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Featured Application: This paper can provide the basic knowledge on metal-air batteries for
beginners and relevant comprehensive review for researchers.

Abstract: With the ever-increasing demand for power sources of high energy density and stability
for emergent electrical vehicles and portable electronic devices, rechargeable batteries (such as
lithium-ion batteries, fuel batteries, and metal–air batteries) have attracted extensive interests. Among
the emerging battery technologies, metal–air batteries (MABs) are under intense research and
development focus due to their high theoretical energy density and high level of safety. Although
significant progress has been achieved in improving battery performance in the past decade, there are
still numerous technical challenges to overcome for commercialization. Herein, this mini-review
summarizes major issues vital to MABs, including progress on packaging and crucial manufacturing
technologies for cathode, anode, and electrolyte. Future trends and prospects of advanced MABs by
additive manufacturing and nanoengineering are also discussed.
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1. Introduction

1.1. Market Demand and Technical Tendencies

With the continued growth of the global economy, the demand for energy has significantly
increased. Unfortunately, Earth’s conventional non-renewable energy resources, such as coal, oil, and
natural gas, are limited. Hence, the development of new energy devices is important for a sustainable
society. Innovative biofuel batteries, supercapacitors, and metal–air batteries are among the most
suitable candidates to meet the energy storage demand [1–6]. Among the various power storage
devices currently on the market, lithium-ion batteries (LIBs) have the best performance. However,
it is still a challenge to achieve high capacity (>200 mA h g−1) in LIBs and to meet safe energy storage
requirements for electric vehicles [7,8]. Recently, MABs attracted significant attention as they can
operate in an open-air atmosphere. MABs consist of metal anodes and an air cathode. The MAB
cathode uses oxygen from ambient air, which leads to significant battery weight reduction, which has
unprecedented advantages for many applications. Compared to other batteries, especially Lithium-ion
batteries, which currently dominate the market share, MABs are cheap, because the cathode source
(oxygen from air) is abundant and the anode can be made using low-cost metals, such as, Al, Zn, Fe.
Figure 1 shows the application of MABs as the energy storage system for various technologies. MABs
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are attractive not only as compact power sources for portable electronics and electric vehicles but also as
compelling energy transfer stations or energy storage devices to manage energy flow among renewable
energy generators, such as wind turbines and photovoltaic panels, electric grids and end-users.
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Theoretical energy density is an important factor in evaluating the performance of various
battery configurations. Figure 2 shows theoretical energy density, specific energy, and nominal cell
voltage of different metal-air batteries (MABs) [9]. As oxygen, directly supplied from the surrounding
environment, is involved in the cathode as an oxidant during the discharge period, MABs show
considerably higher energy density. Although, theoretically, lithium–air batteries (LABs) offer the
best combination of the highest theoretical energy density (5928 Wh kg−1) and high cell potential
(nominally 2.96 V), iron–air batteries (FABs) possess the smallest theoretical energy density and cell
voltage (nominally 1.28 V). Al-, Zn-, and Fe–air batteries are also the research hotspots because of
economic and safety considerations.

In the present paper, aluminum–air batteries (AABs), zinc–air batteries (ZABs), iron–air batteries
(FABs), and lithium–air batteries (LABs) have been reviewed with a focus on working principle and
device configuration, and performance progress. In addition, major technology barriers have been
identified, and possible solutions discussed. Emerging advanced manufacturing methods, such as 3D
printing and laser processing techniques, for the development a high-performance rechargeable MABs,
have also been discussed.

1.2. Working Principles

The working principle of MABs differs from that of traditional ionic batteries. The traditional
ionic batteries involve the transformation of metallic ions from the anode to the cathode. In MABs,
metals or alloys transform to metallic ions at anode and oxygen transforms to hydroxide ions at the
cathode. Figure 3 shows the operation of a MAB in aqueous or non-aqueous electrolyte medium.
In an aqueous electrolyte system, oxygen diffuses into batteries through the gas diffusion layer and
transforms into receiving electrons forming oxygen anions. In a non-aqueous electrolyte system,
oxygen receives electrons and transforms into oxygen anion. Metals release electrons, transform to
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metallic ions and dissolve into electrolytes. These processes will be reversible during a charging
procedure of a rechargeable MAB.
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For MABs, oxygen and metals participate in electrochemical reactions. Specific reaction formulas
are as Equations (1) and (2):

Anode: M
Mn+ + ne− (1)

Cathode: O2 + 2H2O + 4e−
 4OH− (2)

The reaction kinetics of FABs in the alkaline aqueous electrolyte are shown in Equations (1)
and (6) [10].

Anode: Fe + 2OH−
 Fe(OH)2 + 2e− (3)

3Fe(OH)2 + 2OH−
 Fe3O4 + 4H2O + 2e− (4)
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Cathode: O2 + 2H2O + 4e−
 4OH− (5)

Overall reaction: 2O2 + 3Fe
 Fe3O4 (6)

The working principle of AABs in the alkaline aqueous electrolyte is shown in (9) [11].

Anode: Al + 4OH−
 Al(OH)4
− + 3e− (7)

Cathode: O2 + 2H2O + 4e−
 4OH− (8)

Overall reaction: 3O2 + 2Al
 Al2O3 (9)

The working principle of ZABs in the alkaline aqueous electrolyte is shown in (13) [12].

Anode: Zn + 4OH−
 Zn(OH)4
2− + 2e (10)

Zn(OH)4
2−
 ZnO + 2OH− + H2O (11)

Cathode: O2 + 2H2O + 4e−
 4OH− (12)

Overall reaction: O2 + Zn
 ZnO (13)

The working principle of LABs in the non-aqueous electrolyte is shown in (18) [1].

Anode: Li
 Li+ + e− (14)

Cathode: O2 + e−
 O2
− (15)

O2
− + Li+
 LiO2 (16)

LiO2 + Li+ + e−
 Li2O2 (17)

Overall reaction: O2 + Li
 Li2O2 (18)

1.3. Configuration of MABs

Based on packaging and practical application requirements, MABs can be classified as traditional
static batteries, flow batteries, and novel flexible batteries [13]. In this part, three kinds of batteries will
be discussed briefly. The latter part is based on the analysis of solid-state batteries.

Traditional static batteries: As shown in Figure 3, traditional static air batteries have four main
parts: cathode, separator, electrolyte, and anode. Compared to the fast kinetics of the anode reaction,
oxygen reaction on cathodes is kinetically sluggish in nature. A three-phase reaction boundary of
solid (catalyst)–liquid (electrolyte)–gas (oxygen) contributes to the oxygen reduction reaction (ORR).
Meanwhile, a reversed oxygen evolution reaction (OER) occurs on a two-phase boundary solid
(catalyst)–liquid (electrolyte) at the cathode [14]. Highly efficient bifunctional catalysts are thus
required to facilitate both OER and ORR. In addition, since an active electrolyte is employed in
traditional static MABs, it is challenging to completely overcome the issue of insoluble deposition of
by-products on the surface of both the metal anode and air cathode during the charge–discharge cycles.
These deposited by-products consequently block the electrode pores limiting the diffusion of air that
eventually results in a lower battery performance [15].

Flow batteries: This type of MAB consists of an electrode, separator, electrolyte, and an electrolyte
bank installed as an additional part. Usually, a pump is also integrated to drive electrolyte flow,
as shown in Figure 4b. Flowing-electrolyte configuration addresses some of the problems associated
with the metal anode and an air cathode. For instance, in zinc–nickel batteries, a large volume of
flowing electrolyte decreases the formation of dendrites and irregular shape changes of zinc and
thereby, avoid passivation by improving current distribution and reducing concentration gradients [16].
However, the complicated flowing-configuration of MABs has some shortcomings, including decreased
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energy efficiency and volume density, and increased complications as additional pumps and tubes are
needed to drive the flow of electrolyte during the discharge.

Flexible batteries: With the increasing demand for portable electronics in recent years, light and
small form-factor flexible batteries have become a hot research topic [17,18]. The main components of a
flexible battery include a cathode, anode, separator, and high conductivity electrolyte. Conventional
electrolyte for a flexible battery system is a solid-state electrolyte. A thin metallic plate is used as a metal
anode to reduce the battery weight. Various nano compounds and nanocomposites are being explored as
a potential cathode material. Specific materials include carbon fibers, carbon nanotubes, and graphene.
According to the current development trend, flexible batteries are undergoing an evolution, from polymer
batteries, flexible alkaline batteries, lithium-based batteries to metal–air batteries. Currently, ZABs and
AABs are the ideal flexible batteries due to low cost, safe operation, and high energy density [19].
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1.4. Technical barriers

Although metal–air batteries have been studied for many years, there are still major technical
issues to address for practical applications. Metallic anodes face many challenges, such as corrosion,
hydrogen generation, forming passivation layers, dendritic formation, electrode deformation, and
energy loss due to self-charging. The air anode has many obstacles, such as lack of efficient catalysts
for both ORR and OER, affecting electrolyte stability due to impurity and dissolved gas, and gas
diffusion blockage by side reaction products. Electrolyte selection, which is an important component
for efficient electrochemical reaction, also poses some technical barriers due to side reaction with the
anode, reaction with CO2 from air, and low conductivity. In the following sections, we will discuss
these issues and potential solutions.
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2. Cathodes

2.1. Components of the Cathodic Electrode

On the cathode, chemistry reactions are ORR and OER. The oxidant is oxygen from air atmosphere.
The catalysts are required to lower overpotential of ORR and OER. For an aqueous electrolyte, water
loss should be avoided to keep battery stability. Hence, the practical cathode is composed of a
catalyst layer, gas diffusion layer, and current collector, as shown in Figure 5. The current collector
can be metal and non-metal. Metal current collectors are a porous foam-like metal, for example, Ni,
Cu. Non-metal current collectors are carbon-based material, for example, conductive carbon paper,
graphitic fiber or carbon cloth. Gas diffusion layer (GDL) and the catalysts are also extremely crucial
for cathode performance.
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(C) carbon paper-current collector and gas diffusion and catalyst.

(1) Gas diffusion layer: In MABs, the GDL has multi-folded functions: supporting of catalyst
layer; providing oxygen diffusion channels between air and catalyst layer; preventing water getting into
battery and electrolyte getting out of battery. To better serve as a bridge between air and catalyst layer,
the GDL should be thin, light, highly porous, and hydrophobic. Figure 4b indicates that the ORR in
MABs occurs at the three phase boundaries (oxygen air, liquid electrolyte, and solid catalyst). The GDL
can simultaneously provide hydrophilic micro-channels to the liquid electrolyte, and hydrophobic
layers to prevent electrolyte leakage and good properties of gaseous oxygen diffusion [20].

(2) Catalyst layer: Since the kinetics for the oxygen reaction is naturally slow, bifunctional catalysis
is required to improve ORR and OER to improve electrochemical performances of MABs. Based on
previous researches, platinum (Pt) [21], ruthenium (Ru) oxides, and iridium oxides (Ir) [22] showed
excellent performance in ORR and OER. Furthermore, nanostructures of the following materials also
had good catalytic activity, (a) transition metal oxides, MnO, CoO, NiO, etc. [23]; (b) transition metal
hydroxide and sulfide, NiCoFe-LDH (Layered double hydroxides) layered double hydroxides [24];
(c) spinel compounds, such as CuCo2O4 [25]; (d) carbon-based materials, such as nitrogen doping
carbon [26]; (e) nanocomposite materials mixing ORR catalyst Fe-N-C and OER catalyst NiFe [27].

2.2. Improving ORR and OER

The appropriate catalyst should be designed and applied to maximize catalytic efficiency.
Metal-based catalysts possess high catalytic efficiencies due to different crystal structures. Spinel-type
oxide (AxB3−xO4) [28] and perovskite oxides (ABO3) [29] are widely used as bifunctional electrocatalysts
in alkaline electrolytes. Maiyalagan et al. [30] synthesized a spinel-type lithium cobalt oxide LiCoO2 at
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high-temperature (800 ◦C, LiCoO2-HT) and low-temperature LiCoO2-LT at 400 ◦C. LiCoO2-LT adopts
a lithiated spinel structure [Li2]16c[Co2]16dO4 in which the Co3+ ions occupy all the 16d octahedral
sites (space group: Fd3m) [31]. As shown in Figure 6a, LiCoO2-HT has the α-NaFeO2 structure (space
group: R3m) arrays. Li+ ions and Co3+ ion occupy on alternate (111) NaFeO2-style structure arrays,
due to the large size and charge differences between the Li+ and Co3+ ions [32]. In Figure 6b, it is
obvious that HT-LCoO2 has a better catalytic performance than LT-LiCoO2 and Co3O4.

Catalysts are preferred at nanoscale for better catalytic behavior. By using a vacuum DC arc
method, Lang et al. [33] synthesized a novel Mn3O4/MnO nano spherical transition metal compound.
The results showed that the size of Mn3O4/MnO particles was controlled at a range of 40 to 60 nm.
The Mn3O4/MnO catalyst potential platform reaches to 2.7 V.
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Figure 6. (a) X-ray diffraction patterns and (b) electrochemical behaviors of Co3O4, low-temperature
(LT)-LiCoO2, high-temperature (HT)-LiCoO2 catalysts [30] (Copyright© 2014, Springer Nature).

Nanoscale catalysts can also be fabricated with various other morphologies, such as nano-rod
LaCoO3 [34], 3D ordered mesoporous structure Co3O4 [35], hollow cobalt oxide nanoparticles [36].
Different morphologies of catalysts are shown in Figure 7. Many low-cost and efficient catalysts have been
developed, including transition metals and nitrogen co-doped carbons (M-N/C, M=Fe or Co) [25], metal
oxides [37], transition metal carbides [38], nitrides [39], and metal-free heteroatom-doped carbon-based
catalysts [40]. Compared to metal-contained catalysts, the heteroatom-doped carbon-based materials
with N, S, B, and P, can promote oxygen adsorption on the carbon nanostructure since these hetero-atoms
are more electronegative than carbon, and cause neighboring carbon atoms electron deficiency [41].
Among them, N-doped carbons are extensively studied due to their remarkable ORR catalytic activity.
N-doped carbon materials are shown in four ways, graphitic N, Oxidized N, pyrrolic N, and pyridic N
in Figure 8.

Although several materials have shown catalytic activity for oxygen reaction in MABs cathodes,
the catalytic efficiency is not ideal when used alone. To improve comprehensive catalyst performance,
composition materials have been synthesized and used as catalysts in both ORR and OER. MnO2 and
RuO2 are single catalysts for ORR and OER, respectively. Combining MnO2 with RuO2 is used as a
bifunctional catalyst. Sun et al. [42] synthesized RuO2 nanoparticles (np-RuO2/nr-MnO2) supported on
MnO2 nanorods by a two-step hydrothermal reaction. Electrochemical characterizations are carried on
nanocomposites np-RuO2/nr-MnO2 as catalysts for LABs. Charge–discharge tests showed a reversible
discharge capacity of 500 mAh g−1 for 75 cycles at a current density of 50 mA g−1. LABs with the
RuO2/MnO2 catalyst presented much lower overpotential of 0.58 V at 50 mA g−1 than that measured
with a single catalyst. ORR and OER electrocatalytic activity were tested by using rotating disk
electrodes. It was found that np-RuO2/nr-MnO2 ORR limitation diffusion current was 6.01 mA cm−2,
and ORR half-wave potential (E1/2) was −0.158 V. These results demonstrated that an np-RuO2 and
nr-MnO2 combination can work as an effective catalyst for LABs with high activity while maintaining
batteries stability.
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2.3. In Situ Characterization Using an Electron Microscope

An in situ electron microscope is a promising tool for scientific research due to real-time
observation and plays a major role in many MAB studies, such as the catalytic mechanism, the
oxidation–reduction mechanism, the growth of nanostructures, and the deformation of electrodes.
Based on the distinctive features of the preceding, Katharine et al. [43] found that higher Coulombic
efficiency and more homogeneous morphology of the Li deposits in a coin-cell contributed to
the presence of a compressed lithium separator interface through in situ electrochemical-scanning
transmission microscope (EC-STEM), compared with a macroscale cell. In addition, Yoon et al. [44] used
in situ atomic force microscope (AFM) to measure the dominant wavelength of the wrinkled surface
topography. The planes strain modulus of the SEI was determined from the measured wavelength.
Li et al. [45] explored the reaction mechanism and unveiled that α-MoO3 converted to crystalline
Li2MoO3 in the first stage of lithiation, and further converted to metallic Mo and amorphous Li2O in
the next stage. As shown in Figure 9a, with a negative potential to the Au/MnO2 nanowires (NWs),
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bubble-like NaO2 nucleated on the contact where the Au/MnO2 NW and Na2O intersects, then grows
along the NW, resulting in 18 times volume increase. Meanwhile, the discharge product shrinks as a
result of the disproportionation of NaO2 to Na2O2 and O2, confirming the occurrence of ORR [46].
Similarly, Liu et al. [47] also reported the real-time observation of ORR in Figure 9b. In this research,
CuO nanowires (NWs), as the air cathode, firstly converted to Cu2O and then to Cu, as a metal catalyst
to accelerate the disproportionation of NaO2 to Na2O2 and O2. During the reaction process, the
morphological changes were investigated by an electrochemical atomic force microscope. Liu et al. [48]
used EC-AFM to observe the dynamic process of Li2O2 growth/decomposition during the ORR/OER
on a gold electrode in Figure 9c and found that the Li2O2 decomposed at a lower potential due to
electrochemically generated TTF+ through a homogeneous oxidation mechanism.
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Figure 9. (a) Structure evolution of the NaO2 discharge product during oxygen reduction reaction
(ORR) [46] (Copyright© 2019, Elsevier); (b) Structural and phase characterization of a CuO nanowire
(NW) during discharging and charging in an O2 environment [47] (Copyright © 2018, American
Chemical Society); (c) Cyclic voltammetry performed in electrochemical-atomic force microscope cell
and the resulting AFM image after CV reduction [48] (Copyright© 2016, American Chemical Society).

3. Anodes

The chemical activity of the metal anode determines the discharge capacity. Because of high
metal activity, an unavoidable side reaction with various components in the electrolyte may occur.
Depending on the purity of the metal, the battery performance and the incidence of side reactions can
be different.

3.1. Anode Materials: High Purity Metal and Alloy

Fan et al. [49] took industrial 5 N Al (99.999% high purity) and aluminum alloy (1050, 2011, 3003,
4032, 5052, 6061, 7050, and 8011) as anodes for AABs in alkaline electrolytes, using the hydrogen
collection method and electrochemical impedance spectroscopy (EIS) to determine the corrosion
behaviors, electrochemical properties, and potentiodynamic polarization. Test results of corrosion and
EIS showed the sample in 4 M KOH was more suitable than in 4 M NaOH. Al 8011 had a transfer
resistance (Rt) of 1.247 Ω cm2 in 4 M NaOH and 1.108 Ω cm2 in 4 M KOH. 5 N Al had Rt of 2.29 Ω cm2

in 4 M NaOH and 15.3 Ω cm2 in 4 M KOH. 5 N Al had 1.699 V Ecorr in 4M NaOH and 1.821 V Ecorr

in 4M KOH. All industrial Al alloy anodes had the hydrogen adsorption phenomenon of hydrogen
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evolution reaction, and 8011 had relatively better performance than the others. As shown in Table 1,
Al 8011 had a lower corrosion potential (Ecorr) at −1.42 V, corrosion current (Icorr), of 135 mA cm−2, and
polarization resistance (Rp) of 3.628 Ωcm2 among industrial Al alloys. Therefore, impurity elements
had different roles in the corrosion behaviors. Mg, Mn, Cr, Ti, and Zn were helpful to improve
the corrosion resistance of Al alloy anodes, while Fe, Cu, and Si formed cathodic sites and lowered
overpotential for hydrogen evolution reaction (HER) [49–51]. Different components Al alloys (Zn-rich
and Al-rich phases) worked as abode AABs anode. Test results showed Al-rich alloys were better
performance, due to lower the anodic passivation. Zn-Al alloys are promising anode materials as
primary and mechanical-rechargeable Zn-air batteries [52].

Table 1. Parameters and electrochemical impedance spectroscopy (EIS) value of different grades of Al
anodes [49].

Grade
Ecorr (V vs. Hg/HgO) Icorr (mA cm−2) Rp (Ω cm2)

4 M NaOH 4 M KOH 4 M NaOH 4 M KOH 4 M NaOH 4 M KOH

1050 1.290 1.291 186 176 4.108 5.683
2011 1.410 1.420 135 142 4.124 6.674
3003 1.315 1.340 181 165 4.607 5.892
4032 1.390 1.390 145 174 4.653 2.572
5052 1.310 1.320 191 157 3.766 2.539
6061 1.370 1.380 161 168 4.766 2.655
7050 1.420 1.450 189 143 4.516 2.848
8011 1.420 1.450 135 144 3.628 2.670
5N 1.699 1.821 24.3 4.7 9.668 17.9

Grade

Equivalent
elements solution 1050 2011 3003 4032 5052 6061 7050 8011 5N

Rt (Ω cm2)
4 M NaOH 0.70 0.75 0.57 0.84 0.74 0.49 0.76 1.247 2.29
4 M KOH 1.23 0.69 1.208 0.3351 0.78 0.36 0.60 1.108 15.3

3.2. Metal Coating and Composite Electrodes

Different from previous research using Al alloy as anodes, Mutlu [53] investigated Cu coating
on Al and 7075 Al alloy as anodes. Copper was deposited on the Al surface by chemical (Al or
Alloy/Cu-CD) and electrochemical (Al or Alloy/Cu-ED) processes, SEM images are shown in the
Figure 10a,b. Al has a lower resistance than Al-Cu alloy. EIS measurements showed that copper
on the Al surface could decrease anodic potential and improve batteries performance as shown in
Figure 10c,d. The solution–electrode interaction resistance (Rs) was increased by adding copper to
aluminum because copper can form a protective layer against the corrosion on the aluminum–solution
interface. Hang et al. [54] found that FeS can employ as an additive for the electrode to suppress
hydrogen evolution and improve the cyclic performance of the Fe/C composite anode. FeS additive
and the carbon component also strongly affected the redox behavior of iron. An electrode with FeS
can promote the process (in the Figure 11) of Fe0 to Fe2++ and Fe2+ to Fe3+ at around −0.85 V (a1),
−0.65 V (a2), respectively. Furthermore, there were also additional intermediate species which appeared
around −0.97 V (a0). The discharge capacity of the electrode was significantly improved with adding
2 wt.% FeS, which was mainly because the incorporation of FeS in the electrode improved the adsorbed
capability of S2− on the electrode surface, resulting in the easy breaking of the oxide layer. For HER
at the anode in alkaline electrolyte, both molecular recombination and electrochemical desorption
can be parallel steps in the overall process. The molecular recombination reaction will appreciably
contribute to HER only when the current density is low, and the molecular hydrogen concentration
at the liquid boundary layer is near to zero. Under these conditions, it has been indicated that the
molecular recombination reaction is affected by S2− ion chemisorption.
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3.3. Common Challenge of Metal Anode

The common issues with metallic anodes are corrosion, passivation, and dendrite formation.
These mechanisms are displayed in Figure 12.

Corrosion: Corrosion is one of the major side reactions between metal and electrolyte, and its
reaction can be expressed as follows:

M + (2 + x)H2O
 2M(OH) + H2 (19)

M + H2O
MOX + H2 (20)

Equations (19) and (20) evaluates the corrosion rate due to hydrogen evolution reaction (HER).
For almost all MABs, the M/MO standard voltage was below that of the hydrogen revolution. Therefore,
hydrogen evolution was spontaneously favored. The HER decreased metal anode Coulombic efficiency
because it consumed electrons from the metal anode in the charge. Moreover, hydrogen diffusing into
electrolyte leads to the increase of internal battery pressure and could result in an explosion.

Hydrogen evolution reaction: Hydrogen evolution reaction (HER) was a side reaction of metal
electrodes during the charge–discharge of batteries. The specific working principle is shown in
Equations (19) and (20). Metal releases electrons to the aqueous electrolyte system and hydrogen ions
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replace metal ions obtaining electron reduction in hydrogen. HER in MABs thus influences the rates of
metal electrodes. Hydrogen overpotential decreases on the ZnO surface since the self-discharge rate
reduced with increasing ZnO on the electrode surface [55]. Increasing overpotential of HER (decreased
HER rate) can thus improve the charging efficiency. In addition, the corrosion and oxidation of Al in
alkaline electrolytes depend on electrolyte properties, temperature, and purity [56]. Using ionic liquid
or solid state electrolyte is an effective solution to reduce the HER rate, which has been confirmed in
FABs [57]. An alloy as anodes replacing pure metal also reduced the corrosion rate, and additives,
such as bismuth or sulfur, could minimize the corrosion of the iron electrode and the evolution of
hydrogen [58].
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Passivation layers: Passivation used to describe an electrode that could not be further discharged
because an insulating film on its surface blocked migration of the discharge product. In MABs, LiOH,
ZnO, and Al2O3 were passivation layers for corresponding systems. Soluble species formed at the
air cathode will be reduced to a non-conductive layer on the metal surface. This a non-conductive
layer increases the internal electrical resistance of the cell and prevents metal dissolution. The efficient
method is to use porous electrodes to hinder the formation of passivation layers.

Dendritic formation and deformation: During the metal electrode cycling in an alkaline
electrolyte, the metal anode releases ions during discharge and the metal ions re-deposit on the
surface of the anode during charging. As a result, the metal electrode will gradually change shape, and
its surface will become roughened with uneven thicknesses. Over several charge and discharge cycles,
the uneven shape accumulates to form dendrites, causing the battery system to become unstable or
short cut. Different approaches have been attempted to mitigate dendritic formation and deformation,
such as coating the zinc metal and using non-reaction additives in the zinc electrode or electrolyte [59].
Lithium alloying with Na [60], Mg [61], Al [62] has been confirmed to effectively suppress the growth
of dendritic Li.

In summary, passivation layers happen in AABs, ZABs, and LABs, dendritic structures form in
ZABs, and LABs and FABs, and corrosion may occur in FABs, AABs, ZABs, and LABs. Different
strategies are needed to address these issues.

4. Electrolytes

An electrolyte is a medium to transport ions and electrons to ensure the continued oxidation–reduction
reaction. Electrolyte divided into four types: aqueous, non-aqueous, hybrid, and solid state, as shown in
Figure 13.
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4.1. Aqueous Electrolyte

Alkaline solutions (7 < pH ≤ 14): Alkaline electrolytes are the most applied electrolyte in
aqueous-based MABs, because the ORR is more favorable with faster reaction kinetics and a lower
overpotential, compared to acidic electrolytes. Alkaline electrolytes have a shortcoming that CO2

(from air atmosphere) reacts with electrolyte and forms a carbonate surrounding the cathode. The large
amount of carbonate will block the porous structure of the positive electrode material and decrease
cathode efficiency.

Neutral salt solution (pH = 7): Al alloy–air batteries can discharge in a neutral salt solution with
a lower corrosion rate and higher activity than in an alkaline electrolyte.

Acidic solutions (2 ≤ pH < 7): Acidic electrolytes are rarely used in aqueous-based MABs because
a large amount of H+ in solution could directly react with metal and reducing battery efficiency.
Saidman et al. [63] reported Al-Zn alloy anode performance changed with various types of acids at the
same concentration, pH, and operating temperature. Electrochemical test results indicted Al–Zn alloy
in 0.5 M HCl was more negative than that in 0.5 M HAc: −1.02 V and −0.80 V, respectively.

Hybrid electrolyte: In Figure 14b,c, a novel type of aqueous FABs was equipped with an alkaline
anode electrolyte (anolyte) and an acidic cathode electrolyte (catholyte). The anolyte and catholyte are
separated by an alkali metallic ion (Li+ or Na+) solid-state electrolyte separator. The alkali metal ion
serves as an ionic mediator to sustain the redox reactions at both the anode and cathode [64].Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 22 
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Figure 14. (a) Schematic illustration of theoretical voltages of Fe−air batteries operated with an alkaline
or an acidic cathode electrolyte. Two types of Fe−air batteries with a Na+- or a Li+-ion solid electrolyte,
for (b) a Fe(LiOH)//Li-SSE//O2(H3PO4/LiH2PO4) cell, and (c) a Fe(NaOH)//Na-SS//O2(H3PO4/NaH2PO4)
cell. SSE represents solid-state electrolyte [64] (Copyright© 2017, American Chemical Society).
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4.2. Non-Aqueous Electrolyte

Solid-state electrolyte: Solid-state electrolytes are different from aqueous electrolytes in dual
characteristics of wettability and ion conduction. For MABs, aqueous electrolytes with an excellent
wetting property at three-phase boundaries could be in full contact with the cathode. For a solid-based
electrolyte, the three-phase interface reaction can be restricted by the poor wetting property of the
“immobilized” electrolyte, thereby, interfacial transporting resistance of OH−may be remarkably higher
than that of an aqueous system [65]. Alkaline gel electrolytes (AGEs), consisting of low molecular
weight polymer and alkaline solutions have been developed to mitigate these issues for primary
lithium–air batteries [66].

Ionic liquid electrolyte: Ionic liquids are non-aqueous liquid electrolytes, including two types of
cations: large organic cations with organic/inorganic anions and alkali metal ions in an organic solvent,
such as organic carbonates, ethers, and esters [67,68]. Lithium salt, such as LiPF6, LiAsF6, LiN(SO2CF3)2,
and LiSO3CF3 are commonly used in LABs [69]. PYR14TFSI–TEGDME–LiCF3SO3 are also employed
in LABs [70], consisting of LiCF3SO3 in tetraethylene glycol dimethyl ether (TEGDME) and pure
PYR14TFSI. Ionic liquid electrolytes also face challenges because of the formation of carbonates,
which consume the electrolyte and block the electrode pores. What is more, the understanding of
the oxygen reaction in an ionic liquid is very limited. These hinder the practical application of ionic
liquid electrolytes.

In summary, neutral salt solution, acidic solutions, and hybrid electrolyte are rarely used in
industrial application. Alkaline solutions electrolytes and ionic liquid electrolyte are usually employed.
Aqueous electrolytes do not match LABs. Furthermore, solid-state electrolytes can work in all MABs.

5. Advanced Manufacturing of MABs

Advanced manufacturing techniques for electrodes and batteries is composed of printing and
laser processing. Printing technology has various advantages in microstructure controlling and large
batch low-cost fabrication. Printing includes screen printing [71], spray printing [72], direct ink writing
processing [73], and roll-to-roll fabrication, as shown in Figure 15. Figure 16 shows printed 1- to 4D
structures. 3D and 4D printing are achieved by layer-to-layer printing of functional micro/nanomaterials
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Screen printing is one popular and simple method among printing technologies. During screen
printing, the ink is pressed through a patterned screen onto the substrate using a roller and forms a film
with the structures defined by the patterned screen. Spray printing injects particles from a solution
and can easily fabricate large area sheets with a non-contact mode. Meanwhile, direct ink writing
using a nozzle can feasibly form a 2D–3D structure with a certain thickness on the substrate. Therefore,
different printing technologies can be applied to various battery electrodes.
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5.1. Spray Coating and 2D Printing

Spray coating is a traditional coating method to fabricate composites by depositing particles onto
the substrate surface. According to the working mechanism, spray can be divided into two types,
cold spray and thermal spray. Thermal spray delivers melted metal drops or non-metal particles at high
temperatures and forms a coat on the substrate [74]. Thermal spray has relatively wide applications
in metal or alloy materials processing, such as surface coating and corrosion resistance. In contrast
to thermal spray, cold spray without heating is a coating process to accelerate particles using the
supersonic driving gas passing through a convergent–divergent nozzle and subsequently ejected onto
a substrate in high speed [75]. Cold spray enables the delivery of various materials, including high
melting point metal materials, low melting point polymer materials, even biomaterials. Helfritch [76]
reviewed 24 new applications of cold spray, such as medical devices, electronics, microdevices, and
so on.

Printing is another advanced manufacturing method, including inkjet printing, lithography,
3D printing, 4D printing. In this section, we will first discuss lithography and inkjet 2D printing.
Inkjet printing [77,78] is additive manufacturing and appears after screen-printing and spin coating.
The principle of inkjet printing consists of five stages: drop ejection, drop flight, drop impact, drop
spreading, and drop solidification. Inkjet printing has been used in depositing functional inks onto
various substrates for numerical devices, to specific, sensors, micro-batteries, solar cell, and other
conductive parts of cells [79–82]. Lim [83] thoroughly reviewed technology issues and influence on
different substrates for printed capacitive sensors. Furthermore, since Mirkin [84] reported “Dip-pen
nanolithography” (DPN) in science, lithography became the focus of contemporary microfabrication.
A DPN system is composed of an atomic force microscope tip as a “nib”, solid-state substrate as “paper”,
and molecules with a chemical affinity for the solid-state substrate “ink”. By controlling the AFM
tip, the nib directly writes controlled patterns on the substrate materials. Lithography contributes to
microfabrication in nanomaterials and micro-devices, such as micro-reactors and sensors, micro-optical
system [85–88]. Shao [89] reported nanoimprint lithography in the processing of flexible electronics,
conductive electrodes, optoelectronic devices, flexible microlens, and flexible sensors. Certainly, it is
feasible to print electrodes with a thin-film structure for metal–air batteries.
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5.2. Laser Processing

Laser processing has gained more and more attention in recent years. Laser ablation, laser cutting,
laser welding, laser sintering, laser direct writing, and other laser-assisted synthesis process are powerful
tools for precise manufacturing [90,91]. For microfabrication, laser ablation is used to fabricate porous
graphene and graphene quantum dots. Laser power, spot size diameter, hatch distance, scanning speed,
wavelength, had an influence on the formation of nanomaterials and nanostructures [92,93]. Lasers can
be applied for sintering various materials including metals, ceramics, and polymers [94–96]. In recent
years, laser processing has been employed in the fabrication of electrodes [97], supercapacitors [98,99],
even full batteries [100]. Successful micromanufacturing includes laser-drilling of microholes in
LiFePO4 cathode for Li-ion batteries [101] and laser carbonization anode (graphene) for an interdigital
film battery [102]. Li [6] reported femtosecond laser-reduced nano joined graphene oxide/Au conductive
network as micro-supercapacitors electrodes. Pröll [103] reported femtosecond-laser structuring of
LiMn2O4 composite cathodes for Li-ion micro-batteries.

Yu [3] reported laser sintering of printed anodes for AABs. Results indicated that laser sintering
can remove the organic solvent from the printed Al nanoparticle slurry and increase the conductivity
of the printed anode. Electrochemical characterization demonstrated laser power of 10 W for sintering
for better performance, and 3-layer printed anode with a bigger discharge capacity. A 3-layer battery
cell can yield a 239 mAh g−1 discharge capacity at an operation voltage of 0.95 V, as shown in Figure 17.
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capacity for 3D printed anode and relationship between anode thickness and capacity [3] (Copyright©
2018, Electrochemical Society).

5.3. 3D Printing

Traditional thin film 2D batteries have suffered from limited energy capacity. 3D printing of
flexible micro-batteries with nanostructures can overcome this weakness. Currently, the printed parts of
batteries can be electrodes, current collector, solid-state separator, and catalyst in metal–air batteries [104].
Zhou [105] reviewed 3D printing energy storage devices with a sandwich-type and in-plane architecture
and demonstrated that the electrochemical energy storage systems can be greatly promoted with 3D
printing. Lewis et al. [106,107] reported 3D fully printed electrodes for Li-ion batteries. Li4Ti5O12 (LTO)
and LiFePO4 (LFP) were separately employed as anode and cathode materials. Electrode material
inks were printed onto the substrate, forming multilayer electrodes and an anode and cathode in an
interdigitated structure. The results showed that the charge and discharge of 8-layer full cell delivered
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1.2 mAh cm−2 at a rate of 0.5 C. EIS test revealed the thicker electrode had higher resistance. Meanwhile,
CV testing showed the thin wall displayed broader redox peaks. Furthermore, both thin and thick
electrodes exhibit excellent Coulombic efficiencies. 3D printed LIBs had 4.45 mAh cm−2 at 0.14 mA cm−2,
corresponding a full cell delivering 14.5 mAh cm−2 at 0.2 mA cm−2. The same printed technology can
also be employed for MABs. For MABs, screen printing has been used in catalysts [108]. A remarkable
shortcoming is the narrow choice of suitable materials for printing. In addition, expensive equipment
also limits application. However, 3D printing is the destructive technology in MAB manufacturing due
to unprecedented designing freedom, high precision, and cost-effective processing.

6. Summary and Outlook

In summary, this paper briefly reviewed the recent advances in the studies of the metal–air
batteries. Better batteries should be an excellent combination of cathode, anode, and electrolyte.,
however, there are still some problems to be solved, such as anode side reaction, impure gas CO2

release, electrolyte instability, and so on.
Essentially, improving ORR and OER are quite important to the cathode. Crystallographic

structure, materials size, materials morphology, carbon-based materials-doped, and composites can
influence different activities of catalyst, which is required to improve both ORR and OER in the cathode.

Nanocomposites and doped-carbon materials are good choices for catalysts in ORR and OER.
Research indicates that compared with traditional alloy as an anode, alloys with nanocomposites can
reduce the side reaction and improve discharge capacity. While various electrolytes have different
advantages more efficient solid-state electrolyte is required in rechargeable metal–air batteries.

Integration of advanced manufacturing, especially 3D printing and laser processing, opens
new horizons for MABs. These manufacturing processes allow a better strategy for the systematic
combination of the best performance of anodes, cathodes, and electrolyte for improved energy density,
efficiency, and cycling stabilities. Although many issues still exist, the further development of MABs,
as a compelling alternative to LIBs, holds great promise to address emergent needs of portable
electronics, electrical vehicles, and IoTs.
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4. Jeżowski, P.; Crosnier, O.; Deunf, E.; Poizot, P.; Béguin, F.; Brousse, T. Safe and recyclable lithium-ion
capacitors using sacrificial organic lithium salt. Nat. Mater. 2018, 17, 167. [CrossRef] [PubMed]
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