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Abstract: The analysis of animal movement from telemetry data provides insights into how and why
animals move. While traditional approaches to such analysis mostly focus on predicting animal states
during movement, we describe an approach that allows us to identify representative movement
patterns of different animal groups. To do this, we propose a carefully designed recurrent neural
network and combine it with telemetry data for automatic feature extraction and identification of
non-predefined representative patterns. In the experiment, we consider a particular marine predator
species, the southern elephant seal, as an example. With our approach, we identify that the male
seals in our data set share similar movement patterns when they are close to land. We identify
this pattern recurring in a number of distant locations, consistent with alternative approaches from
previous research.

Keywords: marine animal movement analysis; recurrent neural networks; representative patterns

1. Introduction

The analysis of animal telemetry data can help researchers identify locations popular to animals,
called biological hotspots, and to clarify movement patterns that could improve outcomes of
conservation programs protecting vulnerable wildlife [1,2]. Movement analysis is also important
for studying animals’ search strategies and their behavioural ecology [3]. In addition, because animals
obtain resources (prey, mates, etc.) through movements, their movement patterns reveal important
information on species fitness [4].

Given that the study of animal movement through telemetry technologies started more than
30 years ago, there now exists a wealth of data on animal movement [5]. Recent advances in the
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development of tracking technologies along with improved data analysis and visualisation techniques
have dramatically changed how researchers can study the movements of free-ranging animals.
Increased cross-disciplinary collaborations between mathematicians and ecologists have led to the
development of new quantitative approaches and tools that have become pivotal in the study of animal
movement and have allowed enhanced and broad interpretation of results [3].

Recent analysis demonstrates that marine animal subgroups could have very different movement
patterns. Some research suggests that there could be more uncertainty in determining the target
locations of young, inexperienced individuals [3]. Other studies observed that the preferences of
female seals for locations with mesoscale oceanic circulation are seasonally flexible [6]. Moreover,
ocean currents can also impact a marine animal’s motion patterns [7], and elephant seals typically
forage near the edges of eddies or temperature fronts. On the other hand, pregnant female elephant
seals prefer to forage near mesoscale fronts, perhaps to reduce inter-species competition [8].

In this work, we propose a novel learning model, called a recurrent neural network (RNN) with
confidence measure (RNN-CM), to analyze telemetry data. Our RNN-CM approach can identify
unique segments corresponding to certain animal subgroups with confidence scores. As illustrated in
Figure 1, for given inputs, segments with low confidence are common segments for all the subgroups,
and those with high confidence are unique segments for particular subgroups.

Figure 1. The recurrent neural network with confidence measure (RNN-CM) process with sample
inputs. Left side contains the input segments from marine animals with multiple age or gender
groups, which are processed by RNN-CM. The processed segments can be divided into high and low
confidence ones. The patterns of low confidence segments are shared by different animal groups,
and thus, RNN-CM has low confidence in identifying which group they are extracted from. High
confidence segments can be further divided according to animal age or gender groups, with relatively
high confidence.

2. Related Work

Deep learning is a subfield of machine learning. Based on artificial neural networks, deep
learning is able to learn representations of data with multiple levels of abstraction and has significantly
improved the state-of-the-art in many areas [9]. For example, in hyperspectral data classification,
a deep stacked autoencoder model can obtain useful high-level features and provide competitive
performance [10]. In image classification and object recognition, deep convolutional neural network
based approaches perform far better than other approaches [11,12]. In time series analysis, deep
learning has been used to classify sleep stages with polysomnography signals [13]. Yet, for marine
animals, deep learning mostly focuses on animal detection in images [14].
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For describing telemetry data, many models previously developed have been improved by
cross-disciplinary efforts to quantify, interpret and ultimately understand movement patterns [3,15].
It is likely that real-world movement paths of animals, here called “trajectories”, contain statistically
detectable, and ecologically significant information [16]. Smouse et al. described the three different
basic models of home-range movement, memory-based movement and Lévy movement [17].
State-space models (SSMs) have been widely used on animal telemetry data to identify different
behavioural states [18], such as migrating and foraging. To increase the flexibility of the state-space
model, Markov Chain Monte Carlo methods are introduced to model multiple states, and a kind
of hidden Markov model (HMM) can identify “exploratory” or “encamped” states for movement
trajectories at different time steps [19]. Here, trajectory segments in exploratory state contain many
long steps and few turnings, and those in encamped state contain short steps and more frequent
reversals. Neural networks have also been used to estimate the probability density of an animal’s next
location based on knowledge of distance, resources, and memory [20].

Many algorithms have been developed for different scenarios. Some researchers have studied the
relationship patterns including attraction, avoidance, and following between capuchin monkeys [21].
Some work has focused on the trajectory data clustering [22] and aggregation [23]. Trajectory
classification usually focuses on human beings to identify different transportation modes, such as
walking and driving [24]. For the marine environment, although many previous models focused on
modeling trajectories using multiple states, such as exploratory or migratory states with few turns and
encamped or resident states with frequent reversals, the trajectories of different groups of animals in
the same species have not been the focus of much research.

To probe this problem, we propose a new technique for capturing representative patterns in
trajectories among subgroups of marine animals. Unlike other models (e.g., SSM [18], HMM [19])
focusing on different behavioral metrics (e.g., hunting time), the RNN-CM model is able to identify
small scale movement patterns for specific animal groups. Our approach is an important step toward
a more integrated assessment of animals’ activities that are difficult to observe, which can assist in
answering broader questions to more specifically address what marine animals are doing at various
stages in their migration.

3. Approach

3.1. Data Preprocessing

Our approach considers two kinds of information obtained from animal trajectories. First, we use
dt to denote the distance travelled at time period t. Second, we use θt to denote the change in motion
direction. The positions of an animal at the beginning of time period t− 1, t, and t + 1 are Lt−1, Lt,
and Lt+1, respectively, as recorded by a telemetry device. Thus, dt is the distance between Lt and Lt+1,
and θt is the difference between the direction from Lt−1 to Lt and that from Lt to Lt+1.

If we use (Lot, Lat) to represent the longitude and latitude of an animal’s location at time t,
we can calculate the distance between two consecutive locations ((Lot, Lat) and (Lot+1, Lat+1)) using
the haversine formula, and use it as the traveling distance dt at time t. To determine the animal’s
turning angle, we first calculate the great circle angle relative to the North Pole for the trajectory
from (Lot−1, Lat−1) to (Lot, Lat). We then calculate that angle for the trajectory from (Lot, Lat) to
(Lot+1, Lat+1). By subtracting these two angles, we can obtain the turning angle θt of that animal at
time t.

We use a sliding window of size T to obtain segments of a continuous trajectory, and input these
segments into our model. As defined above, one input segment contains two sets of variables.

d = (d1, d2, · · · , dT) (1)

θ = (θ1, θ2, · · · , θT) (2)
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Data augmentation is also widely used for deep learning and other classification methods to
reduce limitations of datasets [11,25,26]. For example, if a certain class has a much larger sample size
comparing to other classes, it can mislead a classifier to make biased predictions towards that large
class. In our work, we balance the class size before training by randomly oversampling minority
classes [25,26]. Namely, to create an oversampled class for class i, each data item in class i was sampled
Nmax

Ni
times, where Nmax is the the largest class size and Ni is the class size of the ith class.

3.2. Recurrent Neural Networks with Confidence Measure

Some of their trajectory segments may differ significantly when the animals are from different age
or gender groups. We therefore propose the problem that provided a trajectory segment, identifying
relevant group identities for the owner of the segment. Without loss of generality, we consider that our
animal dataset has K groups according to data labels.

Our neural network model is composed of two parts. The first part is an RNN that can extract
features from the input trajectory segments. The second part includes two single-layer neural networks,
each of which is fed by the output of the aforementioned RNN. These two single-layer networks are
used for predicting group labels and for estimating the confidence of the predictions, respectively.
Thus, the overall network is a recurrent neural network with a confidence measure.

For the first part, we use the long short-term memory (LSTM) network [27,28] as the basic element
for analysis. An LSTM cell for time step t takes a tuple (dt and θt) as the input. Each LSTM cell is in
its basic form [27] except that the state variable ht is a vector [28]. In our model, we connect these
LSTM cells in accordance with their represented time steps, so that variables at different time steps are
not isolated:

ht = f([dt, θt], ht−1), for t = 1, 2, · · · , T. (3)

where h0 is initialized randomly.
In the second part, we use the hidden state of the last LSTM cell as the features for group

prediction. If in total there are K groups, we define a binary vector c with length K as the ground-truth
group indicator. Only one entry in c can be one and the index of that entry corresponds to the group
label. We use vector ĉ of the same length to represent an estimator of c. With the value of the last
hidden state hT , we use a fully connected layer to compute the animal group estimator ĉ for each
trajectory segment. We also use another fully connected layer to find the confidence ρ of the estimator.
The vector of ρ is of length two. These two layers can be expressed by two equations as below:

ĉ = WchT + bc, (4)

ρ̂ = WρhT + bρ, (5)

where Wc ∈ RK×H and Wρ ∈ R2×H are weight matrices, and bc ∈ RK×1 and bρ ∈ R2×1 are bias vectors.
Without loss of generality, we consider the state vector hT as a column vector of size H.

An illustration of the network architecture is shown in Figure 2, in which the two fully connected
networks for computing ĉ and ρ̂ can be considered as a single network for computing variable y.
Variable ĉ and ρ̂ are then normalized respectively for the robustness of the approach.
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Figure 2. The network architecture of the recurrent neural network with confidence measure
(RNN-CM). The boxes in the first row are long short-term memory (LSTM) cells, and the hidden
state of the last cell is fed to a fully connected neural network. The superscripts are element indices
of vectors.

Since only a scalar is needed as a confidence indicator, we use a softmax function, h(·),
to normalize ρ̂ and then take the leading entry as the indicator.

ρ̃ = h(ρ̂)[0] =
eρ̂[0]

∑1
k=0 eρ̂[k]

. (6)

In practice, trajectory segments corresponding to certain behaviours (e.g., migration) may be quite
similar for animals from different groups. In this case, classifiers are most likely to make incorrect or
random predictions. We therefore consider these segments unpredictable. On the other hand, some
trajectory segments associated with other behaviours may be quite different between different animal
groups. The classifiers from these segments can therefore more readily predict the group membership
of the animals from these segments, and we consider them as representative segments for the group.
Our aim is to design a classifier that makes good predictions on predictable segments while ignoring
unpredictable ones.

For this purpose, we introduce a new estimator c̃ by using a softmax function to incorporate the
confidence variable with the previous estimator. The variable c̃ is also a vector, and each element of
the vector is defined in Equation (7).

c̃[j] = h(ĉρ̃)[j] =
eĉ[j]ρ̃

∑K
k=1 eĉ[k]ρ̃

. (7)

In this way, for predictable segments, the confidence is high (close to one) and c̃ is close to the
output ĉ of the fully connected layer. For unpredictable segments, the confidence of the prediction is
low (close to zero), so that the group identifier c̃ is neutralized. Here the term “neutralized” means
that all the entries of the vector have similar values such that each segment has a similar probability of
belonging to any animal group.
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To minimize the difference between the estimator, c̃, and the ground truth, c, we define the cost
function as the cross entropy of these two vectors as below:

G(c̃, c) = −
K−1

∑
j=0

c[j] log(c̃[j]) + λ
K−1

∑
j=0

ρ̃[j], (8)

where the last term is an additional regularization on the confidence scores, and the hyperparameter,
λ, is the weight of the regularization. We minimize the cost function during training to obtain optimal
Wc, bc, Wρ, and bρ.

For classification, we can feed the trajectory segments into Equation (3) and after a series of
computations, we can obtain the estimated group label c̃ and the confidence of the estimation ρ̃

from Equation (7) and Equation (6) respectively. To find the representative segments, we can apply
classification algorithms to estimate which segments can best represent the corresponding animal’s
group identity. In our approach, we use ρ̃ as the confidence score. We measure the accuracy by
computing the fraction of trajectory segments with y equal to ỹ, where

ỹ = arg max
i

c̃[i] (9)

y = arg max
i

c[i]. (10)

In practice, if the accuracy of the high-confidence segments is relatively low, we can raise λ to
further restrict the confidence of the mistaken predictions. When the accuracy of the high-confidence
segments is relatively high, the high confidence segments are representative segments of corresponding
groups as predicted. We use λ = 0 by default.

3.3. Multi-Scale Recurrent Neural Networks

The approach above can “translate” the pattern of a T-hour segment into a group label. In addition,
while keeping the T-hour information, we can also emphasize the last few hours (e.g., T/2) for
the “translation”.

To achieve this, we can build another LSTM network by feeding less data (e.g., T/2 < t ≤ T) into
Equation (3), and obtain the final state at t = T (denoted as hS

T). Then, we concatenate hT with hS
T , and

correspondingly increase the number of columns for Wc and Wρ in Equation (5) correspondingly. With
other variables unaffected, we can minimize a similar cost function during the training.

Adding additional scales is possible by building additional separate LSTM networks and
concatenating their last hidden states with hT . Then, only the size of the corresponding variables is
changed, but the whole framework can still be the same.

We use Adam optimizer in Tensorflow [29] for neural network optimization.

3.4. Data Set

We use a dataset that includes trajectories of 489,391 hours from 111 southern elephant seals
(Mirounga leonina, 32 females and 79 males), and their positions obtained from Argos platform
transmitter terminals. All procedures to obtain the data were approved by the respective ethics
committees and licensing bodies including, the Australian Antarctic Animal Ethics Committee
(ASAC 2265, AAS 2794, AAS 4329), the Tasmanian Parks and Wildlife Service, the University of
California, Santa Cruz and the Programa Antártico Brasileiro. The procedures were carried out in
accordance with current guidelines and regulations.

For each trajectory, we use a T-hour sliding window to extract length-T trajectory segments.
We use tr-T to represent the set of segments. The majority of the female seals in our dataset were
adult seals (two were juveniles) and all of the male seals were juveniles or subadults. We therefore
considered representative patterns from gender groups. We randomly selected 80% of the individuals
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in each group and used their segments for training. We selected the remaining 20% of the seals and
extracted their segments for testing. We set T = 6 in this experiment.

4. Results

4.1. Representative Trajectory Segments

RNN-CM allowed us to identify segments with the highest confidence scores. To propose
representative segments for a specific group, we predict animal group identities for each segment and
estimate confidence scores for the predictions. Segments with high confidence scores were deemed
to be representative ones. We call such segments Representative Segments (RES). They are unique
to a specific group (here, male seals), whereas other segments are Common Segments (COS) whose
patterns are shared by different animal groups (here, males and females, and thus, K = 2). The RES
and COS patterns are fundamentally different. To investigate the characteristics of RES, we focus our
discussion on the segments with top-10% confidence scores obtained by RNN-CM. For segments in
RES and COS, histograms with respect to distance dt (in meters) and with respect to turning angle θt

(in degrees) for t = 0, 1, 2, · · · , T − 1 are presented by the first and the second rows of each subplot
in Figure 3. As shown by the histograms, segments in RES are generally short distance movements
and are more likely to follow an unbalanced pattern with a slightly right turn or even a turn in almost
the opposite direction. Given that RES capture the movements of male seals, this could be a unique
pattern for the males for our data set.
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Figure 3. Cont.
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Figure 3. Histograms of distances and angles for trajectory segments with different confidences.
Representative segments are those with high confidences, while common segments are those with
low confidences. t= 0,1,2,3,4,5 are time units of one segment. (a) Representative segments;
(b) Common segments.

4.2. Effectiveness of the Proposed RNN-CM Model

To evaluate the effectiveness of our RNN-CM model, we compared the accuracy of classification
based on the proposed representative segments among different algorithms, including two traditional
classification methods, namely, Linear Support Vector Machine (Linear SVM) [30,31] and Random
Forest methods [32]. These two traditional algorithms have been widely used for data classification [33].
We first trained each algorithm and then used it to identify representative segments with confidence
scores from the same given dataset. In Linear SVM, the confidence score of a datum is the signed
distance of that sample to the hyperplane. In Random Forest, there are multiple decision trees and the
confidence score is the mean predicted class probability of the trees in the forest. Then, we compared
their accuracy, which is measured as the ratio of correct classifications to all classifications.

The results in Table 1 reveal that none of the algorithms perform well when the whole dataset
is taken into account, regardless of the confidence scores (the “All” column). This is because seals in
different groups can have lots of similar segments as they belong to the same species, and thus, it is
difficult for a classification algorithm to identify the labels of these similar segments in high accuracy.
In this case, classifiers perform as random estimators and the accuracy is around 50% for the two
class classification.

If we raise the confidence threshold as shown from right to left, i.e., if we consider only the
predictions with the top X% (X = 10, 20, 30) confidence scores by each algorithm, the accuracy is
increasing because classifiers gradually ignore low confidence estimations and concentrate on high
confidence ones. In such a case, the accuracy of our approach is significantly higher than that of the
other approaches. This is because our approach with deep learning architecture can better describe
latent patterns in the data than other approaches, so that the prediction based on such patterns can be
more accurate. In addition, our confidence measure is integrated together with the classifier during
training, so that it can be better optimized than training the classifier only. We also present the male
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seal segment fraction of the top X% (X = 10, 20, 30) confidence segments, as indicated in brackets of
Table 1. These fractions indicate that most of the representative segments belong to males.

In short, if some trajectory patterns are shared by different animal groups, a classification
algorithm can be confused and cannot make correct group predictions, and consequently gives
low confidence scores for such patterns. On the other hand, trajectory segments that can earn high
confidence scores are generally patterns that are unique to the corresponding animal group. Thus, our
algorithm can identify group-specific patterns more accurately.

In the experiment, the training segments and the testing segments are from different seals. The
consistency of the testing results and the training objectives also indicates that animals in the same
group can share some patterns of trajectory segments.

Table 1. The accuracy of classification based on the proposed representative segments (male segment
fraction of all the high confidence segments) as determined by different algorithms on segments
extracted from a trajectory using a T-hour (T = 6) sliding window.

Confidence Level Top 10% Top 20% Top 30% All

RNN-CM 91.1% [100%] 85.2% [100%] 79.4% [99.5%] 54.6% [59.0%]
Random Forest 83.5% [99.5%] 78.4% [94.4%] 72.1% [85.8%] 57.0% [65.4%]
Linear SVM 85.6% [100.0%] 78.8% [100.0%] 75.2% [100.0%] 49.8% [48.3%]

4.3. Understanding Representative Trajectory Segments

To understand the representative trajectory segments, we examined the locations where the
representative segments took place. Figure 4a presents a heat map that shows the locations of the
representative segments, where red indicates the most concentrated regions and green indicates the
least concentrated regions. As the heat map shows, most segments are near the coastlines of Antarctica
and nearby islands. The enlarged satellite images from Google Maps in Figure 4b–e show the segments
as red spots. These enlarged images show that the segments are mostly on land and sometimes in
water. In addition, the locations on land are concentrated. The seals are likely to go to the same place
on the land after returning from various trips. The red spots on land clearly indicate the seals’ colonies.

The histogram in Figure 5 shows the relationship between time of the year and RES, i.e., illustrating
the fraction of RES for each day of the year. We also plot the monthly average temperature at the Casey
Station, which is representative of the relative temperature in the region over time. From this figure,
we can see that RES are less frequent in May (autumn) when seals are at sea, and more frequent in
January until March, tying in with the period of the moult when seals are spending time ashore or
very close to shore.

As suggested by previous research, coastal polynyas are important habitats for juvenile male
seals [34]. In this experiment, the representative trajectory segments usually took place near coastal
land and belong to male seals. Thus, such segments could be related to their habitat activities.
In addition, these recurring segment patterns are likely to be associated with the memory system of
these seals, which is also in accordance with previous research [35]. Specifically, because RES and
temperature are positively correlated, and RES contain lots of short near coastline trips, they appear to
be related to periods when the young male seals are ashore for molting or resting. The transmitters
were attached near the end of the molting period when the seals’ old fur has been shed and the new
fur has largely regrown. Some juveniles/sub-adult seals also come ashore between April and August
to rest.
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(a) Heat map of all the segments with location labels corresponding to the subplots below
(800× 1000 miles)

(b) French Southern & Antarctic Lands
(50× 50 miles)

(c) Heard Island and McDonald Islands
(5× 5 miles)

(d) Near Casey Station
(5× 5 miles)

(e) Near Davis Station
(5× 5 miles)

Figure 4. Locations of the representative trajectory segments (Approximate area size), https://www.
google.com/maps Map data c©2018 Imagery c©2018 NASA c©2018 Google Terms of Use.

https://www.google.com/maps
https://www.google.com/maps
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Figure 5. Fraction of Representative Segments and Average Temperature Over Different Time of Year.

4.4. Conclusions

Marine animal movement analysis provides important information for behavioural ecology.
Traditional approaches such as state-space models focus on identifying the purposes of trajectory
segments, but to date adding covariates including group characteristics like sex have been difficult.
In this work, we proposed an approach to identifying trajectory segments that are representative of the
movements of marine animal subgroups. Our method contributes to understanding marine animal
habitats and activities, especially when group classification, such as by sex or age, is unknown or
difficult to determine morphologically.
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