KC3 MW1 PC2

NO Feature
Selection DT 81.04 74.18 79.38 90.40 97.51 84.50 0

DT + CFS +
Heuristic Search

DT+GA 85.32 75.82 82.99 89.6 97.51 86.25 2.06
DT+BAT 87.16 74.96 82.99 90.4 97.78 86.66 2.55
DT+PSO 86.54 75.65 81.96 89.2 97.51 86.17 1.97
DT+FS 85.93 75.22 80.41 88.4 97.65 85.52 1.21
DT+AS 85.93 75.13 82.47 89.6 97.51 86.13 1.92

DT + CFS +
Exhaustive Search

DT+GSS 86.54 74.10 80.41 89.2 97.51 85.55 1.24
DT+BF 86.54 75.47 81.44 89.6 97.51 86.11 1.91

DT + CNS +
Heuristic Search

DT+GA 86.24 73.75 80.93 89.2 97.65 85.55 1.24
DT+BAT 85.63 75.30 80.41 89.2 97.51 85.61 1.31
DT+PSO 86.24 74.44 80.93 88.4 97.65 85.53 1.22
DT+FS 83.49 74.44 78.87 89.6 97.65 84.81 0.36
DT+AS 85.93 74.44 80.93 89.2 97.37 85.57 1.27

DT + CNS +
Exhaustive Search

DT+GSS 87.16 75.56 80.41 91.6 97.65 86.47 2.33
DT+BF 86.85 74.44 80.93 89.6 97.78 85.92 1.68

DT + Filter Method

DT+IG 86.54 74.96 82.47 90 97.65 86.32 2.16
DT+RF 86.24 76.25 79.90 87.6 97.78 85.55 1.24
DT+GR 86.24 75.04 81.96 90.4 97.78 86.28 2.11
DT+CV 87.46 74.01 78.87 88.8 97.78 85.38 1.04

Boldface typeface indicates the highest value for each dataset.

Table 8. Accuracy Values of Logistic Regression Classifier on Full and Reduced Datasets.

Logistic Regression
(LR) Models

Performance Metrics (Accuracy)/Dataset Average
(%)

Variation
(%)CM1 KC1 KC3 MW1 PC2

NO Feature
Selection LR 85.32 76.76 82.47 88.00 97.09 85.93 0

LR + CFS +
Heuristic Search

LR+GA 85.93 75.82 80.93 90 97.51 86.04 0.12
LR+BAT 85.32 75.56 81.44 91.2 97.51 86.21 0.32
LR+PSO 87.16 76.16 82.47 89.6 97.65 86.61 0.79
LR+FS 86.24 75.47 82.99 90 97.51 86.44 0.60
LR+AS 85.93 75.47 82.47 88.8 97.78 86.09 0.19

LR + CFS +
Exhaustive Search

LR+GSS 86.24 76.76 82.47 90 97.51 86.60 0.78
LR+BF 86.85 75.90 82.47 89.2 97.65 86.41 0.56

LR + CNS +
Heuristic Search

LR+GA 87.16 76.59 82.99 90.8 97.37 86.98 1.22
LR+BAT 85.02 76.08 81.44 89.6 97.51 85.93 0.00
LR+PSO 85.02 76.51 81.44 90.4 97.65 86.20 0.32
LR+FS 85.32 76.51 82.47 90 97.23 86.31 0.44
LR+AS 84.71 77.11 81.96 90.4 97.23 86.28 0.41

LR + CNS +
Exhaustive Search

LR+GSS 86.54 76.33 81.96 89.6 97.65 86.42 0.57
LR+BF 87.16 76.51 81.96 90.4 97.78 86.76 0.97

LR + Filter Method

LR+IG 86.54 75.47 81.96 90.4 97.51 86.38 0.52
LR+RF 87.16 76.42 80.93 89.2 97.65 86.27 0.40
LR+GR 87.16 75.82 81.96 88.8 97.09 86.16 0.27
LR+CV 86.85 75.65 80.41 90.4 97.51 86.16 0.27

Boldface typeface indicates the highest value for each dataset.

Appl. Sci. 2019, 9, 2764 10 of 20

Table 9. Accuracy Values of K Nearest Neighbor Classifier on Full and Reduced Datasets.

K Nearest
Neighbor (KNN) Models

Performance Metrics (Accuracy)/Dataset Average
(%)

Variation
(%)CM1 KC1 KC3 MW1 PC2

NO Feature
Selection KNN 77.98 73.24 72.16 83.60 95.71 80.54 0

KNN + CFS +
Heuristic Search

KNN+GA 77.68 71.26 78.87 84 96.54 81.67 1.40
KNN+BAT 77.37 72.98 78.87 84.4 96.12 81.95 1.75
KNN+PSO 80.43 70.57 75.77 84 96.81 81.52 1.21
KNN+FS 81.04 70.40 74.23 84 95.84 81.10 0.70
KNN+AS 78.59 71.69 75.26 82 95.29 80.57 0.03

KNN + CFS +
Exhaustive Search

KNN+GSS 78.90 71.34 77.32 84 96.40 81.59 1.31
KNN+BF 80.43 70.40 75.77 82.8 96.81 81.24 0.87

KNN + CNS +
Heuristic Search

KNN+GA 81.35 73.49 74.74 83.6 96.26 81.89 1.68
KNN+BAT 79.20 73.75 77.84 84.4 96.12 82.26 2.14
KNN+PSO 79.51 73.49 78.87 82.8 97.09 82.35 2.25
KNN+FS 80.73 73.58 75.26 82.8 96.12 81.70 1.44
KNN+AS 76.15 72.81 76.29 83.6 96.40 81.05 0.63

KNN + CNS +
Exhaustive Search

KNN+GSS 77.68 69.88 78.87 85.6 95.84 81.57 1.28
KNN+BF 85.32 73.67 77.32 84.4 97.78 83.70 3.92

KNN + Filter
Method

KNN+IG 77.37 70.57 73.71 84.8 96.26 80.54 0.00
KNN+RF 81.64 73.06 68.56 84 96.12 80.68 0.17
KNN+GR 76.76 71.86 74.23 84.4 96.12 80.67 0.17
KNN+CV 77.98 69.97 74.74 86.8 95.98 81.09 0.69

Boldface typeface indicates the highest value for each dataset.

Specifically, considering the average accuracy performance value of prediction models based on
NB classifier as shown in Table 6, NB with CFS using BAT heuristic search method had the highest
average accuracy value, i.e., 84.65%. This accuracy value is better than when no FS methods are used
with the NB model (81.14%) by 4.33%. The same goes to prediction models based on DT classifier,
as shown in Table 7. DT with CFS using BAT heuristic search method had the best average accuracy
value of 86.66%. Compared with when no FS methods on DT (84.50%), a variation of 2.33% increment
was observed. In the case of LR classifier, as presented in Table 8, LR with CNS based on GS had the
highest average accuracy value of 86.98% with a positive variation of 1.22% when compared with
when no FS methods are used on LR (85.93%). From Table 9, KNN with CNS based on BFS had the
highest average accuracy value of 83.70% with a positive variation of 3.92% when compared with no FS
methods. It was also observed that LR with CNS based on GS had the highest average accuracy value
(85.93%) across all prediction models and NB with CFS based on BAT heuristic search had the highest
positive variation (4.33%). This clearly shows that FS methods have a positive effect on the prediction
models as the average accuracy values based on each classifier without FS methods are less than when
FS methods are applied. Our findings on the positive effect of FS methods on prediction models are
in accordance with research outcomes from existing empirical studies. Ghotra et al. [28], Afzal and
Torkar [26], and Akintola et al. [18] in their respective studies also reported that FS methods had a
positive effect on prediction models in SDP. However, our study explored the effect of FS methods on
prediction models based on the search method which is different from existing empirical studies.

Furthermore, assessing the accuracy performance of each prediction model on each of the dataset
will showcase how these prediction models perform based on different FS methods. Tables 10–14
present the comparisons of FS (FFR and FSS) methods on each of the five datasets respectively.
Considering the number of features generated by FS methods, FFR features are pre-calculated based
on log2 N (where N is the number of features). The number of features for FSS methods are based on
the search methods used (Heuristic or Exhaustive). Across all datasets and FS methods used in this
study, the number of features generated by CFS is less than CNS. On the CM1 dataset, with respect to
CFS, LR with PSO search method and DT with BAT search method had an accuracy value of 87.16%
with (LR+CFS+PSO) selecting eight features and the (DT+CFS+BAT) had five features. Same also was

Appl. Sci. 2019, 9, 2764 11 of 20

observed for CNS, LR with GA search, DT with GSS search, and LR with BF search had accuracy value
of 87.16%. LR with GA search had more features (twelve) and LR with BF selected just one feature.
However, based on the FFR method, DT with CV based on Ranker search had the highest accuracy
value of 87.46% which means the FFR method gave the best performance on CM1 dataset as presented
in Table 10. From Table 11, LR with CNS based on AS (77.11%) out-performs all prediction models on
the KC1 dataset. The prediction model was built on seventeen features as selected by AS. Other FS
methods on KC1 selected smaller features but their respective prediction model had lower accuracy
performance. In addition, on dataset KC3 as presented in Table 12, DT with CFS based on BAT and
GA search had the highest accuracy value of 82.99% with two features selected while LR with CFS
based on BAT search in Table 13 had the best accuracy value on MW1 dataset. In Table 14, DT and LR
with CFS based on BAT and AS respectively had an accuracy value of 97.78% on PC2 dataset. The FFR
methods also had similar accuracy value on PC2 based on DT with RFA, GR, and CV. Clearly, there was
no significant difference in the performance of the FS methods, as their respective performance and
effect varies from dataset to dataset and the choice of classification algorithm. This research outcome is
related to the findings from Xu et al. [29], Kondo et al. [31] and Muthukumaran et al. [30]. Although on
average, FSS methods proved to be better than FFR methods.

Table 10. Performance Accuracy Values of FS-based Prediction Models on CM1 dataset.

FILTER-BASED SUBSET SELECTION METHODS (FSS)

Attribute Evaluator
CfsSubsetEval (CFS)Method

Search Methods No. of Features
Performance Metrics (Accuracy)/Classifier

NB DT LR KNN

Heuristics Method

GA 7 84.10 85.32 85.93 77.68
BAT 5 85.32 87.16 85.32 77.37
PSO 8 83.18 86.54 87.16 80.43
FS 7 82.87 85.93 86.24 81.04
AS 5 86.49 85.93 85.93 78.59

Exhaustive Method
GSS 5 83.79 86.54 86.24 78.90
BF 5 83.18 86.54 86.85 80.43

Average 84.13 86.28 86.24 79.20

Attribute Evaluator
ConsistencySubsetEval (CNS)Method

Search Methods No. of Features
Performance Metrics (Accuracy)/Classifier

NB DT LR KNN

Heuristics Method

GA 12 81.96 86.24 87.16 81.35
BAT 12 81.65 85.63 85.02 79.20
PSO 6 82.87 86.24 85.02 79.51
FS 15 81.35 83.49 85.32 80.73
AS 8 82.87 85.93 84.71 76.15

Exhaustive Method
GSS 6 81.65 87.16 86.54 77.68
BF 1 85.32 86.85 87.16 85.32

Average 82.53 85.93 85.85 79.99

FILTER-BASED FEATURE RANKING METHODS (FFR)

Attribute Evaluator Search Methods No. of Features
Performance Metrics (Accuracy)/Classifier

NB DT LR KNN

IG Ranker 6 84.10 86.54 86.54 77.37
RFA Ranker 6 80.12 86.24 87.16 81.64
GR Ranker 6 84.10 86.24 87.16 76.76
CV Ranker 6 81.96 87.46 86.85 77.98

Average 82.57 86.62 86.93 78.44

Boldface typeface indicates the highest value for each classifier.

Appl. Sci. 2019, 9, 2764 12 of 20

Table 11. Performance Accuracy Values of FS-based Prediction Models on KC1 dataset.

FILTER-BASED SUBSET SELECTION METHODS (FSS)

Attribute Evaluator
CfsSubsetEval (CFS) Method

Search Methods No. of Features
Performance Metrics (Accuracy)/Classifier

NB DT LR KNN

Heuristics Method

GA 8 73.84 75.82 75.82 71.26
BAT 4 74.96 74.96 75.56 72.98
PSO 8 73.84 75.65 76.16 70.57
FS 4 73.92 75.22 75.47 70.40
AS 2 75.13 75.13 75.47 71.69

Exhaustive Method
GSS 6 73.58 74.10 76.76 71.34
BF 8 73.84 75.47 75.90 70.40

Average 74.16 75.19 75.88 71.23

Attribute Evaluator
ConsistencySubsetEval (CNS) Method

Search Methods No. of Features
Performance Metrics (Accuracy)/Classifier

NB DT LR KNN

Heuristics Method

GA 11 73.49 73.75 76.59 73.49
BAT 17 73.49 75.30 76.08 73.75
PSO 16 73.41 74.44 76.51 73.49
FS 16 73.41 74.44 76.51 73.58
AS 17 73.49 74.44 77.11 72.81

Exhaustive Method
GSS 6 75.39 75.56 76.33 69.88
BF 16 73.32 74.44 76.51 73.67

Average 73.72 74.63 76.52 72.95

FILTER-BASED FEATURE RANKING METHODS (FFR)

Attribute Evaluator Search Methods No. of Features
Performance Metrics (Accuracy)/Classifier

NB DT LR KNN

IG Ranker 6 74.78 74.96 75.47 70.57
RFA Ranker 6 72.63 76.25 76.42 71.86
GR Ranker 6 73.24 75.04 75.82 71.86
CV Ranker 6 74.61 74.01 75.65 69.97

Average 73.82 75.06 75.84 71.06

Boldface typeface indicates the highest value for each classifier.

Table 12. Performance Accuracy Values of FS-based Prediction Models on KC3 dataset.

FILTER-BASED SUBSET SELECTION METHODS (FSS)

Attribute Evaluator
CfsSubsetEval (CFS)Method

Search Methods No. of Features
Performance Metrics (Accuracy)/Classifier

NB DT LR KNN

Heuristics Method

GA 2 80.41 82.99 80.93 78.87
BAT 2 81.96 82.99 81.44 78.87
PSO 3 79.90 81.96 82.47 75.77
FS 3 80.41 80.41 82.99 74.23
AS 2 80.41 82.47 82.47 75.26

Exhaustive Method
GSS 6 80.93 80.41 82.47 77.32
BF 3 79.90 81.44 82.47 75.77

Average 80.56 81.81 82.18 76.58

Appl. Sci. 2019, 9, 2764 13 of 20

Table 12. Cont.

FILTER-BASED SUBSET SELECTION METHODS (FSS)

Attribute Evaluator
ConsistencySubsetEval (CNS)Method

Search Methods No. of Features
Performance Metrics (Accuracy)/Classifier

NB DT LR KNN

Heuristics Method

GA 9 79.38 80.93 82.99 74.74
BAT 17 78.87 80.41 81.44 77.84
PSO 6 80.41 80.93 81.44 78.87
FS 12 80.41 78.87 82.47 75.26
AS 13 79.38 80.93 81.96 76.29

Exhaustive Method
GSS 6 79.90 80.41 81.96 78.87
BF 5 80.93 80.93 81.96 77.32

Average 79.90 80.49 82.03 77.03

FILTER-BASED FEATURE RANKING METHODS (FFR)

Attribute Evaluator Search Methods No. of Features
Performance Metrics (Accuracy)/Classifier

NB DT LR KNN

IG Ranker 6 80.93 82.47 81.96 73.71
RFA Ranker 6 78.87 79.90 80.93 67.53
GR Ranker 6 80.41 81.96 81.96 74.23
CV Ranker 6 79.38 78.87 80.41 74.74

Average 79.90 80.80 81.31 72.55

Boldface typeface indicates the highest value for each classifier.

Table 13. Performance Accuracy Values of FS-based Prediction Models on MW1 dataset.

FILTER-BASED SUBSET SELECTION METHODS (FSS)

Attribute Evaluator
CfsSubsetEval (CFS) Method

Search Methods No. of Features
Performance Metrics (Accuracy)/Classifier

NB DT LR KNN

Heuristics Method

GA 8 84.4 89.6 90 84
BAT 9 86 90.4 91.2 84.4
PSO 7 84.8 89.2 89.6 84
FS 9 84.8 88.4 90 84
AS 7 85.2 89.6 88.8 82

Exhaustive Method
GSS 6 84.4 89.2 90 84
BF 7 84.8 89.6 89.2 82.8

Average 84.91 89.43 89.83 83.60

Attribute Evaluator
ConsistencySubsetEval (CNS)Method

Search Methods No. of Features
Performance Metrics (Accuracy)/Classifier

NB DT LR KNN

Heuristics Method

GA 11 85.2 89.2 90.8 83.6
BAT 17 84 89.2 89.6 84.4
PSO 8 85.6 88.4 90.4 82.8
FS 17 83.6 89.6 90 82.8
AS 13 83.6 89.2 90.4 83.6

Exhaustive Method
GSS 6 86 91.6 89.6 85.6
BF 9 84.4 89.6 90.4 84.4

Average 84.63 89.54 90.17 83.89

FILTER-BASED FEATURE RANKING METHODS (FFR)

Attribute Evaluator Search Methods No. of Features
Performance Metrics (Accuracy)/Classifier

NB DT LR KNN

IG Ranker 6 83.6 90 90.4 84.8
RFA Ranker 6 84.4 87.6 89.2 84
GR Ranker 6 84.4 90.4 88.8 84.4
CV Ranker 6 86.4 88.8 90.4 86.8

Average 84.70 89.20 89.70 85.00

Boldface typeface indicates the highest value for each classifier.

Appl. Sci. 2019, 9, 2764 14 of 20

Table 14. Performance Accuracy Values of FS-based Prediction Models on PC2 dataset.

FILTER-BASED SUBSET SELECTION METHODS (FSS)

Attribute Evaluator
CfsSubsetEval (CFS) Method

Search Methods No. of Features
Performance Metrics (Accuracy)/Classifier

NB DT LR KNN

Heuristics Method

GA 5 94.18 97.51 97.51 96.54
BAT 5 95.01 97.78 97.51 96.12
PSO 5 94.46 97.51 97.65 96.81
FS 5 93.91 97.65 97.51 95.84
AS 6 95.57 97.51 97.78 95.29

Exhaustive Method
GSS 6 93.91 97.51 97.51 96.40
BF 5 94.32 97.51 97.65 96.81

Average 94.48 97.57 97.59 96.26

Attribute Evaluator
ConsistencySubsetEval (CNS)Method

Search Methods No. of Features
Performance Metrics (Accuracy)/Classifier

NB DT LR KNN

Heuristics Method

GA 15 94.18 97.65 97.37 96.26
BAT 17 94.46 97.51 97.51 96.12
PSO 9 94.87 97.65 97.65 97.09
FS 17 93.63 97.65 97.23 96.12
AS 16 94.46 97.37 97.23 96.40

Exhaustive Method
GSS 6 93.91 97.65 97.65 95.84
BF 1 97.78 97.78 97.78 97.78

Average 94.76 97.61 97.49 96.52

FILTER-BASED FEATURE RANKING METHODS (FFR)

Attribute Evaluator Search Methods No. of Features
Performance Metrics (Accuracy)/Classifier

NB DT LR KNN

IG Ranker 6 93.91 97.65 97.51 96.26
RFA Ranker 6 96.68 97.78 97.65 96.12
GR Ranker 6 94.18 97.78 97.09 96.12
CV Ranker 6 95.84 97.78 97.51 95.98

Average 95.15 97.75 97.44 96.12

Boldface typeface indicates the highest value for each classifier.

From the aforementioned results, it is clear that there is no significant difference in the performance
accuracy values of the FS methods. That is, the performance of FS methods depends largely on
the dataset as the best subset of features that varied from one dataset to another. In addition, it
was also observed that based on the FSS (CFS and CNS) methods, a varying number of features
were selected. This presents a very interesting case on how the small number of features affects the
performance of prediction models. Some studies argued that the lesser the features, the better the
performance [26,37,43]. However, in this study, it was observed that the number of features selected
depends largely on the FS method used. CNS often selects more features and the prediction models
based on CNS outperforms other FS methods. In addition, as presented in Table 15, considering the
FFR methods, IG had the best influence on the prediction models over other FFR methods. While
considering the FSS, CNS based on BFS had the best influence on the prediction models. However,
CFS based on BS had the best improvement on the performance of NB and DT and CNS based on GS
and BF improved the performance of LR and KNN best, respectively.

Appl. Sci. 2019, 9, 2764 15 of 20

Table 15. Performance (Accuracy) Variation of Prediction Models with different FS methods.

FS
Methods

Search
Methods NB Variation

(%) DT Variation
(%) LR Variation

(%) KNN Variation
(%)

No FS - 81.14 0 84.50 0 85.93 0 80.54 0

FSS(CFS)

GA 83.39 2.77 86.25 2.06 86.04 0.12 81.67 1.40
BAT 84.65 4.33 86.66 2.55 86.21 0.32 81.95 1.75
PSO 83.24 2.58 86.17 1.97 86.61 0.79 81.52 1.21
FS 83.18 2.52 85.52 1.21 86.44 0.60 81.10 0.70
AS 84.56 4.22 86.13 1.92 86.09 0.19 80.57 0.03

GSS 83.32 2.69 85.55 1.24 86.60 0.78 81.59 1.31
BF 83.21 2.55 86.11 1.91 86.41 0.56 81.24 0.87

FSS(CNS)

GA 82.84 2.10 85.55 1.24 86.98 1.22 81.89 1.68
BAT 82.49 1.67 85.61 1.31 85.93 0.00 82.26 2.14
PSO 83.43 2.83 85.53 1.22 86.20 0.32 82.35 2.25
FS 82.48 1.65 84.81 0.36 86.31 0.44 81.70 1.44
AS 82.76 2.00 85.57 1.27 86.28 0.41 81.05 0.63

GSS 83.37 2.75 86.47 2.33 86.42 0.57 81.57 1.28
BF 84.35 3.96 85.92 1.68 86.76 0.97 83.70 3.92

FFR

IG 83.46 2.87 86.32 2.16 86.38 0.52 80.54 0.00
RFA 82.54 1.73 85.55 1.24 86.27 0.40 80.68 0.17
GR 83.27 2.58 86.28 2.08 86.16 0.27 80.67 0.17
CV 83.64 3.03 85.38 1.03 86.16 0.27 81.09 0.69

Boldface typeface indicates the highest value for each classifier.

Furthermore, we conducted a stability test on the FS methods based on different prediction models
using the average accuracy values from the experimental results. We calculated the Standard Deviation
(SD) and the Co-efficient of Variation (CV) as presented in Appendix A Table A1. FFR methods
produced more stable results in terms of accuracy across the prediction models as compared with the
FSS methods. Consequently, even if there is no significant difference for the prediction models based
on a variety of FS methods considered in this study, FFR proves to be more stable than FSS methods
having lower CV values. The best prediction model developed using each classifier is illustrated in
Figure 2. In Table 15, prediction models with FS methods outperform models developed without
features selection. This indicates the importance of FS methods while developing the SDP model
regardless of which family (characteristics) the classification algorithm belongs. Figure 3 shows the
positive gain, that is, the variation of the prediction models with FS methods to prediction models
without FS methods. Figures 4 and 5 show the performance stability of prediction models developed
with FS methods respectively. Both figures depict the standard deviation (SD) and Co-efficient of
Variation (CV) values for each FS method. Lastly, Figure 6 pictorially presents the performance FS
method based on average accuracy values on each dataset.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 20

Figure 2. Average Accuracy for Prediction
Models.

Figure 3. Prediction Models with the Highest
Variation.

Figure 4. Performance Stability of Prediction
Models (SD).

Figure 5. Performance Stability of Prediction
Models (CV).

1

Figure 6. Performance of Feature Selection Method on each Dataset.

In conclusion, listed below are a summary of our findings from this comparative study:
• FS methods are very important and useful as it improves the performance of prediction

models.
• Based on the individual performance accuracy values, FS methods had the highest

improvement on the predictive performance of NB classifier.
• CFS based on (AS, BAT, GS, FS, PSO, BFS, and GSS) selects (automatically) the minimum

number of features.

Figure 2. Average Accuracy for Prediction Models.

Appl. Sci. 2019, 9, 2764 16 of 20

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 20

Figure 2. Average Accuracy for Prediction
Models.

Figure 3. Prediction Models with the Highest
Variation.

Figure 4. Performance Stability of Prediction
Models (SD).

Figure 5. Performance Stability of Prediction
Models (CV).

1

Figure 6. Performance of Feature Selection Method on each Dataset.

In conclusion, listed below are a summary of our findings from this comparative study:
• FS methods are very important and useful as it improves the performance of prediction

models.
• Based on the individual performance accuracy values, FS methods had the highest

improvement on the predictive performance of NB classifier.
• CFS based on (AS, BAT, GS, FS, PSO, BFS, and GSS) selects (automatically) the minimum

number of features.

Figure 3. Prediction Models with the Highest Variation.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 20

Figure 2. Average Accuracy for Prediction
Models.

Figure 3. Prediction Models with the Highest
Variation.

Figure 4. Performance Stability of Prediction
Models (SD).

Figure 5. Performance Stability of Prediction
Models (CV).

1

Figure 6. Performance of Feature Selection Method on each Dataset.

In conclusion, listed below are a summary of our findings from this comparative study:
• FS methods are very important and useful as it improves the performance of prediction

models.
• Based on the individual performance accuracy values, FS methods had the highest

improvement on the predictive performance of NB classifier.
• CFS based on (AS, BAT, GS, FS, PSO, BFS, and GSS) selects (automatically) the minimum

number of features.

Figure 4. Performance Stability of Prediction Models (SD).

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 20

Figure 2. Average Accuracy for Prediction
Models.

Figure 3. Prediction Models with the Highest
Variation.

Figure 4. Performance Stability of Prediction
Models (SD).

Figure 5. Performance Stability of Prediction
Models (CV).

1

Figure 6. Performance of Feature Selection Method on each Dataset.

In conclusion, listed below are a summary of our findings from this comparative study:
• FS methods are very important and useful as it improves the performance of prediction

models.
• Based on the individual performance accuracy values, FS methods had the highest

improvement on the predictive performance of NB classifier.
• CFS based on (AS, BAT, GS, FS, PSO, BFS, and GSS) selects (automatically) the minimum

number of features.

Figure 5. Performance Stability of Prediction Models (CV).

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 20

Figure 2. Average Accuracy for Prediction
Models.

Figure 3. Prediction Models with the Highest
Variation.

Figure 4. Performance Stability of Prediction
Models (SD).

Figure 5. Performance Stability of Prediction
Models (CV).

1

Figure 6. Performance of Feature Selection Method on each Dataset.

In conclusion, listed below are a summary of our findings from this comparative study:
• FS methods are very important and useful as it improves the performance of prediction

models.
• Based on the individual performance accuracy values, FS methods had the highest

improvement on the predictive performance of NB classifier.
• CFS based on (AS, BAT, GS, FS, PSO, BFS, and GSS) selects (automatically) the minimum

number of features.

Figure 6. Performance of Feature Selection Method on each Dataset.

In conclusion, listed below are a summary of our findings from this comparative study:

• FS methods are very important and useful as it improves the performance of prediction models.

Appl. Sci. 2019, 9, 2764 17 of 20

• Based on the individual performance accuracy values, FS methods had the highest improvement
on the predictive performance of NB classifier.

• CFS based on (AS, BAT, GS, FS, PSO, BFS, and GSS) selects (automatically) the minimum number
of features.

• On the average as presented in Table 15, CFS based on BAT had the highest positive variation
on NB and DT while CNS based on GS and BFS had the highest positive variation value on LR
and KNN.

• FFR had the lowest C.V. values which make it more stable than other FSS methods (See Table A1
in Appendix A).

5. Threat to Validity

This section discusses the threats to the validity of our comparative study. According to
Wohlin et al. [44], empirical software engineering is becoming relevant and a vital factor of any
empirical study is to analyze and mitigate threats to the validity of the experimental results.

External validity: This validity mainly bothers on the ability to generalize the experimental study.
Five software defects datasets which have been extensively utilized in defect prediction were used in
this study. Although these datasets differs in their characteristics (number of instances and attributes)
and are from the commonly used corpora (NASA), we cannot generalize conclusions of this study on
other software defect datasets. However, this study provided a comprehensive experimental setup,
with applicable parameter tuning and settings, which makes it possible for researchers to replicate on
other software defect datasets.

Internal validity: This validity stresses on the choice of prediction models and feature selection
methods. Gao et al. [45] stated that factors such as choice of software applications, classification
algorithm selection, and noisy datasets affect the internal validity of SDP. In this study, we selected 4
classificationn algorithms based on performance and heterogeneity (See: Table 4) and these classification
algorithms are well used in SDP. Specifically, 18 methods based on two FS techniques with seven search
methods were used in this study. Nonetheless, future studies can consider other FS techniques and
new search methods.

Construct validity: This validity focuses on the choice of performance metrics used to evaluate
the performance of prediction models. In this study, accuracy which measures the percentage of the
correctly classified instances was employed and Co-efficient of Variation (C.V) was applied to the
results of the prediction models to determine the performance stability of prediction models. However,
other performance metrics such as Area under Curve (AUC) and F-Measure may also be applicable.

6. Conclusions and Future Work

SDP can assist software engineers in identifying defect-prone modules in a software system and
consequently streamline the deployment of limited resources in Software Development Life Cycle
(SDLC) during software development. However, the performance of SDP depends on the quality
of software defect datasets which suffers from high dimensionality. Hence, the selection of relevant
and irredundant features from software defect datasets is imperative to achieve a strong prediction
model in SDP. This study conducted a comparative performance analysis via the investigation of
eighteen FS methods on five software defect datasets from NASA repository with four classification
algorithms. The FS methods were grouped into two Filter subset selections (FSS) (CFS and CNS) with
seven different search methods (BFS, BAT, FS, AS, GSS, PSOS, and GS) and four Feature Filter Rank
(FFR) (IG, RFA, GR, and CV) methods based on ranker search method. From the experimental results,
IG recorded the best improvement on the prediction models over other FFR methods while CNS based
on BFS had the best influence on the prediction models based on FSS methods. In addition, further
analysis showed that prediction models based on FFR are more stable than other FS methods. It was
conclusively discovered that the performance of FS methods varied across the dataset and that some
classifiers behaved differently. This may be due to the class imbalance which is a primary data quality

Appl. Sci. 2019, 9, 2764 18 of 20

problem in data science. In the future, we intend to look at how other data quality problems, such as
class imbalance and outliers, affect FS methods in SDP.

Author Contributions: Conceptualization, A.O.B.; Investigation, A.O.B. and A.S.H.; Supervision, S.B.; Validation,
S.J.A.; Writing—original draft, A.O.B.; Writing—review & editing, S.B., S.J.A. and A.S.H.

Funding: This research received no external funding.

Acknowledgments: This research was partly supported by Ministry of Higher Education Malaysia, under the
Fundamental Research Grant Scheme (FRGS) with Ref. No. FRGS/1/2018/ICT04/UTP/02/04.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Performance Stability of FS methods on Prediction Models based on Average Accuracy Values.

Classifiers Metrics CFS CNS FFR

NB
SD 0.61 0.62 0.42

CV 0.73 0.74 0.50

DT
SD 0.37 0.46 0.42

CV 0.43 0.54 0.49

LR
SD 0.22 0.33 0.09

CV 0.25 0.38 0.10

KNN
SD 0.42 0.78 0.21

CV 0.51 0.95 0.26

Boldface typeface indicates the lowest value for each FS method.

References

1. Fenton, N.; Bieman, J. Software Metrics: A Rigorous and Practical Approach; CRC Press: Boca Raton, FL, USA,
2014.

2. Ali, M.M.; Huda, S.; Abawajy, J.; Alyahya, S.; Al-Dossari, H.; Yearwood, J. A parallel framework for software
defect detection and metric selection on cloud computing. Clust. Comput. 2017, 20, 2267–2281. [CrossRef]

3. Yadav, H.B.; Yadav, D.K. A fuzzy logic based approach for phase-wise software defects prediction using
software metrics. Inf. Softw. Technol. 2015, 63, 44–57. [CrossRef]

4. Huda, S.; Alyahya, S.; Ali, M.M.; Ahmad, S.; Abawajy, J.; Al-Dossari, H.; Yearwood, J. A Framework for
Software Defect Prediction and Metric Selection. IEEE Access 2018, 6, 2844–2858. [CrossRef]

5. Li, Z.; Jing, X.-Y.; Zhu, X. Progress on approaches to software defect prediction. IET Softw. 2018, 12, 161–175.
[CrossRef]

6. Tan, M.; Tan, L.; Dara, S.; Mayeux, C. Online Defect Prediction for Imbalanced Data. In Proceedings of the
37th International Conference on Software Engineering-Volume 2, Florence, Italy, 16–24 May 2015; IEEE
Press: Piscataway, NJ, USA, 2015; pp. 99–108.

7. Tantithamthavorn, C.; McIntosh, S.; Hassan, A.E.; Matsumoto, K. An empirical comparison of model
validation techniques for defect prediction models. IEEE Trans. Softw. Eng. 2017, 43, 1–18. [CrossRef]

8. Jing, X.-Y.; Wu, F.; Dong, X.; Xu, B. An improved SDA based defect prediction framework for both
within-project and cross-project class-imbalance problems. IEEE Trans. Softw. Eng. 2017, 43, 321–339.
[CrossRef]

9. Tong, H.; Liu, B.; Wang, S. Software defect prediction using stacked denoising autoencoders and two-stage
ensemble learning. Inf. Softw. Technol. 2018, 96, 94–111. [CrossRef]

10. Arar, Ö.F.; Ayan, K. Software defect prediction using cost-sensitive neural network. Appl. Soft Comput. 2015,
33, 263–277. [CrossRef]

http://dx.doi.org/10.1007/s10586-017-0892-6
http://dx.doi.org/10.1016/j.infsof.2015.03.001
http://dx.doi.org/10.1109/ACCESS.2017.2785445
http://dx.doi.org/10.1049/iet-sen.2017.0148
http://dx.doi.org/10.1109/TSE.2016.2584050
http://dx.doi.org/10.1109/TSE.2016.2597849
http://dx.doi.org/10.1016/j.infsof.2017.11.008
http://dx.doi.org/10.1016/j.asoc.2015.04.045

Appl. Sci. 2019, 9, 2764 19 of 20

11. Zhang, F.; Zheng, Q.; Zou, Y.; Hassan, A.E. Cross-project defect prediction using a connectivity-based
unsupervised classifier. In Proceedings of the 38th International Conference on Software Engineering, Austin,
TX, USA, 14–22 May 2016; pp. 309–320.

12. Herbold, S.; Trautsch, A.; Grabowski, J. A comparative study to benchmark cross-project defect prediction
approaches. IEEE Trans. Softw. Eng. 2018, 44, 811–833. [CrossRef]

13. Kamei, Y.; Fukushima, T.; McIntosh, S.; Yamashita, K.; Ubayashi, N.; Hassan, A.E. Studying just-in-time
defect prediction using cross-project models. Empir. Softw. Eng. 2016, 21, 2072–2106. [CrossRef]

14. Grbac, T.G.; Mausa, G.; Basic, B.D. Stability of Software Defect Prediction in Relation to Levels of Data
Imbalance. In Proceedings of the 2nd Workshop of Software Quality Analysis, Monitoring, Improvement,
and Applications (SQAMIA), Novi Sad, Serbia, 15–17 September 2013; pp. 1–10.

15. Yu, Q.; Jiang, S.; Zhang, Y. The performance stability of defect prediction models with class imbalance: An
empirical study. IEICE Trans. Inf. Syst. 2017, 100, 265–272. [CrossRef]

16. Balogun, A.O.; Bajeh, A.O.; Orie, V.A.; Yusuf-Asaju, A.W. Software Defect Prediction Using Ensemble
Learning: An ANP Based Evaluation Method. FUOYE J. Eng. Technol. 2018, 3, 50–55.

17. Jimoh, R.; Balogun, A.; Bajeh, A.; Ajayi, S. A PROMETHEE based evaluation of software defect predictors.
J. Comput. Sci. Its Appl. 2018, 25, 106–119.

18. Akintola, A.G.; Balogun, A.O.; Lafenwa-Balogun, F.B.; Mojeed, H.A. Comparative Analysis of Selected
Heterogeneous Classifiers for Software Defects Prediction Using Filter-Based Feature Selection Methods.
FUOYE J. Eng. Technol. 2018, 3, 134–137.

19. Agarwal, S.; Tomar, D. Prediction of Software Defects Using Twin Support Vector Machine. In Proceedings
of the 2014 International Conference on Information Systems and Computer Networks (ISCON), Mathura,
India, 1–2 March 2014; IEEE: Piscataway, NJ, USA; pp. 128–132.

20. Chutia, D.; Bhattacharyya, D.K.; Sarma, J.; Raju, P.N.L. An effective ensemble classification framework
using random forests and a correlation based feature selection technique. Trans. GIS 2017, 21, 1165–1178.
[CrossRef]

21. Khalid, S.; Khalil, T.; Nasreen, S. A Survey of Feature Selection and Feature Extraction Techniques in Machine
Learning. In Proceedings of the 2014 Science and Information Conference (SAI), London, UK, 27–29 August
2014; IEEE: Piscataway, NJ, USA; pp. 372–378.

22. Chinnaswamy, A.; Srinivasan, R. Hybrid Feature Selection Using Correlation Coefficient and Particle Swarm
Optimization on Microarray Gene Expression Data. In Innovations in Bio-Inspired Computing and Applications;
Springer: Berlin, Germany, 2016; pp. 229–239.

23. Nakariyakul, S. High-dimensional hybrid feature selection using interaction information-guided search.
Knowl. Based Syst. 2018, 145, 59–66. [CrossRef]

24. Sheikhpour, R.; Sarram, M.A.; Gharaghani, S.; Chahooki, M.A.Z. A survey on semi-supervised feature
selection methods. Pattern Recognit. 2017, 64, 141–158. [CrossRef]

25. Wah, Y.B.; Ibrahim, N.; Hamid, H.A.; Abdul-Rahman, S.; Fong, S. Feature Selection Methods: Case of Filter
and Wrapper Approaches for Maximising Classification Accuracy. Pertanika J. Sci. Technol. 2018, 26, 329–340.

26. Afzal, W.; Torkar, R. Towards Benchmarking Feature Subset Selection Methods for Software Fault Prediction.
In Computational Intelligence and Quantitative Software Engineering; Springer: Berlin, Germany, 2016; pp. 33–58.

27. Gao, K.; Khoshgoftaar, T.M.; Wang, H.; Seliya, N. Choosing software metrics for defect prediction:
an investigation on feature selection techniques. Softw. Pract. Exp. 2011, 41, 579–606. [CrossRef]

28. Ghotra, B.; McIntosh, S.; Hassan, A.E. A Large-Scale Study of the Impact of Feature Selection Techniques
on Defect Classification Models. In Proceedings of the 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), Buenos Aires, Argentina, 20–21 May 2017; IEEE: Piscataway, NJ, USA,
2017; pp. 146–157.

29. Xu, Z.; Liu, J.; Yang, Z.; An, G.; Jia, X. The Impact of Feature Selection on Defect Prediction Performance:
An Empirical Comparison. In Proceedings of the 2016 IEEE 27th International Symposium on Software
Reliability Engineering (ISSRE), Ottawa, ON, Canada, 23–27 October 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 309–320.

30. Muthukumaran, K.; Rallapalli, A.; Murthy, N. Impact of feature selection techniques on bug prediction
models. In Proceedings of the 8th India Software Engineering Conference, Bangalore, India, 18–20 February
2015; ACM: New York, NY, USA, 2015; pp. 120–129.

http://dx.doi.org/10.1109/TSE.2017.2724538
http://dx.doi.org/10.1007/s10664-015-9400-x
http://dx.doi.org/10.1587/transinf.2016EDP7204
http://dx.doi.org/10.1111/tgis.12268
http://dx.doi.org/10.1016/j.knosys.2018.01.002
http://dx.doi.org/10.1016/j.patcog.2016.11.003
http://dx.doi.org/10.1002/spe.1043

Appl. Sci. 2019, 9, 2764 20 of 20

31. Kondo, M.; Bezemer, C.-P.; Kamei, Y.; Hassan, A.E.; Mizuno, O. The impact of feature reduction techniques
on defect prediction models. Empir. Softw. Eng. 2019, 1–39. [CrossRef]

32. Rathore, S.S.; Gupta, A. A Comparative Study of Feature-Ranking and Feature-Subset Selection Techniques
for Improved Fault Prediction. In Proceedings of the 7th India Software Engineering Conference, Chennai,
India, 19–21 February 2014; ACM: New York, NY, USA, 2014; p. 7.

33. Lee, S.-J.; Xu, Z.; Li, T.; Yang, Y. A novel bagging C4. 5 algorithm based on wrapper feature selection for
supporting wise clinical decision making. J. Biomed. Inf. 2018, 78, 144–155. [CrossRef] [PubMed]

34. Zemmal, N.; Azizi, N.; Sellami, M.; Zenakhra, D.; Cheriguene, S.; Dey, N.; Ashour, A.S. Robust feature selection
algorithm based on transductive SVM wrapper and genetic algorithm: application on computer-aided
glaucoma classification. Int. J. Intell. Syst. Technol. Appl. 2018, 17, 310–346. [CrossRef]

35. Rodriguez, D.; Ruiz, R.; Cuadrado-Gallego, J.; Aguilar-Ruiz, J.; Garre, M. Attribute Selection in Software
Engineering Datasets for Detecting Fault Modules. In Proceedings of the 33rd EUROMICRO Conference on
Software Engineering and Advanced Applications (EUROMICRO 2007), Lubeck, Germany, 28–31 August
2007; IEEE: Piscataway, NJ, USA, 2007; pp. 418–423.

36. Kumar, C.A.; Sooraj, M.; Ramakrishnan, S. A comparative performance evaluation of supervised feature
selection algorithms on microarray datasets. Procedia Comput. Sci. 2017, 115, 209–217. [CrossRef]

37. Ibrahim, D.R.; Ghnemat, R.; Hudaib, A. Software Defect Prediction using Feature Selection and Random
Forest Algorithm. In Proceedings of the 2017 International Conference on New Trends in Computing Sciences
(ICTCS), Amman, Jordan, 11–13 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 252–257.

38. Menzies, T.; Greenwald, J.; Frank, A. Data mining static code attributes to learn defect predictors. IEEE Trans.
Softw. Eng. 2007, 33, 2–13. [CrossRef]

39. Shepperd, M.; Song, Q.; Sun, Z.; Mair, C. Data quality: Some comments on the nasa software defect datasets.
IEEE Trans. Softw. Eng. 2013, 39, 1208–1215. [CrossRef]

40. Japkowicz, N.; Stephen, S. The class imbalance problem: A systematic study. Intell. Data Anal. 2002, 6,
429–449. [CrossRef]

41. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software:
an update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]

42. Balogun, A.O. SDP_FS_ComparativeStudy Git Repository. 2019. Available online: https://github.com/

bharlow058/SDP_FS_ComparativeStudy.git (accessed on 9 May 2019).
43. Belouch, M.; Elhadaj, S.; Idhammad, M. A hybrid filter-wrapper feature selection method for DDoS detection

in cloud computing. Intell. Data Anal. 2018, 22, 1209–1226. [CrossRef]
44. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software

Engineering; Springer Science & Business Media: Berlin, Germany, 2012.
45. Gao, K.; Khoshgoftaar, T.M.; Seliya, N. Predicting high-risk program modules by selecting the right software

measurements. Softw. Qual. J. 2012, 20, 3–42. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10664-018-9679-5
http://dx.doi.org/10.1016/j.jbi.2017.11.005
http://www.ncbi.nlm.nih.gov/pubmed/29137965
http://dx.doi.org/10.1504/IJISTA.2018.094018
http://dx.doi.org/10.1016/j.procs.2017.09.127
http://dx.doi.org/10.1109/TSE.2007.256941
http://dx.doi.org/10.1109/TSE.2013.11
http://dx.doi.org/10.3233/IDA-2002-6504
http://dx.doi.org/10.1145/1656274.1656278
https://github.com/bharlow058/SDP_FS_ComparativeStudy.git
https://github.com/bharlow058/SDP_FS_ComparativeStudy.git
http://dx.doi.org/10.3233/IDA-173624
http://dx.doi.org/10.1007/s11219-011-9132-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Methodology
	Filter Feature Ranking Method
	Filter Feature Subset Selection Method
	Classification Algorithms
	Experimental Setup
	Software Defect Datasets
	Performance Evaluation Metrics

	Experimental Results
	Threat to Validity
	Conclusions and Future Work
	
	References

