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Abstract: For concrete, fatigue is an essential mechanical behavior. Concrete structures subjected to
fatigue loads usually experience a progressive degradation/damage process and even an abrupt failure.
However, in the literature, certain essential damage behaviors are not well considered in the study of
the mechanism for fatigue behaviors such as the development of irreversible/residual strains. In this
work, a damage model with the concept of mode-II microcracks on the crack face and nearby areas
contributing to the development of irreversible strains was proposed. By using the micromechanics
method, a micro-cell-based damage model under multi-axial loading was introduced to understand
the damage behaviors for concrete. By a thermodynamic interpretation of the damage behaviors, a
novel fatigue damage variable (irreversible deformation fatigue damage variable) was defined. This
variable is able to describe irreversible strains generated by both mode-II microcracks and irreversible
frictional sliding. The proposed model considered both elastic and irreversible deformation fatigue
damages. It is found that the prediction by the proposed model of cyclic creep, stiffness degradation
and post-fatigue stress-strain relationship of concrete agrees well with experimental results.
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1. Introduction

Fatigue is an essential mechanical behavior of concrete. In real life, a large number of concrete
structures are subjected to fatigue loads, e.g., off-shore structures and bridges. Although the subjected
fatigue loads are lower than the relevant materials’ original strength, these structures experience a
progressive degradation and subsequently an abrupt failure. In order to investigate these fatigue
behaviors, several methods (e.g., fatigue life concepts [1–4] and phenomenological models [5–8]) were
developed by researchers and were widely applied in structural engineering. However, during the
designing and analysis of structures, these methods [1–8] are only limited to describing the fatigue
behaviors at phenomenological and empirical levels without a comprehensive understanding and
explanation of the internal mechanism for damage behaviors of concrete under fatigue loading.

The complex constitution of concrete results in a sophisticated damage evolution process during
material under loading. Specifically, in the material, the arbitrary distribution of initial defects
causes the localization of stresses, which further produce the complex evolution process of damage.
Experimental studies [9–14] have been conducted to understand the damage mechanism referring
to concrete under fatigue loading. In detail, some experimental results showed that local stresses
near the defect cause the heterogeneous crack openings perpendicular to tensile loading, i.e., mode-I
cracks. The mode-I cracks were well studied in a number of research papers [9–12]. In addition, [13]
applied X-ray techniques to study the microcrack mechanism of concrete, and it was found that
microcracks parallel to tensile loading (mode-II cracks) can occur even under pure global axial loading.
Reference [14] found the mode-II cracks are able to create irreversible strains due to local stresses.
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Furthermore, a series of relevant comprehensive works have been conducted by researchers in the
solid mechanical field for more than a decade [15–23].

Moreover, the mechanism of the development for irreversible/residual strains in concrete under
fatigue loading have been studied throughout several methods [6,12,24–49]. Concretely, on one hand,
based on the micro-mechanics method [6,12,24–40], it is concluded that irreversible strains are produced
by a series of types of cracking, which are distinguished as follows: (I) for a compressive case, the
transversely propagating crushing band [24,25], the axial wedge-splitting cracks at hard inclusions in
hardened cement paste [26], the interface cracks at inclusions [6], the pore-opening axial cracks [27,28],
and the inclined wing-tipped frictional cracks (i.e., wing cracks) [29–33]; (II) for a tensile case, the
irreversible opening of mode-I cracks due to the locking mechanisms of crack faces [34], the irreversible
sliding-like openings of mode-II crack due to the toughness of crack faces [35,36], the irreversible
frictional sliding over the crack surface [37,38], the irreversible cracking of the fracture process
zone [12,39], and other cracking mechanisms [40]. On the other hand, based on the macro-mechanics
method [41–49], researchers have rarely considered the comprehensive mechanism of concrete damage,
since they are usually focused on the accurate characterization of macroscopic mechanical behaviors.

However, among the above-mentioned literature, certain essential damage behaviors are not
well considered in the study of the mechanism for the development of irreversible/residual strains in
concrete. Specifically, one type of those damage behaviors is mode-II microcracks, which has attracted
the attention of researchers in the field of solids mechanics for decades [15–23].

Therefore, it is necessary to develop a continuum damage model for concrete under fatigue
loading with the consideration of this damage behavior. In detail, this damage model is able to
be established based on the micro-mechanics and continuum damage mechanics. Micro-mechanics
enables us to understand damage behavior under multi-axial loading, and the continuum damage
mechanics (CDM) method (i.e., a macro-mechanics method) offers us a convenient way to characterize
the macro behavior.

This work develops the above-mentioned contributions [6,12,24–49] in two aspects, the
description of the micro-mechanism for mode-II microcracks in multi-axial conditions and the
thermodynamics-based modeling of damage behaviors in concrete under fatigue loading.

2. Microcrack Mechanism in Concrete under Multi-Axial Loading

In this section, we briefly recall here the main steps of the methodology followed by the
literature [22] for the micro-mechanical description of mode-II microcracks. In addition, the random
distribution of initial defects in concrete under multi-axial loading was considered in this work.

2.1. The Definition of the Mode-II Microcracks

Mode-II microcracks are the local shear stress-caused by microcracks on the crack face and in the
nearby area of the micro-defects and the mode-I crack. This type of crack is different from the mode-I
crack and the mode-II crack. The differences can be concluded as follows, the mode-II microcracks are
the result of local shear stresses, which is distinguished from tensile stress-caused by the mode-I crack.
Additionally, unlike the mode-II crack, mode-II microcracks usually appear on the face and nearby
area of the micro-defects and mode-I crack.

2.2. The Causes for the Mode-II Microcracks under Multi-Axial Loading

When the concrete is subjected to a biaxial tensile load, a micro-cell within a representative volume
element (RVE) was introduced and is shown in Figure 1. In detail, the stress flow curve becomes
concentrated when it approaches the crack tip, and the plane stress on the plane horizontal and vertical
to the direction of the crack propagation is able to be described by the normal and shear stress as follows,
σh and τh, σv and τv, respectively (Figure 1c). Due to sufficient normal stress σv or stress intensity factor
(SIF) KI at the crack tip, the crack will initiate and grow through the direction where the maximum SIF
exists (i.e., transverse to the direction of maximum principal tension, Figure 1d–e). Therefore, the crack
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type, namely the mode-I crack, decreases the effective load area of the micro-cell in the maximum
principal tension direction, resulting in the stiffness degradation of the specimen [33–36,50].
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However, mode-II microcracks have not been well considered in modeling concrete under
multi-axial stresses in the literature [6,12,22–40]. Through different approaches, including experimental
observations, mechanical analysis and atomic simulations [15–21], it is validated that the real
crack (excepting some pre-existing cracks) in the material is blunt, caused by the appearance of
mode-II microcracks.

Specifically, mode-II microcracks are produced by the local shear stresses (i.e., the shear stress
τh in Figures 1c and 2a) on the face and nearby area of relevant cracks. In a biaxial tensile load
case, the directions of local shear stresses are arbitrary due to the random location of initial defects.
It is distinguished from that in a uniaxial tensile case [22]. Moreover, several researchers [34–40]
observed that the mode-II microcracks, rather than the dislocation-induced plastic flow, appear in
complex composite materials such as concrete. Further description and explanation can be found in
the literature [6,51].
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Note that it is speculated that the local constraint condition around the micro defect is stable
during the crack initiation and/or propagation under multi-axial tension; otherwise, the mode-II
dominant failure will appear. The development of the mode-II microcrack leads to certain energy
dissipation, and it may also release the tip stress concentration of the mode-I cracks, since it causes a
relatively blunter crack tip.

2.3. Influence of the Mode-II Microcracks on the Irreversible Strains in Concrete

It is revealed that the mode-II microcracks are attributed to crack blunting and the irreversible
deformation (Figure 2) of material even in brittle material such as glass [21]. In this section, we briefly
recall the methodology followed by [22] for the micro-mechanical description and further develop it
with consideration of stochastic properties in a multi-axial tension case, as follows.

For simplicity, we introduce a micro-cell damage model (Figure 3) considering the mode-II
microcracks to describe the damage behaviors in concrete under biaxial tension. In Figure 3, the region
near a certain defect is firstly highlighted and further discretized by amounts of micro-cells (micro-cell
i, micro-cell i + 1, etc.). The behavior of each micro-cell is modeled by two sets of springs (spring type
A and B). The spring type A can be stretched vertically along the direction of the maximum principal
loading, and spring type B is attached to the middle of spring type A. Unlike spring type A, spring
type B cannot be stretched but it can slip between two parallel sets of micro-cells. In such a micro-cell
damage model, the elastic behavior and elastic deformation damage are described by spring type A,
and the irreversible deformation damage is modeled by spring type B. After unloading, there is a
micro deformation b and an irreversible strain εI,f left in the material. The micro irreversible fractural
opening is caused by mode-II microcracks illustrated in the micro-cell damage model.

In summary, the elastic deformation damage in the micro-cell damage model corresponds to the
stiffness degradation, and the irreversible deformation damage is responsible for a certain part of the
irreversible strain. Specifically, the local shear stresses produce mode-II microcracks on the crack face
and nearby areas, which generate the micro deformation b and an irreversible strain εI,f in the material
(Figure 3).
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Figure 3. Macro behaviors and micro mechanism of a concrete cube under bi-axial tension from
various loading statuses. This figure was developed based on [22] (Reproduced with permission from
[John Wiley & Sons Ltd], 2016), however, the random distribution of initial defects was considered in
this work.

2.4. Irreversible Strains in Concrete under Multi-Axial Loading

For the irreversible strains that are not induced by mode-II microcracks, a simplified frictional
sliding model is developed in this work (Figure 4) for revealing the development of the irreversible
strains in concrete under multi-axial tension based on the literature [37,38]. In detail, as illustrated in
Figure 4, according to this model, the behavior of frictional sliding generally produces a new portion
of irreversible deformation b’ in the micro-cell of RVE (Figure 4).
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Figure 4. Sketch of tensile irreversible deformations due to both mode-II microcracks and irreversible
frictional sliding, where σ1 denotes the maximum principal tensile stress in multi-axial tension. This
figure was developed based on [22] (Reproduced with permission from [John Wiley & Sons Ltd], 2016),
however, the random distribution of initial defects was considered in this work.

Thus, in this work, the irreversible strains in concrete under multi-axial tension are produced by
two mechanisms: the mode-II microcracks and irreversible frictional sliding. It is noted that the other
mechanisms [6,12,24–36,39,40] are not employed in the work for the sake of simplicity. In addition, the
irreversible deformation damages are assumed to consist of both mode-II microcracks and irreversible
frictional sliding (see Figure 4).

For simplicity, the multi-axial stresses in the material are assumed to be classified into two stress
spaces: the tension- and compression-dominant stress spaces (Figure 5). Precisely, the stress spaces are
distinguished by the plane vertical to the stress line, which indicates the stresses on triaxis are equal to
each other (see Figure 5). Figure 5 illustrates that the tension-dominant stress space consists of both the
multi-axial tension space and a certain part of tension-compression space. The compression-dominant
stress space represents the rest of the stress space. It is worth mentioning that the micro damage
mechanisms are different when related to the above two dominant stresses. Concretely, for simplicity, the
micro damage mechanism of concrete under tension-dominant stress is assumed to be similar to that
under multi-axial tension developed in this work, and the micro damage mechanism of concrete under
compression-dominant stress is assumed to be similar to that under multi-axial compression in [23].
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The effect of the roughness and friction of crack faces on the progressive damage and irreversible
strains under fatigue compression is able to be concluded as follows, the roughness and friction of the
crack faces for the initial inclined frictional crack in wing cracks [23,29–33] and mode-II microcracks
will influence the irreversible behaviors: higher roughness and friction results in the later initiation of
the crack and further leads to a lower amount of the irreversible strains.

It is worth mentioning that the new development of micro-mechanical descriptions related
to mode-II microcracks in this work has been obtained in the following ways. Firstly, this work
extended the description of the micro damage behaviors in concrete under multi-axial tension with
the consideration of both the stochastic properties of initial cracks and the influences of mode-II
microcracks. It is distinguished from the work in [22], which focused on an idealized model of the
initial uniformly and horizontally distributed cracks under uniaxial tension, and from that in [23],
which involved a model of wing crack under multi-axial compression. Secondly, this work introduced
a simplified description of damage behaviors in concrete under tension-compression, which was not
considered in the literature [22,23].

3. Thermodynamics Based Continuum Damage Mechanics Model

Physically, the damage propagation including both the expanded crack length 2l and the developed
crack opening b + b′ in micro-scale in Figure 6 (discretely modeled by the micro damage model in
Figure 6) is an irreversible thermodynamic process characterized in Figure 6. Both microscale behaviors
are able to be idealized/unified and thermodynamics modeled by considering the stiffness degradation
Ed and the irreversible strains development εI (Figure 6), respectively.
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Figure 6. Thermodynamics interpretation of micro-scale damage behaviors. Specifically, the elastic
deformation damage (mode-I cracks) produces the stiffness reduction Ed, and the irreversible
deformation damage (both mode-II microcracks and irreversible friction sliding) causes the development
of irreversible strains εI.

Thus, the complex microscale crack behaviors (Figure 6) are thermodynamically interpreted
into a simple macroscale damage mechanics model (Figure 6), which obtained a thermodynamics
based CDM model. In the following section, the definition of a new type of damage variable—the
irreversible deformation fatigue damage variable—is firstly introduced and then the details for the
model formulation are given.

3.1. Thermodynamics Interpretation

In this section, we briefly recall here the main steps of the methodology followed by [52] for the
thermodynamics interpretation of the damage variable. This work developed the method from [52] for
interpreting the damage variable under fatigue loading.

The infinite deformation behavior of concrete material with damage can be viewed within the
framework of thermodynamics with internal state variables. The Helmholtz free energy per unit mass,
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in an isothermal deformation process at the current state of the deformation and material damage, is
assumed as follows:

Ψn = ψn + γn (1)

where the subscript n denotes the cyclic number of the fatigue loading (n = 1, 2, 3, ..., N), ψ denotes the
strain energy or a purely reversible stored energy, while γ represents the irreversible energy associated
with specific micro structural changes produced by damage (i.e., elastic deformation damage induced
by mode-I fractures, and irreversible deformation damage due to both mode-II micro-cracks and
irreversible fictional sliding, see Figures 4 and 6). An explicit presentation of the irreversible energy and
its rate is generally limited by the complexities of the internal micro structural changes discussed in the
recent section; however, only one internal variable damage (contains two components) is considered
in this work. The damage contains two components, that is, elastic deformation damage induced
by mode-I fractures, and irreversible deformation damage due to both mode-II micro-cracks and
irreversible fictional sliding, contribute to stiffness degradation and irreversible strains development,
respectively (see Figure 6). For the purpose of developing a schematic description of the concepts
based on the proposed micro damage model, the uniaxial stress-strain curves are used in Figure 7. In
Figure 7a, E0 denotes the initial undamaged stiffness (relates to loading line OA0). The strain and the
stress at point A0 are denoted by ε0,1 and σmax, respectively.

3.1.1. Interpretation in First and Second Loading Cycle

Firstly, considering the stress-strain response during the first loading cycle, the unloading curve
A1B1 is simplified by the line A1B1 in Figure 7a,b in this work. At point A1, the strain ε1 and irreversible
damage strain ε1

di exist in the specimen. The initial stiffness changes from E0 to E1. Even though these
notations are for the uniaxial case, they are able to be used in indicial tensor notation in the equations
without loss of generality. The total strain (described by line OB1G1H1 in Figure 7a) is given as follows:

ε1 = εE
1 + εI

1 =
(
ε0,1 + εde

1

)
+ εdi

1 (2)

where the subscript 1 denotes the cyclic number of the first fatigue loading.
The strain energy is expressed as follows (see the area described by points B1A1H1 in Figure 7a)

ψ1 =
1

2υ
E1 ·

(
εE

1

)2
=

1
2υ

E0ε0,1ε
E
1 (3)

ψ1 = ψe
0 +ψde

1 (4)

where ψ0
e denotes the initial strain energy (see the area G1A1H1 in Figure 7a), and ψ1

de denotes the
elastic deformation damage strain energy during the first cycle (see the area B1A1G1 in Figure 7a),
that is,

ψe
0 =

1
2υ

E0 ·
(
ε0,1

)2
(5)

ψde
1 =

1
2υ

E0ε0,1ε
de
1 = ψ1 −ψ

e
0 =

1
2υ

E0ε0,1

(
εE

1 − ε0,1

)
(6)

And the irreversible energy is expressed as follows (see the area OA0A1B1 in Figure 7a)

γ1 =
1
υ

(
σmaxε

di
1 +

1
2
σmaxε

de
1

)
=

1
υ

E0ε0,1

(
εd

1 −
1
2
εde

1

)
(7)

γ1 = γdi
1 + γde

1 (8)

where γ1
di denotes the irreversible-damage irreversible energy (see the area OA0I1B1 in Figure 7a),

and γ1
de denotes the elastic deformation damage irreversible energy (see the area B1I1A1 in Figure 7a),

that is,
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γdi
1 =

1
υ
σmaxε

di
1 =

1
υ

E0ε0,1ε
di
1 (9)

γde
1 =

1
2υ
σmaxε

de
1 =

1
2υ

E0ε0,1ε
de
1 (10)

In regard to stored energyλ (contains both the purely reversible stored energyψ and the irreversible
energy γ), one is able to obtain the formula as follows

λn = ψn + γn (11)Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 26 
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When the material is assumed to be a perfect elastic material, it undergoes a strain ε1 and obtains
a stored energy λ1

0 = 1/2(E0ε1
2) = ψ1

0 (i.e., the perfect material’s purely reversible stored energy or
strain energy) due to external loads. However, the material focused on in this work is a quasi-brittle
material assumed to undergo both elastic deformation damage and irreversible deformation damage.
It reduces a certain part of stored energy (denoted by the area A0F1A1 in Figure 7a) caused by the elastic
deformation damage (i.e., mode-I fracture in the proposed micro-cell damage model, see Figures 4
and 6). Additionally, another part of the stored energy (described by the area A0C1F1 in Figure 7a) is
also decreased, as a result of the irreversible damage (due to both mode-II micro-cracks and irreversible
fictional sliding, see Figures 4 and 6). Thus, the damaged material’s stored energy is derived as follows

λ1 = ψ1 + γ1 = λ0
1 − λ

d
1 (12)

where
λd

1 = λde
1 + λdi

1 (13)

λde
1 =

1
2υ
σde

1 ε
d
1 (14)

λdi
1 =

1
2υ
σdi

1 ε
d
1 (15)

where λ1
d denotes the total damage caused reduction of stored energy, λ1

de denotes the elastic
deformation damage (i.e., mode-I fracture) caused reduction of stored energy, λ1

di denotes the
irreversible damage (due to both mode-II micro-cracks and irreversible fictional sliding) caused
reduction of stored energy.

Secondly, considering the stress-strain response during the second loading cycle, the unloading
curve A2B2 is also simplified by the line A2B2 in Figure 7a,b. At point A2, the strain ε2 and irreversible
damage strain ε2

di exist in the specimen. The stiffness is changed from E1 to E2. Even though these
notations are for the uniaxial case, they are able to be used in indicial tensor notation in the equations
without loss of generality. The total strain (described by line OB2G2H2 and OB1B2G1,2H2 in Figure 7b)
is given as follows:

ε2 = εE
2 + εI

2 =
(
ε0,2 + εde

2

)
+ εdi

2 = εdi
1 + εdi

1,2 + εde
1,2 +

(
ε0,2 + εde

1

)
(16)

where ε0,2 = ε0,1 (see Figure 7a).
The strain energy is expressed as follows

ψ2 = ψ1 +ψde
1,2 = ψe

0 +ψde
1 +ψde

1,2 (17)

where the subscript 2 denotes the cyclic number of the second fatigue loading, ψ1,2
de denotes the

elastic deformation damage strain energy due to the additional elastic deformation damage during the
second cycle (see the area B2A2G1,2 in Figure 7b), that is,

ψde
1,2 =

1
2υ

E0ε0,1ε
de
1,2 (18)

Thus, the strain energy is expressed as follows (see the area described by points B2A2H2 in Figure 7a)

ψ2 =
1

2υ
E0ε0,1

(
εE

1 + εde
1,2

)
=

1
2υ

E0ε0,1ε
E
2 (19)

The irreversible energy γ2 is expressed as follows

γ2 = γ1 + γ1,2 =
(
γdi

1 + γde
1

)
+

(
γdi

1,2 + γde
1,2

)
(20)
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where γ1,2
di denotes the irreversible deformation damage irreversible energy due to the additional

irreversible deformation damage during the second cycle (see the area B1A1I2B2 in Figure 7b), and γ1,2
de

denotes the elastic deformation damage irreversible energy due to the additional elastic deformation
damage during the second cycle (see the area B2A2G1,2 in Figure 7b), that is,

γdi
1,2 =

1
υ
σmaxε

di
1,2 =

1
υ

E0ε0,1ε
di
1,2 (21)

γde
1,2 =

1
2υ
σmaxε

de
1,2 =

1
2υ

E0ε0,1ε
de
1,2 (22)

Thus, the irreversible energy γ2 is derived as follows (see the area OA0A2B2 in Figure 7b)

γ2 = 1
υE0ε0,1

(
εdi

1 + 1
2ε

de
1 + εdi

1,2 +
1
2ε

de
1,2

)
= 1

υE0ε0,1

[(
εdi

1 + εdi
1,2

)
+ 1

2

(
εde

1 + εde
1,2

)]
= 1

υE0ε0,1

(
εdi

2 + 1
2ε

de
2

) (23)

The stored energy λ2 is derived as follows

λ2 = ψ2 + γ2 = λ0
2 − λ

d
2 (24)

where λ2
d denotes the total damage caused reduction of stored energy, that is,

λd
2 = λd

1 + λd
1,2 =

(
λdi

1 + λde
1

)
+

(
λdi

1,2 + λde
1,2

)
(25)

where λ1,2
di denotes the irreversible deformation damage caused by the reduction of stored energy

due to the additional irreversible deformation damage during the second cycle (see the composite
areas C1C2J1F1, A1J3J4 and A1J5A2 in Figure 7b), and λ1,2

de denotes the elastic deformation damage
caused reduction of stored energy due to the additional elastic deformation damage during the second
cycle (see the composite areas F1J1J2A1, A1J2J3 and A1J4J5 in Figure 7b), that is,

λdi
1,2 = 1

υσ
di
1

(
ε2 − ε1

)
+ 1

2υσ
di
1,2
′
(
ε2 − ε1

)
+ 1

2υσ
di
1,2

(
ε2 − ε1

)
= 1

υ

(
ε2 − ε1

)(
σdi

1 + 1
2σ

di
1,2
′ + 1

2σ
di
1,2

) (26)

λde
1,2 = 1

υσ
de
1

(
ε2 − ε1

)
+ 1

2υσ
de
1,2
′
(
ε2 − ε1

)
+ 1

2υσ
de
1,2

(
ε2 − ε1

)
= 1

υ

(
ε2 − ε1

)(
σde

1 + 1
2σ

de
1,2
′ + 1

2σ
de
1,2

) (27)

Thus, the total damage caused reduction of stored energy λ2
d is derived as follows (see the area

A0C2A2 in Figure 7b)
λd

2 =
(
λdi

1 + λde
1

)
+

(
λdi

1,2 + λde
1,2

)
= λdi

2 + λde
2 (28)

λdi
2 =

1
2υ
σdi

2 ε
d
2 (29)

λde
2 =

1
2υ
σde

2 ε
d
2 (30)

where λ2
di denotes the irreversible deformation damage (due to both mode-II micro-cracks and

irreversible fictional sliding) caused by the reduction of stored energy, λ2
de denotes the elastic

deformation damage (i.e., mode-I fracture) caused by the reduction of stored energy (see Figure 7a).
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3.1.2. Interpretation in nth Loading Cycle

Based on the recent thermodynamics interpretation in this work (see Equations (3), (7), (12–15),
(19), (23), (24), (28)–(30)), by comparing Equation (19) with Equation (3) and replacing the cycle number
2 by n in Equation (19), it is possible to derive the strain energy after nth loading cycle, as follows:

ψn =
1

2υ
E0ε0ε

E
n =

1
2υ

E0ε0

(
εE

n−1 + εde
n−1,n

)
(31)

By comparing Equation (23) with Equation (7) and replacing the cycle number 2 by n in Equation
(23), it is possible to derive the irreversible energy after nth loading cycle, as follows:

γn =
1
υ

E0ε0

(
εdi

n +
1
2
εde

n

)
=

1
υ

E0ε0

[(
εdi

n−1 + εdi
n−1,n

)
+

1
2

(
εde

n−1 + εde
n−1,n

)]
(32)

By comparing Equations (24), (28–30) with Equations (12–15) and replacing the cycle number 2
by n in Equations (24), (28–30), it is possible to derive the damage caused by the reduction of stored
energy after nth loading cycle, as follows:

λn = λ0
n − λ

d
n = λ0

n −
(
λdi

n + λde
n

)
(33)

λdi
n =

1
2υ
σdi

n ε
d
n (34)

λde
n =

1
2υ
σde

n ε
d
n (35)

Note that, considering both the micro structural changes (based on the proposed micro damage
model, see Figures 3, 4 and 6) and the macro irreversible energy (see Equation (1)), this work is ruled
by second thermodynamics law, that is,

σ
.
ε− υ

.
ψ ≥ 0 (36)

3.1.3. Damage Variable Definition and Its Thermodynamics Interpretation

Based on the above thermodynamics interpretation and the damage variable definition method
in Appendix A, the elastic deformation fatigue damage variable in the elastic strain space and total
strain space (Dn

E and Dn
e), and the irreversible deformation fatigue damage variable (Dn

i) are defined,
respectively, as follows (see Figure 7):

DE
n =

Ψde
n

Ψe
n + χn

=
ψde

n + γde
n(

ψe
0,n +ψde

n + γde
n

)
+ χn

=
εde

n

εE
n

(37)

De
n =

Ψde
n

Ψn + χn
=

ψde
n + γde

n(
ψe

0,n +ψde
n + γde

n + γdi
n

)
+ χn

=
εde

n
εn

(38)

Di
n =

Ψdi
n

Ψn + χn
=

γdi
n(

ψe
0,n +ψde

n + γde
n + γdi

n

)
+ χn

=
εdi

n
εn

(39)

Dn =
Ψd

n
Ψn + χn

= De
n + Di

n =
εde

n + εdi
n

εn
=

εd
n
εn

=
εn − ε0, n

εn
=

εn − σmax/E0

εn
(40)

where εn
d, εn

de, and εn
di denote the strain development caused by the total damage, the elastic

deformation damage and the irreversible deformation damage, respectively (related to the total
cracking, the mode-I cracking and the irreversible deformation cracking discussed in micro-mechanical
description in this work, respectively), when the material is subjected to the nth cyclic loading (Figure 7);
εn

E denotes the elastic strain, εn
E = ε0,n + εn

de (ε0,n = ε0); εn denotes the total strain, εn = ε0,n + εn
de +
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εn
di; and χn denotes the energy dissipation exists as a typical characteristics of the elastic behaviors, it

accompanies and equals the initial strain energy ψ0,n
e (see Figures 7 and A1), that is,

χn =
1

2υ
σmaxε0,n =

1
2υ
σmaxε0 = ψe

0,n = ψe
0 (41)

Note that Equation (40) illustrates that the damage evolution Dn depending on the total strain εn

will be varied, when σmax is changed during different fatigue loading processes.
The nonlinear stress-strain relation is described as follows:

σ =
(
1−DE

n

)
E0

(
εn − ε

di
n

)
=

(
1−DE

n

)(
1−Di

n

)
E0εn

=
[
1−

(
De

n + Di
n

)]
E0εn = (1−Dn)E0εn

(42)

The damage variables Dn
E (or Dn

e) and Dn
i are able to be used to characterize the stiffness

degradation and irreversible strain development of concrete under fatigue loading, respectively, as
follows (see Figure 7a–c),

En =
(
1−DE

n

)
E0 =

(
1−

De
n

1−Di
n

)
E0 =

1−Dn

1−Di
n

E0 (43)

εdi
n = Di

nεn (44)

Given that in the case of general engineering the value of the minimum stress σmin is not equal to
zero in concrete (Figure 7d), the residual strain εn

r related to the fatigue behaviors is distinguished
from the irreversible strain εn

di by the following definition:

εr
n = εn −

σmax − σmin

En
(45)

εdi
n = εn −

σmax

En
(46)

which are obtained by the equations (Figure 7), respectively, as follows,

En =
σmax − σmin

εn − ε
r
n

(47)

En =
σmax

εn − ε
di
n

(48)

Note that little research [6,10–12,41–49] has considered the difference between the residual strains
and the irreversible strains, however, this difference is essential for characterizing the fatigue behaviors
of concrete. Specifically, Equations (45) and (46) and Figure 7 illustrate that the value of the residual
strains is usually higher than that of the irreversible strains.

Additionally, with Equations (9), (10), (14), (15), (17)–(19), (21), (22), (29), (30), (38) and (39) and
Figure 7, it is able to correlate the mechanical parameters and damage variables to the thermodynamics
parameters as follows:

εde
n

εdi
n

=
σde

n

σdi
n

=
De

n

Di
n
=
γde

n +ψde
n

γdi
n

=
λde

n

λdi
n

(49)

Equation (49) shows that the two components of fatigue damage variable (Dn
e and Dn

i) are able
to be correlated to the strain and stress decomposition and the energy dissipation, i.e., the energy (γn

de

+ ψn
de) and γn

de, λn
de and λn

di, respectively. Therefore, Equation (49) illustrates the thermodynamics
interpretation of the newly defined damage variables.
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3.2. Continuum Damage Mechanics Model

The damage evolution is the variation process of the micro structure in material under external
load, i.e., the process of the crack initiation, development and converge, thus, it reveals the physical
nature of certain material and it does not impact the stress status [53]. Hence, the fatigue damage
evolution of concrete in uniaxial case is presumed to be applied on multi-axial case without loss of
generality. Therefore, the constitutive model in scalar form (Equation (42)) is able to be extended into
the tensor form, as follows:

σn = [I−Dn] : E0 : εn (50)

where Dn denotes the tensor fatigue damage variable, which is used to model the nonlinearity of
stress-strain response and can be expressed as follows:

Dn = D±i,nP±i = D+
1,nP+

1 + D−1,nP−1 + D+
2,nP+

2 + D−2,nP−2 + D+
3,nP+

3 + D−3,nP−3 (51){
P+

i = H[σi(n)]m(i)
⊗m(i)

⊗m(i)
⊗m(i)

P−i =
{
1−H[σi(n)]

}
m(i)
⊗m(i)

⊗m(i)
⊗m(i) (52)

where i denotes the number of the principal stress direction, i = 1, 2, 3, for simplicity, in the uniaxial
case, it can be omitted; H(x) denotes the Heaviside function, if x > 0, its value is 1, otherwise 0; + and −
denote the tensile and compressive loading condition, respectively.

In the biaxial stress condition, the fatigue damage constitutive model in the principal stress
direction is able to be described as follows:

σ1,n
σ2,n

τ12,n

 =
1

1− µ2


α1

(
1−D±1,n

)
α2

(
1−D±2,n

)
1




E0 µE0 µE0

µE0 E0 µE0

µE0 µE0 E0



ε1,n
ε2,n

ς12,n

 (53)

where α denotes the parameter considering the bia-compressive effects [22,53], its value can be obtained
from [22]; µ denotes the Poisson ratio; τ denotes the shear stress; ζ denotes the shear strain.

The cyclic creep and stiffness degradation in a three-stage process are characterized by the tensor
fatigue irreversible deformation damage variable Dn

i and the tensor fatigue elastic deformation damage
variable Dn

e, respectively, and the post-fatigue stress-strain response is also described by the recently
defined damage variables. As a result, the current stiffness and the irreversible/residual strain are able
to be described as follows, respectively:

En =
1−D±n
1−Di±

n
E0 (54)

εdi
n = Di±

n εn (55)

εr
n = εn −

σmax − σmin

En
(56)

The post-fatigue stress-strain response of concrete under monotonic uniaxial loading is assumed
to be expressed as follows:

σ
p±
n =


En ·

(
ε− εdi

n

)
, εdi

n ≤ ε ≤ σmax/En[
1− k±N ·D

f cu±
n

]
· E0 ·

(
ε− εdi

n

)
, σmax/En < ε ≤ εN

(1−Ds±) · E0 · ε, ε > εN

(57)

where Dn
fcu denotes a simplified parameter related to strength reduction, Dn

fcu± = (1 − S±)·Dn
0±,

Dn
0 denotes a newly introduced damage variable, which will be defined in Section 4.1; kN denotes a

modifying parameter considering the bound condition of fatigue failure surface [4], if εN ≤ ε ≤ εfcu,
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kN = (εN − ε)/(εN − εfcu), otherwise, kN = 1, and εfcu denotes the strain corresponding to the peak stress
f cu under monotonic uniaxial loading. Furthermore, the residual strength is described as follows:

f r±
n = f±cu ·

[
1−D f cu±

n

]
(58)

4. Verification and Discussions

4.1. Solution Procedure of CDM Model for Concrete under Fatigue Loading

In order to characterize the three-stage behaviors of concrete under fatigue loading considering
different stress level S, based on the concept of the fatigue failure surface [4], a normalized fatigue
damage variable Dn

0 is defined in this work as follows:

D0±
n =

D±n −D±1
D±N −D±1

(59)

where D1 and DN denote the damage variable of the joint points of the static stress-strain curve and
the level line σ = σmax, respectively, and they are able to be calculated by the model in [22] as follows:

σ± = (1−Ds±)E0ε
± (60)

where σ = σmax, ε = ε1 or ε = εN, ε1 and εN denote the strain of the joint points of the static stress-strain
curve and the level line σ = σmax, respectively, Ds denotes the damage variable of concrete under
monotonic uniaxial loading, and it is able to be predicted by the model in [22] as follows:

Ds± =
A±1 −A±2

1 +
(
ε− ε±0

)p± + A±2 (61)

where A1, A2, ε0, and p denote the parameters related to the damage evolution in concrete under
monotonic uniaxial loading, and they are able to be calibrated by experimental results [22].

Thus, the fatigue damage variable of concrete is derived as follows:

D±n = D±1 + D0±
n ·

(
D±N −D±1

)
(62)

By a set of trial and error procedures, the normalized fatigue damage variable is assumed to be
modeled by the equation:

D0±
n = A±3 ·

(
−

n/N
n/N −A±4

) 1
A±5 (63)

where A3, A4, and A5 denote the parameters related to the damage in concrete during fatigue loading,
and they are able to be calibrated by the experimental results.

The literature [54,55] presumed that the reciprocal of irreversible deformation damage variable
1/Di is linearly dependent on the total damage variable D. However, by applying the above linearly
analysis, the resulted value of irreversible deformation damage variable Di is overestimated in certain
cases. For instance, it is found that the calculated irreversible deformation damage Di is greater than
the total damage D when the total damage D is approximately lower than 0.2, which is unreasonable
(see Equation (40) and Figure 7). Hence, the relation between 1/Di and D is assumed to be corrected
as follows,

Di
n = 1/

(
B1 + B2 ·Dn + B3 ·D2

n

)
(64)

where B1, B2 and B3 denote the parameters related to the coupling of irreversible and elastic deformation
damage in concrete under loading, and they are able to be calibrated by the experimental results of
concrete under cyclic loading [54,55].



Appl. Sci. 2019, 9, 2768 16 of 25

The fatigue life is estimated by the convenient method [56], such that,

log N = 14.7− 13.5
σmax − σmin

f±cu − σmin
. (65)

Therefore, this CDM model is able to characterize the mechanical behaviors of concrete under
fatigue loading including following characteristics: the progressive stiffness degradation, development
of cyclic creep and residual strain in a three-stage process, and the post-fatigue stress-strain response
under monotonic loading.

4.2. Behaviors of Concrete under Fatigue Compression with Constant Amplitude

In order to verify the effectiveness of the proposed model, the predictions are obtained using a
calibration method similar to that in the literature [45] and compared with the experimental results. A
series of experiments of concrete under fatigue compression with a constant amplitude are conducted
and the results are reported in [57]. In this section, a typical result is selected for model verification. By
using the definition in Equations (38–40), the calibrated parameters are obtained and listed as follows,
E0 = 32.3 GPa, f cu

− = 49.3 MPa, A1
− = 0, A2

− = 1, ε0
− = 1700.7 µε, p− = 2.138, A3

− = 1.864, A4
− = 6.961,

A5
− = 2.702, B1 = 38.19, B2 = −80.77, and B3 = 44.66. Figure 8 illustrates the agreement of the predicted

and the experimental results. In detail, initially, the three stages evolution of cyclic creep (i.e., the total
fatigue strains and residual strains) of both the predicted and experimental results are coincidental
(Figure 8a). Additionally, the proposed model is able to reproduce the stiffness degradation during
fatigue life (Figure 8b).
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4.3. Behaviors of Concrete under Fatigue Compression with Various Stress Levels

In order to model the behaviors of concrete under fatigue compression with various stress levels
of constant amplitudes, a typical result [4] is used for analysis in this section. The parameters are
calibrated as follows, E0 = 21.8 GPa, f cu

− = 26.0 MPa, A1
− = 0, A2

− = 1, ε0
− = 2306.5 µε, p− = 2.464, A3

−

= 0.713, A4
− = 1.160, A5

− = 5.439. The cyclic creep and the fatigue strain [4] (defined as the fatigue
strain = the total strain εn—the initial strain (i.e., the total strain in the first cycle ε1)) are predicted and
compared with experimental results in Figure 9.
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Figure 9 illustrates that the predictions agree with the experimental results. In detail, initially,
both the total fatigue strains and the fatigue strains in predictions agree with the experimental
results. Additionally, the proposed model is able to reproduce the three stages evolution of total
fatigue strains and fatigue strains during fatigue life. It is noted that the tail results in predictions
are slightly higher than the experimental results, since the strain due to static stress-strain response
in concrete is developing faster than the total fatigue strains in experiments [4], which leads to the
higher strains predictions (Figure 9) by using Equations (40) and (60) based on fatigue failure surface
concept [4]. Therefore, the proposed model is able to characterize the behaviors of concrete under
fatigue compression with various stress levels with constant amplitudes.

4.4. Behaviors of Concrete under Biaxial Fatigue Compression

In order to model the behaviors of concrete under biaxial fatigue compression with constant
amplitude, a typical result [58] (Figure 10) is applied for analysis in this section. The parameters are
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Figure 10. Comparison of cyclic creep under biaxial fatigue compression among predicted and
experimental results [58] (The graphs are completely redrawn by authors).
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4.5. Post-Fatigue Constitutive Behaviors of Concrete under Monotonic Loading

To verify the effectiveness of the proposed model in predicting the post-fatigue stress–strain
response of concrete, the literature [59] is applied to calibrate the parameters, as follows, E0

− = 36.0
GPa, f cu

− = 41.4 MPa, A1
− = 0, A2

− = 1, ε0
− = 2153.8 µε, p− = 3.186, A3

− = 0.713, A4
− = 1.160, A5

−

= 5.439. The predicted post-fatigue stress-strain responses are obtained in Figure 11a. Figure 11a
illustrates that the post-fatigue stress–strain responses predicted by the model varies in a typical three
stages way depending on the increasing of cycle ratio. In detail, the development of the initial strains
(i.e., the residual strains) of the responses grows in a three stages way, and the variation of the initial
(post-fatigue) stiffness and the residual strength experience in a similar way. Therefore, the proposed
model is able to reproduce the post-fatigue constitutive behaviors.

4.6. Comparison among Proposed Model and Other Models

The proposed model is compared with the typical damage evolution models [60,61]. The parameters
are calibrated by using the experimental results in the literature [61], such that, E0

− = 54.5 GPa, A3
− = 0.6,

A4
− = 1.01, A5

− = 9, B1 = 2.29, B2 = −1.23, and B3 = 0. Thus, the predictions are obtained in Figure 11b–d.
Figures 10 and 11b illustrate that the predictions of the proposed model are more accurate than those
of other damage evolution models [60,61]. In addition, the proposed model is able to reproduce the
other behavior variations under fatigue loading (e.g., the development of cyclic creep (Figures 10 and
11c), stiffness degradation (Figure 11d) and post-fatigue constitutive behavior (Figure 11a), which are
not well considered in the other models [60,61].
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Figure 11. Post-fatigue stress–strain response predicted by the proposed model (n/N = 0.02~0.98, S =

0.66), and comparison of Di, cyclic creep and stiffness degradation among predicted and experimental
results [61] (The graphs are redrawn by authors).
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Furthermore, the proposed models are capable of predicting the variations of cyclic creep, stiffness
degradation, residual strength, and the stress–strain relationship under both fatigue loading and
post-fatigue loading. However, few damage models [6,41–49] took all the characteristics above into
account for relevant characterizing.

Additionally, the proposed model obtains a clear physical consideration based on the
micro mechanical description of damage behaviors in concrete under multi-axial loading, and
proposed a behavior characterizing method based on both the above-mentioned description and a
thermodynamics-based CDM method. However, in the classical damage models [44,45], the yield
concept cannot coexist with the loading/unloading irreversible strain concept [62] introduced in their
framework. In detail, in the yield concept [44,45], there is only one yield surface for determining the
plastic strains in the material. However, in the loading/unloading irreversible strain concept [62], each
loading/unloading process (i.e., a loading cycle) obtains a corresponding irreversible strain surface for
the development of irreversible strains.

5. Conclusions

In this work, a damage model with the concept of mode-II microcracks using thermodynamic
interpretation of damage behaviors for concrete under fatigue loading was developed.

In detail, by applying the micromechanics method, a micro-cell-based damage model was
introduced to understand the damage behavior. The mode-II microcracks were further introduced as a
contributing part of irreversible/residual strains.

Additionally, by introducing the physical interpretation of the damage variable based on the
thermodynamic method, a novel fatigue damage variable (irreversible deformation fatigue damage
variable) was proposed to describe the irreversible strains. With this methodology, a continuum
damage mechanics model considered both the elastic and irreversible deformation fatigue damages
was developed.

It is found that the predictions of this model highly agreed with experimental results. This model
is able to characterize the variations of cyclic creep, stiffness degradation, residual strength, and the
post-fatigue stress-strain relationship of concrete. The model can also be used to analyze the behaviors
of concrete under complex fatigue loads such as a multi-axial case.
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Appendix A. Damage Variable Definition Based on Thermodynamics

(1) Perfect elastic materials

The Helmholtz free energy of a perfect elastic material per unit mass is obtained as follows (see
Figure A1a):

Ψ = ψ+ γ = ψ = ψe
0 (A1)
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And the energy dissipation χ is introduced in this work (see Figure A1), that is,

χ =
1

2υ
σε0 =

1
2υ
σε = ψe

0 (A2)

where χ denotes that energy dissipation exists as a typical property of the elastic behaviors, it
accompanies the initial strain energy ψ0

e, and both are equal to each other like the twins, see Figure A1.
There is no damage appearing in the material, thus, it is not necessary to define a damage variable.

And the stress–strain relation is described as follows:

σ = E0ε (A3)

(2) Elastic deformation damage materials

The Helmholtz free energy of an elastic deformation damage material is obtained as follows (see
Figure A1b):

Ψ = ψ+ γ =
(
ψe

0 +ψde
)
+ γde (A4)

where
ψde = γde =

1
2υ
σεde (A5)

And the energy dissipation χ is derived in this work (see Figure A1), that is,

χ =
1

2υ
σε0 = ψe

0 (A6)

The elastic deformation damage variable in the elastic strain space is defined in this work by two
methods considering two different energy dissipation aspects, respectively, as follows:

DE =
ψde

ψ
=

ψde

ψe
0 +ψde

=
εde

ε0 + εde
=
εde

εE
(A7)

DE =
Ψde

Ψ + χ
=

ψde + γde(
ψe

0 +ψde + γde
)
+ χ

=
εde

εE
(A8)

where εE denotes the elastic strains, εE = ε0 + εde.
The nonlinear stress–strain relation is described as follows:

σ =
(
1−DE

)
E0ε (A9)

The damage variable DE is able to be used to describe the stiffness degradation, that is (Figure A1b),

E =

(
1−

εde

ε

)
E0 =

(
1−DE

)
E0 (A10)
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(3) Irreversible deformation damage materials

The Helmholtz free energy of an irreversible deformation damage material is obtained as follows
(see Figure A1c):

Ψ = ψ+ γ = ψe
0 + γdi (A11)

And the energy dissipation χ is derived in this work (see Figure A1), that is,

χ =
1

2υ
σε0 = ψe

0 (A12)

The irreversible deformation damage variable is defined in this work by the method considering
energy dissipation, as follows:

Di =
Ψdi

Ψ + χ
=

γdi(
ψe

0 + γdi
)
+ χ

=
εdi

ε
(A13)

where ε = ε0 + εdi.
The nonlinear stress–strain relation is described as follows:

σ = E0
(
ε− εdi

)
=

(
1−Di

)
E0ε (A14)

The damage variable Di is able to be used to describe the irreversible strain development, that is
(see Figure A1c),

εdi = Diε (A15)

Additionally, when the initial stiffness approaches an infinite value ∞, the material exhibits a
prefect brittle-plastic behavior (see Figure A1d). Thus, the Helmholtz free energy is derived as follows,

Ψ = ψ+ γ = γ = γdi (A16)
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due to the energy dissipation χ = ψ0
e = 0. The irreversible deformation damage variable is obtained,

as follows:

Di =
Ψdi

Ψ + χ
=
γdi

γdi
= 1 (A17)

And the irreversible strain is derived, as follows:

εdi = Diε = ε (A18)

Furthermore, the nonlinear stress-strain relation is described as follows:{
σ = σ
ε = εdi (A19)

(4) Quasi-brittle materials (Elastic-irreversible deformation damage materials)

The Helmholtz free energy of a quasi-brittle material is obtained as follows (see Figure A1e):

Ψ = ψ+ γ =
(
ψe

0 +ψde
)
+

(
γde + γdi

)
(A20)

where
ψde = γde =

1
2υ
σεde (A21)

And the energy dissipation χ is derived in this work (see Figure A1), that is,

χ =
1

2υ
σε0 = ψe

0 (A22)

The elastic deformation damage variable in the elastic strain space is defined in this work by two
methods considering two different energy dissipation aspects, respectively, as follows:

DE =
ψde

ψ
=

ψde

ψe
0 +ψde

=
εde

ε0 + εde
=
εde

εE
(A23)

DE =
Ψde

Ψe + χ
=

ψde + γde(
ψe

0 +ψde + γde
)
+ χ

=
εde

εE
(A24)

The elastic deformation damage variable in the total strain space is also defined in this work by
the method considering energy dissipation, as follows:

De =
Ψde

Ψ + χ
=

ψde + γde(
ψe

0 +ψde + γde + γdi
)
+ χ

=
εde

ε
(A25)

where the total strain ε = ε0 + εde + εdi, and the elastic strain εE = ε0 + εde.
The irreversible deformation damage variable is defined in this work by the method considering

energy dissipation, as follows:

Di =
Ψdi

Ψ + χ
=

γdi(
ψe

0 +ψde + γde + γdi
)
+ χ

=
εdi

ε
(A26)

The nonlinear stress–strain relation is described as follows:

σ =
(
1−DE

)
E0

(
ε− εdi

)
=

(
1−DE

)(
1−Di

)
E0ε

=
[
1−

(
De + Di

)]
E0ε = (1−D)E0ε

(A27)
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The damage variable DE (or De) and Di is able to be employed to characterize the stiffness
degradation and irreversible strain development, respectively, as follows (see Figure A1e),

E =
(
1−DE

)
E0 =

(
1−

De

1−Di

)
E0 =

1−D
1−Di

E0 (A28)

εdi = Diε (A29)

Note that the energy dissipation χ presents a typical property of materials’ elastic behaviors.
Figure A1 and Equations (A2), (A6), (A12) and (A22) show that the energy dissipation χ is equal to
the initial strain energy ψ0

e, i.e., χ = ψ0
e, and in a limit case without elastic behaviors in Figure A1d,

χ = ψ0
e = 0. Additionally, the damage variable definition method considering the energy dissipation χ

in Equations (A8) and (A24) is as effective as that in Equations (A7) and (A23), respectively. Therefore,
it is reasonable to apply the damage variable definition method considering the energy dissipation χ in
this work.
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