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Abstract: The presence of control signal feedback to the reference microphone in feedforward active
control systems deteriorates the control performance. A four-stage method is proposed in this
paper to carry out online feedback path modelling with the control signal. It consists of controller
initialization, feedback path modelling using decorrelation filters, active control operation, and
feedback path change detection for maintaining the control operation. In contrast to the existing
auxiliary noise injection method, the proposed method uses five switches and three thresholds to
control and maintain the system stability by avoiding the interference between control operation and
feedback path modelling, and adaptive decorrelation filters are used to increase the feedback path
modelling performance. Simulation results reveal that the proposed method is capable of tracking
feedback path changes without injecting any auxiliary noise and maintaining the noise reduction
performance and stability of the system.

Keywords: active noise control; online feedback path modelling; decorrelation filter; convergence
speed; stability

1. Introduction

In feedforward active noise control (ANC) systems, the control sound produced by the secondary
source might propagate to the reference microphone, resulting in a contaminated reference signal.
This acoustic feedback deteriorates the control performance and sometimes causes an instability
issue [1,2]. Several approaches have been proposed to overcome this issue. Directional microphones
and loudspeakers can be used to avoid the acoustic feedback [3,4]. However, the directivity is poor in
the low-frequency range and the performance is limited. The use of non-acoustic sensors to obtain the
reference signal avoids the acoustic feedback, but the existing one is only applicable for tonal noise
control [5].

Signal processing techniques have been used to overcome the feedback issues. The infinite
impulse response (IIR) based adaptive feedback neutralization methods have been proposed, but are
constrained by the local minimum solution and stability issue [6,7]. To address the stability issue of
the IIR adaptive filtering, the lattice form IIR filter is introduced [8]. The most popular method for
solving the feedback problem is the finite impulse response (FIR)-based feedback neutralization, where
a fixed neutralization filter is used to subtract the feedback signal from the reference signal. In some
applications, the feedback path is time varying, so online feedback path modelling is needed.

Auxiliary noise generated by a white noise generator can be injected into the system for online
feedback path modelling, but the injected signal is mixed with the residual noise and deteriorates the
noise reduction performance [9]. A three adaptive filter-based method has been proposed in [10] to
control both the predictable and broadband noise with online feedback path modelling using auxiliary
noise, in which an adaptive control filter is used to update the control coefficients, a feedback path
modelling filter is used to compensate the acoustic feedback, and the third filter is used to remove
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the disturbance during the modelling of the feedback path. Nevertheless, the method in [10] uses
separate filters for feedback path modelling (FBPM) and feedback path neutralization (FBPN), which
in turn increases the computational burden. A computationally efficient feedback path modelling and
neutralization (FBPMN) method has been proposed for multichannel active noise control systems by
combining the FBPM and FBPN filters into a single FBPMN filter [11]. A variable step size technique
has been used for updating the coefficients of the FBPMN filter, which improves the performance of
the online feedback path modelling [12]. However, in all the above methods, the injected auxiliary
noise affects the noise reduction performance.

A power scheduling strategy was imposed for the auxiliary noise used for modelling the feedback
path to meet the conflicting requirement of faster convergence of feedback path modelling and lower
steady-state residual error [13,14]. A robust variable step size method for feedback path modelling and
neutralization in a single channel narrowband system is proposed to achieve faster convergence [15].
Recently, a feedback path neutralization filter is used to compensate feedback and a time-varying gain
is incorporated for generating the auxiliary noise [16]. Incorporating frequency weighted penalties,
a robust controller can be designed with a fixed feedback neutralization filter to control noise in a
ventilation duct system [17].

To avoid using auxiliary sound for feedback path modelling, in this paper we propose to use
the control signal for online feedback path modelling and neutralization. A systematic method is
proposed, which includes controller initialization, feedback path estimation, active control operation,
and feedback path changing detection for maintaining the control operation. In the online feedback
path modelling, de-correlation filters are used to increase the convergence rate and reduce the bias of
the feedback path modelling. Unlike the existing methods, the proposed method has three advantages.
First, it avoids the need for an extra auxiliary noise generator; second, it uses a single filter for
feedback path modelling and neutralization to reduce the overall computational complexity, and
third, it decouples the feedback path modelling and control process to improve the performances.
Furthermore, a stability detector is set in the ANC system to ensure the system stability in the event of
howling or a feedback path change. In the first stage of the proposed method, if howling is detected, a
nominal estimate of the feedback path is used in order to stabilize the system. Then feedback path is
estimated followed by the control operation. If a feedback path change is detected depending upon the
preset thresholds in the middle of control operation, the control filter update is ceased and feedback
path is remodeled. The proposed method, therefore, helps in decoupling the control operation and
feedback path modelling.

2. Proposed Method

The proposed method shown in Figure 1 consists of four stages: controller initialization, feedback
path estimation, active control operation, and feedback path changing detection for maintaining control
operation. P(z) is the primary path between the reference microphone and error microphone, P̂(z) is
the estimate of the primary path, F(z) is the acoustic feedback path from output of control filter W(z)
to the reference microphone, F̂(z) is the estimate of F(z), S(z) is the secondary path from output of
control filter to the error microphone, and Ŝ(z) is the estimated secondary path. Five switches are used
to manage the control flow: control signal generation (K1), control filter update (K2), feedback path
estimation (K3), and detection of secondary path change (K4, K5).
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Figure 1. Schematic diagram of the proposed method for active control with online feedback path
modelling using the control signal.

Figure 2 depicts the flowchart of the proposed method. In the initialization, the primary path
estimate P̂(z) can be obtained by using the reference microphone signal and the error microphone
signal with K1 switched off, and the estimated secondary path Ŝ(z) is assumed to be identified as
S(z) to focus on feedback path modelling in the paper. To detect the path changes, three thresholds
are defined:

Tr(n) = 10 log10

σ2
e(n)

σ2
p(n)

, (1)
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ε(n)
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Td(n) = 10 log10
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where Tr(n) is the threshold to detect the residual noise level, Ts(n) is the threshold to detect the
accuracy of the estimated secondary path, Td(n) is the threshold to detect the feedback path change
(stability). σ2

e(n) is the power of the measured error signal e(n), which can be estimated by

σ2
e(n) = λσ2

e(n− 1) + (1− λ)e2(n), (4)

where λ = 0.999 is the forgetting factor with σ2
e(0) = 0, and the range of λ is 0.9 < λ < 1, in general [18].

σ2
p(n) is the power of the primary disturbance, which can be estimated similarly with Equation (4) by

turning off K1. For σ2
ε(n) is the power of the modelling error signal ε(n), and σ2

x(n) is the power of the
signal x(n). σ2

l (n) is the power of the signal xl(n) = βtan h(x(n)/β), where β is a scaling parameter
that determines the mapping of the signal x(n) to the linear range of tanh function. The value of
β is chosen by trial and error in such a way that the most likely range of the incoming reference
signal r(n) lies in the linear range of the tanh function, i.e., r(n) ≈ βtan h(r(n)/β), which is depicted in
Figure 3. The normal residual noise level with control, the normal estimated secondary path accuracy
and the normal threshold Td(n) are assumed to be Tr0, Ts0 and Td0, respectively. All the powers are
estimated recursively similar to Equation (4) with their initial values equal to zero, i.e., σ2

p(0) = 0,
σ2
ε(0) = 0, σ2

x(0) = 0 and σ2
l (0) = 0.
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Figure 3. Effect of different value of β on mapping of r(n) to the linear range of tanh function.

After initialization, the system enters into the first stage. In the first stage, K1 is turned on and the
other switches are turned off for setting the initial controller. The last coefficient of the control filter is
set as a single gain G, and all other coefficients are set as zeros, i.e., W(z) = z−Lw+1G, with Lw denoting
the length of the control filter. G is tuned in such a way that the amplitude of the residual error signal
e(n) is higher than that of the undesired noise p(n) without howling. At this stage, if the power of the
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residual error signal e(n) becomes 20 dB higher than the power of undesired noise p(n), it is considered
as the start of howling.

If howling happens, record 2Lf (Lf denotes the length of F̂(z)) controller output signal y(n) and
reference microphone signal m(n) and use them directly to calculate a nominal estimate of F(z).
The nominal estimate of F(z) can be obtained as:

f̂n(n) = IFFT
(

M(ω)

Y(ω)

)
, (5)

where IFFT denotes the inverse Fourier transform, f̂n(n) is the impulse response vector of the nominal
estimate, M(ω) is the FFT of the microphone signal m(n), and Y(ω) is the FFT of y(n). Although Equation
(5) might not provide an exact estimate of F(z) because the reference signal is contaminated, it can be
used to stabilize the system for further feedback path modelling. It should be noted that the magnitude
of y(n) should be quite large in the above identification because it makes the power of the residual
error signal e(n) about 20 dB higher than the power of p(n) when howling happens.

If there is no howling, the controller G is increased from a small pre-defined value (for example,
G = 1% of the maximal gain can be applied on the system without causing howling) by 2 times each
step until σ2

e(n) > σ2
p(n). That means the system stays in the first stage until σ2

e(n) > σ2
p(n) without

causing howling. Once the system is stable and the above condition is satisfied, it is ready to enter the
second stage.

In the second stage, K1 and K3 are turned on and the other switches are turned off. The feedback
path F(z) is estimated as an FIR filter F̂(z) using the control signal as the excitation signal. The initial
impulse response vector of F̂(z) can be a vector of zeros if no howling occurs in the first stage or the
one obtained with Equation (5) if howling occurs. Because the control signal y(n) and reference signal
r(n) are correlated, the obtained model is biased. Although a delay present in the control filter in the
first stage can reduce correlation somehow, normalized least mean square (NLMS) decorrelation filters
are used in this stage to whiten the signals used in the feedback path modelling process to increase the
convergence speed and reduce the bias of the adaptive filter [19,20].

Two identical adaptive decorrelation filters L(z) = 1 − z−1A(z) are employed to address the
bias and slow convergence issue of feedback path modelling in the second stage, where A(z) is the
z-transform of a(n) = [a0(n), a1(n), . . . , aN−1(n)]

T with N denoting the tap-weight length of A(z). The
feedback compensated signal x(n) = r(n) + f (n)− f̂ (n) passes through the adaptive decorrelation filter
to provide the signal x′(n) = x(n) − aT(n)x1(n), where x1(n) = [x(n− 1), x(n− 2), . . . , x(n−N)]T.
Similarly, the control signal y(n) passes through the decorrelation filter to provide y′(n) = y(n) −
aT(n)y1(n), where y1(n) = [y(n− 1), y(n− 2), . . . , y(n−N)]T. The pre-whitened signals y′(n) and
x′(n) are used to update the filter F̂(z).

The adaptive decorrelation filter is updated using the NLMS algorithm as:

a(n + 1) = a(n) + µl
x′(n)x1(n)

xT
1 (n)x1(n) + δ

(6)

where µl is the step size and δ is used to avoid divide by zero. The tap-weights of the of F̂(z) are
updated as:

f̂(n + 1) = f̂(n) + µf
x′(n)y′(n)

y′T(n)y′(n) + ε
(7)

where µf is the step size, ε is used to avoid divide by zero, and y′(n) =

[y′(n), y′(n− 1), . . . , y′ (n− Lf + 1)]T. It is to be noted that the method described above is applicable
for broadband control only. In this stage, the feedback path modelling is carried out for a certain
time, which depends on the feedback signal to reference signal amplitude ratio. A higher value of the
feedback to reference signal ratio can have shorter time, whereas a smaller value requires a longer time.
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Here, the modelling time duration is chosen by trial and error and can be started with the same time
that is used to model the secondary path.

In the third stage, the switches K1 and K2 are turned on and the other switches are turned off, the
control operation is carried out with the filtered-x least mean square (FxLMS) algorithm. The control
weights are updated as:

w(n + 1) = w(n) − µwe(n)xs(n), (8)

where µw is the step size with initial control weights w(0) = 0, a null vector of length Lw, xs(n) = [xs(n),
xs(n−1), . . . , xs (n−Lw+1)]T with Lw denoting the tap-weight length of the control filter, and xs(n) is

the filtered reference signal, which is obtained by filtering x(n) with the secondary path estimate
^
s(n).

The residual noise is reduced continuously towards normal noise reduction Tr0. If the noise reduction
level increases suddenly, it triggers the system into the fourth stage.

The fourth stage involves the feedback path changing detection. Assume that the normal residual
noise level is Tr0 = −10 dB in the operation. If suddenly it becomes greater than −10 dB, i.e., Tr (n) >

Tr0, there is a path change. It is to be noted that Tr(n) is calculated for each instance of time. At the
same time, σ2

x(n), σ2
l (n) and Td(n) are also estimated in a side branch of the system (detector in the

schematic diagram shown in Figure 1). If Td (n) < Td0 (Td0 = −10 dB for example), the system is stable
and the change is caused by the primary path and the control operation is resumed. If Td(n) > Td0, the
rise in Tr(n) may be due to the secondary path change or the feedback path change, and the control
filter update is ceased by turning off K2. In practice, the secondary path and the feedback path usually
change simultaneously when the secondary source or sound propagation paths change.

To check whether the change is due to the secondary path, K1, K4 and K5 are turned on and the
other switches are turned off. At this time, there is controller output but without controller update,
σ2
ε(n) and Ts(n) are estimated. If Ts(n) > Ts0 (Ts0 = −15 dB for example), the change is in the secondary

path. In this case, the secondary path is remodelled and then the control operation is resumed with
the new model. Here, Ts0 = −15 dB is chosen based on an adequate secondary path model, which
can be obtained with the extended filtering method [21,22]. Although the proposed method focuses
on the feedback path modelling, the secondary path modelling is highlighted here for the sake of
completeness of the whole ANC system.

If Ts(n) < Ts0 (when K1, K4 and K5 are turned on and the other switches are turned off), the rise in
e(n) is due to the feedback path change. The feedback path is modelled by turning on switches K1 and
K3 and turning off the other switches with the previously obtained W(z). After obtaining a new F̂(z),
K1 and K2 are turned on, the other switches are turned off, the active control operation is resumed by
updating the control coefficients as in Equation (8), and the system runs in the third stage.

3. Simulations

In the literature, little research can be found for feedback path modelling using the control signal.
The closest related algorithm is Akhtar’s method [10], which uses random noise for online feedback
path modelling, so it is used as a benchmark for comparison with the proposed method. In the
simulations, the primary path P(z), secondary path S(z) and the feedback path F(z) are FIR filters of
lengths 48, 16 and 32, respectively, which are collected from the data provided in [2], Their spectra are
shown in Figure 4. The adaptive filters W(z), Ŝ(z) and F̂(z) are selected as FIR filters of lengths Lw = 48,
Ls = 16 and Lf = 32, respectively. The adaptive de-correlation filter A(z) is an FIR filter of length N = 5.
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The reference signal r(n) is generated from an autoregressive process:

r(n) = 0.9r(n− 1) + v(n), (9)

where v(n) is a white noise with zero-mean and unit variance. The white noise injected in Akhtar’s
method is a zero-mean with variance 0.05. The sampling frequency used in the simulation is 2 kHz.
All the simulation results are averaged over 10 independent realizations. The mean square error (MSE)
and the relative modelling error ∆F are used as the metrics for comparison, which are defined as:

MSE (dB) = 10 log10

{
E
[
e2(n)

]}
, (10)

∆F (dB) = 10 log10

{
||f(n) − f̂(n) ||2

||f(n) ||2

}
. (11)

In the first stage, K1 is turned on and the other switches are turned off for initializing the controller.
The control filter is set as W(z) = z−47, representing a delay of Lw − 1 samples followed by unit gain.
The amplitude of the residual error signal e(n) is higher than that of the undesired noise p(n) in this
initialization, howling occurs. A nominal estimate of the feedback path using Equation (5) is used to
maintain the stability of the control system. In the second stage, the feedback path modelling is carried
out using the proposed decorrelation filters for 10 s, during which K1 and K3 are turned on and the
other switches are turned off. The benefit of using the decorrelation filters can be noticed from the
modelling error shown in Figure 5.
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The improved modelling accuracy is due to the reduction of bias, which is achieved by the
whitening property of the decorrelation filter. The steady-state modelling error without using the
decorrelation filters fluctuate more as compared to that with the decorrelation filters due to the existence
of bias. Furthermore, the decorrelation filters aid in faster convergence of the adaptive filter, e.g., to
achieve −16 dB modelling error, the one with the decorrelation filters takes 0.7 s compared to 1.1 s taken
by the one without decorrelation filters. The modelling error obtained with and without decorrelation
filters at 2.0 seconds are −20.3 dB and −17.4 dB, respectively.

After the feedback path modelling, K1 and K2 are turned on and the other switches are turned off,
the simulation for control operation runs for 50 s with the original acoustic paths shown in Figure 4.
Then the feedback path changes suddenly, resulting in a situation Tr(n) > −10 dB and Td(n) > −10 dB,
the control update is ceased. The switches K1, K4 and K5 are turned on and the other switches are
turned off, the threshold Ts(n) is checked confirming a feedback path change. The feedback path
remodelling is carried out to estimate the new feedback path. After an adequate modelling, the control
operation is resumed. The simulation parameters used for the proposed method are: µw = 0.0001,
µf = 0.03, µl = 0.01, δ = ε = 0.00001, and β = 60. For Akhtar’s method µw = 0.0001, µf = 0.001, and
µh = 0.0001. The step sizes are chosen by trial and error to make the system stable yet with the fastest
convergence speed.

Figure 6a depicts the modelling error obtained for the whole duration of control operation.
One can notice that the proposed method maintains constant modelling error for the first 50 s because
the feedback path is modelled before the control operation. After the detection of feedback path
change at the 50th second, the controller update is ceased, K1 and K3 are turned on and the other
switches are turned off. The feedback path modelling is carried out from the 50th second to the 70th
second, and reasonably accurate feedback path is obtained using the decorrelation filters. The feedback
path remodelling in the fourth stage takes longer time compared to the feedback path modelling in
the second stage because of the presence of the control filter, whose frequency response is not flat
in general.
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The control operation is resumed after the 70th second, K1 and K2 are turned on, the other switches
are turned off and thus the modelling error is constant. But for Akhtar’s method, both the control
operation and feedback path modelling occur simultaneously, resulting in a continuous variation
of modelling error. It is important to note that the proposed method with the decorrelation filters
obtained approximately 11 dB less modelling error than the one without using the decorrelation filters
and approximately 6 dB less modelling error than Akhtar’s method.

The learning curves for the control operation are depicted in Figure 6b, which shows the superiority
of the proposed method with the decorrelation filters before and after the feedback path change. For the
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first 50 s, the proposed method achieves faster convergence and lower steady-state residual error.
The convergence of Akhtar’s method is slow due to the fact that the control operation and feedback
path modelling process interfere with each other. An inaccurate feedback path estimation filter leads
to increased interferences in control operation, i.e., the presence of feedback component in reference
signal affects the active control performance.

After the 50th second, the feedback path is changed and, therefore, the residual error increases
sharply. From the 50th second to the 70th second, feedback path modelling is carried out neutralizing
the feedback component, and hence the magnitude of the feedback compensated input signal to
the control filer is reduced, consequently the error level reduces due to the existence of the fixed
control filter. After the 70th second, the control operation is resumed and the noise is further reduced.
The improvement in control performance in the proposed method is attributed to the inclusion of the
decorrelation filters to address the issue of biased estimation and the decoupling between the control
operation and feedback path modelling.

Using decorrelation filters in the proposed method increases the computational load, which
include two identical decorrelation filtering, the coefficient update of the decorrelation filter and
obtaining the prewhitening signal, but it has less computational burden compared to Akhtar’s method
using auxiliary noise (see Figure 5 of [10]), which uses an adaptive noise cancellation (ADNC) filter of
length Lh and two separate filters for FBPM and FBPN. Furthermore, it is to be noted that the feedback
path modelling and the control operation are not carried out simultaneously, leading to a reduced
computational load.

The computational complexity is calculated in terms of the number of multiplications (per samples)
and number of additions (per sample). All the methods require Lw multiplications and Lw − 1 additions to
obtain the controller output; Ls multiplications and Ls − 1 additions to obtain the filtered reference signal;
Lf multiplications and Lf − 1 additions to obtain the estimated feedback signal; Lw + 1 multiplications and
Lw additions to update the control filter. Unlike Akhtar’s method a single filter is used for feedback path
modelling and neutralization. The proposed method requires 2N multiplications and 2(N − 1) additions
to obtain the decorrelation filter outputs; 2Lf + 1 multiplications and 2Lf − 1 additions for updating the
feedback path modelling and neutralization filter; and 2N + 1 multiplications and 2N − 1 additions for
updating the decorrelation filter. Akhtar’s method requires Lh multiplications and Lh − 1 additions for
obtaining the ADNC filter output; 2Lh + 1 multiplications and 2Lh − 1 additions for updating the ADNC
filter using the NLMS algorithm. The basic computational load (filtering and filter update) for the related
methods are summarized in Table 1, in which (×) denotes the number of multiplications per sample and
(+) denotes the number of additions per sample associated with different operations. For a particular
case considered in the simulations, the total number of multiplications per sample and additions per
sample are also included in the last row of Table 1.

Table 1. Computational load for different methods.

Operation
Proposed (With the

Decorrelation Filters)
Proposed (Without the
Decorrelation Filters) Akhtar’s Method

× + × + × +

Controller output Lw Lw − 1 Lw Lw − 1 Lw Lw − 1
Filtered signal Ls Ls − 1 Ls Ls − 1 Ls Ls − 1

Controller update Lw + 1 Lw Lw + 1 Lw Lw + 1 Lw
Neutralization filter output Lf Lf − 1 Lf Lf − 1 Lf Lf − 1
Neutralization filter update 2Lf + 1 2Lf − 1 2Lf + 1 2Lf − 1 None None
Decorrelation filter output 2N 2(N − 1) None None None None
Decorrelation filter update 2N + 1 2N − 1 None None None None

ADNC filter output None None None None Lh Lh − 1
ADNC filter update None None None None 2Lh + 1 2Lh − 1
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Table 1. Cont.

Operation
Proposed (With the

Decorrelation Filters)
Proposed (Without the
Decorrelation Filters) Akhtar’s Method

× + × + × +

FBPM filter output None None None None Lf Lf − 1
FBPM filter update None None None None 2Lf+1 2Lf − 1

Total 2Lw + Ls +
3Lf + 4N + 3

2Lw + Ls +
3Lf + 4N − 7

2Lw + Ls +
3Lf + 2

2Lw + Ls +
3Lf − 4

2Lw + Ls +
4Lf + 3Lh + 3

2Lw + Ls +
4Lf + 3Lh − 7

Lw = 48, Lf = 32, Ls = 16,
Lh =16, N = 5 231 221 210 204 291 281

In summary, the proposed four-stage method and the decorrelation filters maintain the control
operation with improved performance and system stability when the feedback path changes. In
contrast to the existing algorithm, the proposed method detects the change of acoustic paths by
monitoring the preset thresholds, and uses five switches to decouple the feedback path modelling
from control operation. Therefore, the implementation of the proposed algorithm is quite simple.
Although, the proposed method can be useful for broadband signals for feedback path modelling, it is
not effective for tonal signals because it is not possible to compensate all the feedback components
when the feedback path modelling is carried out using a tonal control signal. The auxiliary noise
injection method still holds good for a tonal active control system.

4. Conclusions

A systematic four-stage method is proposed for feedforward active control systems to perform
online feedback path modelling with the control signal. The proposed method avoids the interference
between the control operation and feedback path modelling by appropriate toggling of the switches used
for managing the control flow. Furthermore, adaptive decorrelation filters are employed to improve
the feedback path modelling performance, which in turn improves the active control performance.
Simulation results show that the proposed method outperforms Akhtar’s method in terms of faster
convergence and lower residual noise, which uses auxiliary white noise for modelling the feedback
path. However, the proposed method is effective for broadband control only due to the fact that
the feedback path modelling performance is highly reliant on the frequency content of the control
signal. Future works include investigating a proper howling detection technique that can provide high
sensitivity for stability detection and a less distorted reference signal for effective control operation,
and by applying the variable-tap-length algorithm to find the optimal number of decorrelation filter
coefficients necessary to pre-whiten complicated signals.
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