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Abstract: In recent years, significant advances have been gained in visual detection, and an abundance
of outstanding models have been proposed. However, state-of-the-art object detection networks
have some inefficiencies in detecting small targets. They commonly fail to run on portable devices or
embedded systems due to their high complexity. In this workpaper, a real-time object detection model,
termed as Tiny Fast You Only Look Once (TF-YOLO), is developed to implement in an embedded
system. Firstly, the k-means++ algorithm is applied to cluster the dataset, which contributes to more
excellent priori boxes of the targets. Secondly, inspired by the multi-scale prediction idea in the
Feature Pyramid Networks (FPN) algorithm, the framework in YOLOv3 is effectively improved and
optimized, by three scales to detect the earlier extracted features. In this way, the modified network is
sensitive for small targets. Experimental results demonstrate that the proposed TF-YOLO method is a
smaller, faster and more efficient network model increasing the performance of end-to-end training
and real-time object detection for a variety of devices.
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1. Introduction

When people glance at an image, they can immediately know what the objects are, which type
of the targets are in the image, and where they are [1]. In order to match the excellent human visual
system, fast and accurate object detection represents a significant focus of research in the field of
computer vision. Their achievements in this area are used in various applications, such as video
surveillance, face recognition, human–computer interaction, and self-driving technology, to name just
a few [2]. Robust object detection in a simple environment is relatively easy to achieve, but it is hard to
guarantee both speed and accuracy of recognition in practice since the real-world environments may
look more complex [3].

Deep learning techniques have been widely employed in the field of object detection during the
past decade and have become efficient approaches of extracting features from images. Generic object
detection based on deep learning is characterized by two factors: plentiful features and robust feature
representation capabilities. They are also combined with traditional hand-crafted features [4]. Existing
object detection methods based on deep learning can be generally grouped into two categories, the
models based on region proposals and the models based on regression [5].

Currently, classical object detection methods based on region proposals include Region-based
Convolutional Neural Networks (R-CNNs) [6], Spatial Pyramid Pooling Networks (SPP-net) [7],
Fast R-CNNs [8], Faster R-CNNs [9], and Region-based Fully Convolutional Networks (R-FPN) [10].
However, these approaches fail to achieve real-time speed due to the expensive running process and
inefficiency of region propositions. The R-CNNs hypothesizes object locations which depends on
region proposal algorithms. Features in the R-CNN are, first, extracted from each candidate region, and
then fed into convolutional neural networks. Finally, they are evaluated by Support Vector Machines
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(SVM) [11]. The computational cost of R-CNNs is dramatically reduced by sharing convolutions
across proposal [12]. Recent advances, for instance, SPP-net and Fast R-CNN tend to reduce the
training time. However, time-consuming proposal computation is a bottleneck [13]. To this end, a
Region Proposal Network (RPN) is proposed, which shares full-image convolutional features with
object detection networks [14], as a kind of fully convolutional network (FCN), which can efficiently
predict regions with various scales and aspect ratios. The Faster R-CNN is developed by emerging the
RPN and the Fast R-CNN into a single network, in which the convolutional features are shared with
the down-stream detection network. It achieves nearly real-time rates by using very deep networks
and sharing convolutions at test-time, and it can be trained end-to-end for generating detection
proposal [15].

Typical object detection models based on regression are You Only Look Once (YOLO) [1] and
Single Shot Multi-box Detector (SSD) [16]. As a single neural network, YOLO is extremely simple,
which can concurrently predict bounding boxes coordinates and associated class probabilities. Besides,
YOLO frame detection is regarded as a regression problem, and it achieves end-to-end target detection
without complex pipeline [1], which results in high efficiency. Furthermore, YOLO achieves a higher
mean average precision (mAP) than other real-time systems [17]. The SSD detects objects using a single
deep neural network, which only needs input images and ground truth boxes for each object in the
training process. Based on a feed-forward convolutional network, SSD generates a fixed-size collection
of bounding boxes as well as scores of class probabilities. After a non-maximum suppression step,
SSD produces the final detections [18]. In general, the SSD has relatively better accuracy than YOLO.
Nevertheless, both YOLO and SSD fail to perform well on small target detection, partly because the
target may not have enough information to learn from the structures at the very deep convolutional
layers [19].

This paper proposes a multi-scale object detector based on deep convolutional networks, with
the aiming at designing an efficient and accurate model to detect objects, which emphasizes on small
targets. This smaller, faster and more efficient detector is termed a Tiny Fast YOLO (TF-YOLO).
Inspired from the YOLOv3-tiny network, the k-means++ algorithm is an efficient approach of data
pre-processing. Taking accuracy and real-time performance into consideration, TF-YOLO uses three
scales to detect the previously extracted feature. Experimental results demonstrate that TF-YOLO
is not only a cost-efficient solution for practical applications, but also an effective way of improving
accuracy of object detection, with a high mean average precision.

The remaining sections of this paper are organized as follows: Section 2 describes the basic
object detection methods including a brief introduction about the YOLOv3 algorithm, the Darknet
framework, and multi-scale detection. Section 3 introduces the TF-YOLO network which extracts
features from connecting multiple layers and adopts a multi-scale prediction framework. Section 4
presents experimental verification to validate the effectiveness of the proposed detection model. Finally,
conclusions are summarized in Section 5.

2. Related Work

2.1. Preliminaries on YOLO

YOLO reframes object detection as a single regression problem, which obtains bounding box
coordinates and class probabilities straight from image pixels. As one of other cutting-edge detectors,
it has many advantages over the others [20]. Firstly, YOLO is exceedingly fast. On a Titan X GPU,
its third version can run at 45 frames per seconds without any batch processing. Secondly, YOLO
handles the input as a whole when making decisions [21]. Therefore, the contextual information about
classes can be encoded. It is less likely to predict false positives on background. Lastly, YOLO is more
applicable to unexpected inputs and new domains, owing to its good generalizable representations.

The separate components of objects detection are unified into a single network in YOLOv3. At
the beginning, the input image is divided into an S× S grid. Then B bounding boxes and confidence
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score are defined in each grid cell. Each grid cell predicts C conditional probabilities, denoted as
P(Class i

∣∣∣Object). If there is an object in the grid, P(Object) = 1. Otherwise, P(Object)= 0. The
confidence score here refers to the accuracy the box predicts and the probability the objects are
contained, which is defined as P(Object) ∗ IOUtruth

pred . Intersection-Over-Union (IOU), here, refers to
the intersection area between the predicted bounding box and ground truth box, representing a
fraction ranging from 0 to 1. It is noteworthy that conditional class probability (P

(
Classi

∣∣∣Object) ) is

quite different from the confidence score (P(Object) ∗ IOUtruth
pred ). The former is predicted in each grid,

while the other is predicted in each bounding box [1]. Multiply these values in the test process, the
class-specific scores in each box is defined in Equation (1). These scores encode the probability of the
object appearing in the box, as well as how well the bounding box fits the object.

P(Class i

∣∣∣Object) ∗ P(Object) ∗ IOUtruth
pred = P(Classi) ∗ IOUtruth

pred (1)

2.2. The Network of Darknet19

YOLOv3 follows the principle of coordinate prediction in YOLOv2. For predicting the categories,
multi-label and multi-classification are applied instead of original single-label and multi-classification.
Meanwhile, YOLOv3 adopts binary cross entropy loss function instead of multi-class loss function.

On a standard computer with Graphics Processing Unit (GPU), it is easy for YOLOv3 to achieve
real-time performance [22]. However, in the miniaturized embedded devices, such as Nvidia SoM,
the conventional YOLOv3 algorithm runs slowly. The YOLOv3-tiny network can basically satisfy
real-time requirements based on limited hardware resource [23]. Therefore, this paper switches to the
YOLOv3-tiny algorithm. The Darknet19 structure of the YOLOv3-tiny network is shown in Table 1,
which shows streamlined and enables the YOLOv3-tiny network to achieve the desired effect in
miniaturized devices.

Table 1. You Only Look One v3-tiny (YOLOv3-tiny) network structure.

Layer Type Filters Size/Stride Input Output

0 Convolutional 16 3 × 3/1 416 × 416 × 3 416 × 416 × 16
1 Maxpool 2 × 2/2 416 × 416 × 16 208 × 208 × 16
2 Convolutional 32 3 × 3/1 208 × 208 × 16 208 × 208 × 32
3 Maxpool 2 × 2/2 208 × 208 × 32 104 × 104 × 32
4 Convolutional 64 3 × 3/1 104 × 104 × 32 104 × 104 × 64
5 Maxpool 2 × 2/2 104 × 104 × 64 52 × 52 × 64
6 Convolutional 128 3 × 3/1 52 × 52 × 64 52 × 52 × 128
7 Maxpool 2 × 2/2 52 × 52 × 128 26 × 26 × 128
8 Convolutional 256 3 × 3/1 26 × 26 × 128 26 × 26 × 256
9 Maxpool 2 × 2/2 26 × 26 × 256 13 × 13 × 256
10 Convolutional 512 3 × 3/1 13 × 13 × 256 13 × 13 × 512
11 Maxpool 2 × 2/1 13 × 13 × 512 13 × 13 × 512
12 Convolutional 1024 3 × 3/1 13 × 13 × 512 13 × 13 × 1024
13 Convolutional 256 1 × 1/1 13 × 13 × 1024 13 × 13 × 256
14 Convolutional 512 3 × 3/1 13 × 13 × 256 13 × 13 × 512
15 Convolutional 255 1 × 1/1 13 × 13 × 512 13 × 13 × 255
16 YOLO
17 Route 13
18 Convolutional 128 1 × 1/1 13 × 13 × 256 13 × 13 × 128
19 Up-sampling 2 × 2/1 13 × 13 × 128 26 × 26 × 128
20 Route 19 8
21 Convolutional 256 3 × 3/1 13 × 13 × 384 13 × 13 × 256
22 Convolutional 255 1 × 1/1 13 × 13 × 256 13 × 13 × 256
23 YOLO
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2.3. Multi-Scale Prediction in Detecting Objects

Detecting objects at different scales used to be a challenging research topic in the field of computer
vision [24]. Feature pyramids built on image pyramids form the fundamentals of a standard solution,
partly because of their intensity in computing and their memory. Recently proposed target detectors
based on deep learning have avoided pyramid representations [25]. Nevertheless, image pyramids are
not the best approach to compute a multi-scale feature representation. In order to naturally leverage
the inherent multi-scale and pyramidal shape in the feature hierarchy, the in-network feature pyramids
can replace the image pyramids [26] without sacrificing speed and memory.

Relative top-down architectures with skip connections are popular in state-of-the-art object
detection research. The YOLOv3-tiny creates a feature pyramid with strong semantics at two scales
by adopting subsampling layers and a fusion approach. As shown in Figure 1, the size of the two
scales are 13 × 13 and 26 × 26, which are obtained in the detection of ordinary size target, respectively.
Finally, two scales are merged in the end. The architecture is constructed as a feature pyramid, wherein
predictions are independently made on each level. The feature pyramid has rich semantics via a
top-town pathway and lateral connections [27]. In this way, YOLOv3-tiny has the ability to detect
small targets.
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3. Proposed TF-YOLO Network

Previous methods, such as SSD and YOLOv3, regard detection as a regression problem, which
have successfully achieved efficient and accurate results. Nevertheless, these methods fail to detect
objects on an embedded system in real-time. This section introduces the proposed Tiny Fast YOLO
(TF-YOLO) network in detail. As shown in Figure 2, the proposed TF-YOLO network is designed
based on the YOLOv3-tiny algorithm, and it attempts to process more efficiently on the above devices.
Owning to multi-scale fusion, multi-scale detection, and k-means++ clustering, the TF-YOLO network
enables end-to-end training and real-time speeds while keeping high average precision. Therefore,
TF-YOLO network performs well on detecting multi-scale targets, especially on recognizing smaller
targets. The framework flowchart of TF-YOLO network is shown in Figure 3.
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3.1. The Features of Multiple Layers Concatenation

When deep neural networks start converging, the degradation problem will be exposed, and
the accuracy will deteriorate rapidly in the end. Aiming to address that problem, this paper follows
DenseNet proposed by Huang et al. [2]. Short connections in DenseNet enable the training process
to be easier and more accurate in CNN, which is of great importance in image classification. In the
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Dense block, previous convolutional layer output is transferred to the subsequent one. Hence, more
complicated features are extracted by the filters of the convolutional layers, which are included by
multi-layer networks. It can also be understood that all layers are directly connected with each other,
thus apparently alleviating gradient disappearance. By incorporating those ideas into the hidden
network of DenseNet, the sufficient features of the above network can be extracted. Since the layer is
not very deep, the output layer can extract the previous features. Subsequently all of them have been
connected together. This paper adopts the principle of multiple layers concatenation and eventually
achieves satisfactory performance, which will be thoroughly presented in Section 4.

The detailed all-layer connection method utilized in the proposed TF-YOLO detection approach
is display in Figure 4. Specifically, the tenth, eleventh and thirteenth layers of the designed network
are connected, and then these layers feed into the convolutional layer followed by the up-sampling
layer. Similarly, the tensors in eighth and ninth layers are processed together, forming an innovative
input and entering into the next layer. Finally, the corresponding in sixth and seventh layers and the
tensor are connected to the next hidden layer.
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3.2. Multi-Scale Prediction Framework

Small target detection is a significant challenge that commonly causes traditional detectors to
fail. Multi-scale prediction is an important step towards understanding and inferring different objects,
especially small targets, and their arrangements observed in a scene. This section presents an improved
FPN-based multi-scale prediction framework and integrates it to a particular filter detector to address
that problem. The major advantage of FPNs is that they produce a multi-scale feature representation
in which all levels are semantically strong. As a result, predictions can be made on the finest level. In
addition, it can be trained end-to-end with three scales and be used consistently during training and
testing process. Therefore, FPNs are able to achieve higher accuracy without increasing testing time
over the single-scale baseline.
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In the proposed work, several convolutional layers are added from the feature extractor. The last
three predict a three-dimensional tensor encoding bounding box coordinates, object prediction, and
class predictions [1]. Assuming that there are 10 classes in the experiment, and three boxes at each
scale are predicted. Thus, the tensor is M×M× [3× (4 + 1 + 10)], for four bounding box offsets, one
object prediction, and ten class predictions.

The proposed TF-YOLO network adopts the advances of the Darknet structure. The neural
network is not deep, whereas, the features in different scales are merged in the proposed TF-YOLO
network. It connects the feature maps with the same feature scale in the above mentioned Darknet
structure. Meanwhile, the network extracts the feature map from two former convolution layers,
followed by the up-sampling layer. Then the tensors above are connected together. In this way, the
characteristics of the hidden layer, as well as the deep features can be extracted by the full-connection
layer. Section 3.1 explains how to make hierarchical connections in detail. In the first layer, the size of
the tensor is 13× 13× 18. Via two convolutional layers and an up-sampling layer, the tensor becomes
26× 26× 18, which predicts the second scale. This procedure repeats one more time, and the tensors
becomes 52× 52× 18.

In the proposed TF-YOLO network, these three scales are used to detect targets in various sizes.
The network performs large-scale detection in 13× 13 size map and detects the moderate-scale target
in 26× 26. The small target is detected in 52× 52 size map. By connecting the multiple features of the
same scale, the TF-YOLO network prominently promotes the ability to detect objects. The feature
extraction workflow of the TF-YOLO network is shown in Figure 5.
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3.3. K-means++ Clustering in Pre-Processing

Clustering algorithms is generally viewed as an unsupervised method for data analysis [28].
K-means++ clustering is an approach commonly used to adaptively partition a dataset into groups.
It is necessary to specify the number of cluster centers in advance, since k clustering centers are
simultaneously initialized. The way to choose the cluster center is to select the maximum or minimum
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value randomly in the dataset as the initial cluster center. Therefore, the better the cluster centers are
selected, the more effective the algorithm would be obtained.

As mentioned above, K-means++ algorithm is used to conduct latitude clustering at first. It
randomly selects a sample point in the dataset as the first initialized cluster center, and it calculates
the rest for each cluster center [29]. After the sample points are initialized, the distances between the
cluster centers are calculated, then the shortest distance from its own cluster center is chosen. On
the other hand, the sample with the greatest distance is selected as the new cluster center. The above
process is repeated until there is no further change in the assignment of distances to clusters. Thus, the
algorithm converges. Eventually, the final cluster center is calculated using the k-means++ algorithm
to determine the specific parameters of the anchor.

The k-means++ algorithm generally uses the Euclidean distance to measure the distance between
two points. Nevertheless, there are the following three scale targets in the dataset: large-scale targets,
moderate-scale targets, and small-scale targets [30]. The main steps of the K-means++ method are as
follows:

• Step 1: Choose an initial center t1 uniformly at random from the dataset X.

• Step 2: Choose the next center ti, selecting ti = x′ ∈ X with probability D(x′)2∑
x∈X D(x)2 , where D(x) is

the distance from a data point x to the closest center.
• Step 3: Repeat Step 2, until D(x) is the shortest distance. After which, k center is chosen.
• Step 4: Define center T = {t1, t2, · · · , tk}.
• Step 5: For i ∈ {1, 2, · · · , k}, set the cluster Ti to be the set of points in X that are closer to ti than

they are to t j for all j , i.
• Step 6: For i ∈ {1, 2, · · · , k}, set ti to be the center of mass of all points in Ti: ti =

1
|Ti |

∑
x∈Ti x.

• Step 7: Repeat Step 5 and Step 6 until T converges.

The definition of the three sizes of targets here refers to the proportion that they are in the entire
image. Furthermore, in terms of the Euclidean distance, more errors would occur in the larger bounding
boxes rather than in smaller bounding boxes. Since the goal is to get better IOU through anchor boxes,
Jake’s distance is a better choice. Jake’s distance is adapted to the variable box size, which is a good
solution to resolve the error caused by Euclidean distance. The distance formula is defined as:

d(box, centroid) = 1− IOU(box, centroid) (2)

where box represents the sample, and centroid represents the center of the cluster, and IOU(box, centroid)
represents the intersection of the cluster’s center box and the cluster box [31]. The intersection ratio
IOU can indicate the accuracy of the prediction box by Equation (3).

IOU(bbgt, bbdt) =
bbgt ∩ bbdt

bbgt ∪ bbdt
(3)

where bbgt represents the real box, and bbdt represents the prediction box. Combining the above two
equations, the final distance can be calculated as

d(box, centroid) =
bbgt ∪ bbdt − bbgt ∩ bbdt

bbgt ∪ bbdt
(4)

As mentioned above, YOLOv3 algorithm has achieved end-to-end training and high-speed target
detection. However, some problems still exist. Conventional YOLO divides each image into a fixed
grid, which results in the number of detected objects will be limited. The fixed parameters provided
by anchor are suitable for the targets in the VOC datasets, while they are not adapted to the targets
in specific scenes. Common targets, such as vehicles, tanks, and airplanes, have a large aspect ratio.
Therefore, this section takes advantage of the ideas in Fast R-CNN and SSD to re-cluster according to a
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spacific scenario. In the beginning, the network manually sets a priori box. To guarantees the selection
of network is more subjective, and it would make the deep network easier to learn. Furthermore, its
predictions perform better than the original method. In order to optimize the adapted parameters
and select appropriate anchor box size, the designed network needs to re-cluster according to real
application domains. In this way, the TF-YOLO network performs well on multi-scale prediction,
meanwhile, it is insensitive to small objects particularly.

4. Experimental Verification and Result Analysis

In this section, the performance of the proposed TF-YOLO network is evaluated. Specifically,
aerial remote sensing images from NWPU VHR-10 [32–34] are used for training and testing in the
experiment. The NWPU VHR-10 dataset contains a total of 800 very-high-resolution (VHR) remote
sensing images cropped from Google Earth and the Vaihingen dataset, and manually annotated by
experts. The differences between remote sensing and conventional natural images can be briefly
described as follows. First of all, there are numerous small targets with a little visual information in
the remote sensing images. Assuming that the CNN’s pooling layer further reduces the amount of
information to the small targets. After four pooling layers, a 24 × 24 target has only approximately
1 pixel, leading to the dimension too diminutive to distinguish. Secondly, there are various scale and
perspective of remote sensing images. The perspectives of aerial remote sensing images are basically
high-altitude, and the targets on the ground may have different size and mode. Some detectors well
trained on conventional datasets may fail to perform well in remotely sensed images. Thirdly, the
background of remote sensing images is complex for the large field of view. What’s more, a variety of
backgrounds will extend a certain amount of interference on testing targets.

4.1. Comparison of Speed and Precision

For this test, a total of 500 pictures containing 10 types of objects were selected in NWPU VHR-10
dataset. The detailed 10 categories are airplane, ship, storage tank, baseball diamond, tennis court,
basketball court, ground track field, harbor, bridge, and vehicle. Cross validation is used to evaluate the
precision of TF-YOLO. During the process of data pre-processing, nine cluster centers are selected, and
the targets are distributed into three scales by K-means++. The size of these nine scales are arranged
from small to large as follows: (22,19), (46,29), (39,54), (86,52), (71,108), (139,86), (106,161), (231,130),
and (289,188). Meanwhile, a total of 300 images containing small and dense objects were selected in
VOC 2007 dataset.

The samples, based on their accurate category and prediction class, can be divided into the
following four categories [35]: TP (true positive), FP (fault positive), TN (true negative), and FN (fault
negative). Precision refers to the proportion of TP in the predicted positive example, and recall refers to
the proportion of TP in the truly positive example. They can indicate the number of their corresponding
samples. The accuracy and recall rate are defined as follows:

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

Generally, the trade-off between accuracy and recall is a tricky problem. In order to evaluate the
precision among different types of targets, mAP is introduced, which is one of significant measure
metrics to evaluate the test results [36].

Meanwhile, in order to maintain the consistency of the data distribution in each subset, the feature
can be extracted through hierarchical sampling layers. AP and mAP of the three sets of comparative
experiments are illustrated in Table 2. The first set of comparison experiments is the YOLOv3-tiny
network. Inspired by YOLOv3-tiny, the second set of comparison experiments is defined as the
YOLO_k network. Without data pre-processing, its structure is the same as TF-YOLO. The third group
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of comparative experiments is the TF-YOLO network, which improves the size of anchors through
K-means clustering.

Table 2. Comparison of the accuracy of the three networks.

Precision Classes YOLOv3-tiny YOLO_k TF-YOLO

AP(%)

airplane 0.81806 0.81926 0.85771
ship 0.89595 0.92718 0.99084

storage tank 0.74237 0.76223 0.77361
baseball diamond 0.73624 0.82734 0.84513

tennis court 0.88762 0.89091 0.89542
basketball court 0.91849 0.93965 0.95219

ground track field 1.0 1.0 1.0
harbor 0.92718 0.94183 1.0
bridge 0.75806 0.79562 0.81266
vehicle 0.68493 0.73731 0.81731

mAP(%) 0.83689 0.86413 0.89449

One significant advantage of the proposed TF-YOLO network is real-time working on portable
devices. For instance, the TF-YOLO network can be applied to the embedded system on the Nvidia
Jetson TX2. After training models in NWPU VHR-10, the TF-YOLO network runs at about 24.3 FPS.
However, the YOLOv3-tiny network runs at 24.6 FPS. In embedded systems, the YOLOv3-tiny network
is slightly faster than the TF-YOLO network. Partly because the network in TF-YOLO is deeper than
YOLOv3-tiny, and more parameters in TF-YOLO are learnt during the training period. However,
the accurate of the TF-YOLO network is significantly improved than the YOLOv3-tiny network,
which results in the TF-YOLO network performing is well on detecting multi-scale targets with
real-time speed.

As obviously revealed in Table 2, the mAPs of TF-YOLO network are prominently higher than
those of the YOLOv3-tiny and YOLO_k networks, regardless of whether complex objects are included.
The YOLOv3-tiny network does not respond satisfactory to the targets in testing images. Besides, by
improving the network structure in the YOLO_k network, mAP significantly improves to 0.86413,
but it is still unsatisfactory. On the other hand, the proposed TF-YOLO network, within K-means++

clustering to change anchors, demonstrates the highest AP of the single-class target and achieves
0.89449 in mAP.

In VOC 2007 dataset, a total of 200 images containing small targets were selected. In consideration
of the detection results, the TF-YOLO and YOLOv3-tiny networks were chosen for comparison with
state-of-art methods based on region proposals, including SPP-net, RCNN, Faster RCNN, and YOLOv3.
The APs and mAPs of the above methods are displayed in Table 3.

Table 3. Small objects detection results for region-based proposal methods on VOC 2007 dataset.

Method mAP (%)
AP (%)

Aero Bird Boat Car Chair Dog Person Plant Sheep Cow

SPP-net 30.3 42.7 33.9 27.5 24.8 25.3 11.2 34.2 15.1 41.6 43.7
RCNN 36.2 44.9. 38.2 23.4 38.6 29.3 15.2 37.6 19.7 46.5 68.6

Faster RCNN 67.9 74.0 58.7 66.3 72.5 45.7 69.5 73.6 56.7 86.4 75.7
YOLOv3 55.9 68.5 41.2 50.4 80.3 57.9 68.5 36.7 32.6 51.6 71.4

YOLOv3-tiny 27.2 39.9 20.5 12.9 33.6 18.7 11.4 23.4 15.3 41.7 54.7
TF-YOLO 31.5 42.6 35.4 19.7 35.4 22.1 12.7 29.7 15.7 42.1 59.2

Table 3 shows that the AP scores of the TF-YOLO method are higher than those of the classical
methods in every object class. When small objects are included in complicated background, the mAP
of the TF-YOLO method is 31.5%, which is higher than that of the YOLOv3-tiny method by 27.2%,
and SPP-net by 30.3%. When compared with YOLOv3, RCNN, and Faster RCNN, the precision of the
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TF-YOLO method is lower than these methods. Nevertheless, the detection speed of the TF-YOLO
method is much faster than these classical methods, which is shown in Table 4. Taking both accuracy
and detection speed into consideration, TF-YOLO method exhibits the best performance in small object
detection among the above methods in an embedded system.

Table 4. Comparison of precision and speed for region-based proposal methods on VOC 2007 dataset.

Method SPP-net RCNN Faster RCNN YOLOv3 YOLOv3-tiny TF-YOLO

mAP (%) 30.3 36.2 67.9 55.9 27.2 31.5
Run time (sec/img) 0.38 0.82 0.26 0.13 0.10 0.09

4.2. Comparison of Loss Curves

As revealed in Figure 6, the loss curve of the TF-YOLO network converges faster than
the YOLOv3-tiny network. Specifically, the loss curve of the YOLOv3-tiny network converges
approximately from 0.1. Whereas, the loss curve of TF-YOLO starts to converge approximately
from 0.05.
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4.3. Comparison of IOU Curve

IOU is the intersection over union of predicted bounding box and ground truth. The ideal situation
is complete overlap, and IOU should approach 1. In general, if IOU > 0.7, it can be considered as a
good result [37]. For the loss function of the training model, the sum-squared error is used to integrate
the localization error (bounding boxes coordinate error) and the classification error. Figure 7 shows the
IOU curve of the YOLOv3-tiny network and the loss curve of the TF-YOLO network, respectively.

Compared with the IOU curve of the YOLOv3-tiny network, the area under the curve of the
TF-YOLO network is larger. Furthermore, the IOU curve of the TF-YOLO network converges faster.
The TF-YOLO network achieves a higher overlap between the candidate bound and the ground truth
bound, which means the ratio of their intersection to union is greater, which indicates that the predicted
bounding box is close to the ground truth. In summary, the performance of the TF-YOLO network has
been greatly improved.
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4.4. Qualitative Analysis

In aerial photography and remote sensing images, the targets are prone to be smaller in size and
are under complicated background. Sometimes, the scale and orientation would be various. Therefore,
the conventional algorithms generally fail to detect these targets.

In this section, the YOLOv3-tiny network is chosen for comparison with the proposed TF-YOLO
network. Figure 8 depicts a total of 16 pictures of 8 scenarios. The pictures in the first and third rows
are performed by the YOLOv3-tiny network. For comparison, the pictures in the second and fourth
rows are detected by the proposed TF-YOLO network. It is easy to learn that there is certain missed
and false detection in the YOLOv3-tiny network. In contrast, almost all visible targets are effectively
monitored by the TF-YOLO network. For a clearer representation, the above corresponds to the same
picture. It is easy to see that there are certain missed and false detection in the YOLOv3-tiny network.
On the other hand, TF-YOLO network has a much better detection effect, and almost all the targets to
be inspected are detected.

Appl. Sci. 2019, 8, x FOR PEER REVIEW  12 of 16 

(a) (b) 

Figure 7. The comparison of intersection over union (IOU) curves obtained by two networks: (a) 
YOLOv3-tiny network; (b) TF-YOLO network. 

Compared with the IOU curve of the YOLOv3-tiny network, the area under the curve of the TF-
YOLO network is larger. Furthermore, the IOU curve of the TF-YOLO network converges faster. 
The TF-YOLO network achieves a higher overlap between the candidate bound and the ground 
truth bound, which means the ratio of their intersection to union is greater, which indicates that the 
predicted bounding box is close to the ground truth. In summary, the performance of the TF-YOLO 
network has been greatly improved. 

4.4. Qualitative Analysis 

In aerial photography and remote sensing images, the targets are prone to be smaller in size and 
are under complicated background. Sometimes, the scale and orientation would be various. Therefore, the 
conventional algorithms generally fail to detect these targets. 

In this section, the YOLOv3-tiny network is chosen for comparison with the proposed TF-YOLO 
network. Figure 8 depicts a total of 16 pictures of 8 scenarios. The pictures in the first and third rows 
are performed by the YOLOv3-tiny network. For comparison, the pictures in the second and fourth 
rows are detected by the proposed TF-YOLO network. It is easy to learn that there is certain missed 
and false detection in the YOLOv3-tiny network. In contrast, almost all visible targets are effectively 
monitored by the TF-YOLO network. For a clearer representation, the above corresponds to the 
same picture. It is easy to see that there are certain missed and false detection in the YOLOv3-tiny 
network. On the other hand, TF-YOLO network has a much better detection effect, and almost all 
the targets to be inspected are detected. 

    

    

Figure 8. Cont.



Appl. Sci. 2019, 9, 3225 13 of 16

Appl. Sci. 2019, 8, x FOR PEER REVIEW  13 of 16 

    

    

Figure 8. Visual comparisons of detection results between the classical YOLOv3-tiny method (the first 
and third rows) and the TF-YOLO method (the second and fourth rows). 

To guarantee the objectiveness of evaluating the performance of the proposed TF-YOLO 
network, detection results of 20 randomly selected test images from the test-set are also illustrated. 
The testing results are shown in Figure 9. Experimental results indicate that the proposed TF-YOLO 
network enables a better retrieval capability and a higher detection accuracy for object detection, 
and it is sensitive for small targets.  

    

    

    

    

    

Figure 8. Visual comparisons of detection results between the classical YOLOv3-tiny method (the first
and third rows) and the TF-YOLO method (the second and fourth rows).

To guarantee the objectiveness of evaluating the performance of the proposed TF-YOLO network,
detection results of 20 randomly selected test images from the test-set are also illustrated. The testing
results are shown in Figure 9. Experimental results indicate that the proposed TF-YOLO network
enables a better retrieval capability and a higher detection accuracy for object detection, and it is
sensitive for small targets.
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5. Conclusions

This paper proposes a multi-scale object detection approach for small targets detection. The
improved incremental network for real-time object detection is termed as Tiny Fast YOLO (TF-YOLO)
network. The major improvement of the TF-YOLO network is owning to its structural optimization
of the YOLOv3-tiny network. In addition, introducing the K-means++ algorithm as a starting point,
the TF-YOLO network can get a better priori box for each target, with clustering the dataset and
selecting the number and specifications of the candidate frames. In this way, the TF-YOLO network
can carry out multi-scale prediction, and the accuracy of the detection of small targets has also been
significantly improved. Compare to conventional detectors, this paper is a smaller, faster and more
efficient detector, increasing the performance of end-to-end training and real-time object detection to a
variety of devices, even the embedded systems or portable devices. Experimental results demonstrate
that the TF-YOLO network takes full advantage of image features in the framework and improves the
performance on small targets with less time consuming. Considering a trade-off between accuracy and
speed, the proposed TF-YOLO network exhibits the best performance in small object detection among
the state-of-the-art methods. In future work, the lower level features will be richly extracted with the
multi-scale paradigm to promote detection performance.
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