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Abstract: The objective of this work was to apply heuristic optimization techniques to a steel-concrete
composite pedestrian bridge, modeled like a beam on two supports. A program has been developed
in Fortran programming language, capable of generating pedestrian bridges, checking them, and
evaluating their cost. The following algorithms were implemented: descent local search (DLS),
a hybrid simulated annealing with a mutation operator (SAMO2), and a glow-worms swarm
optimization (GSO) in two variants. The first one only considers the GSO and the second combines
GSO and DLS, applying the DSL heuristic to the best solutions obtained by the GSO. The results
were compared according to the lowest cost. The GSO and DLS algorithms combined obtained
the best results in terms of cost. Furthermore, a comparison between the CO2 emissions associated
with the amount of materials obtained by every heuristic technique and the original design solution
were studied. Finally, a parametric study was carried out according to the span length of the
pedestrian bridge.
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1. Introduction

Nowadays, society’s concern about the impact of activities is rising, not only their economic
influence, but also the environmental impact. The construction sector is one of the most carbon intensive
industries [1] due to the need for large amounts of materials and, henceforth, large amounts of natural
resources. Therefore, researchers are investigating how to achieve cost efficient and environmentally
sustainable processes for the construction industry. The term sustainable development was introduced
for the first time by the Brundtland Commission, defining it as, “development that meets the needs
of the present without compromising the ability of future generations to meet their own needs” [2].
Since then, countries have been raising awareness about the compromise to the future generations,
modifying their policies and demanding cheaper, ecofriendly constructions, without forgetting their
safety and durability. In essence, the demands of the governments are to reach solutions that reduce
their impact on the three main pillars: the economy, the environment, and society.

These demands translate into restrictions for constructors and designer. The former need to
carry out the constructions with new strategies to improve sustainability, while the designers have to
conceive their projects in a cheaper, ecofriendly way. This means profiting the materials and taking
maximum advantage of their characteristics, and maintaining durability and safety.

The traditional recommendation for the designers is to take a starting point for their designs.
Furthermore, there are lots of strict codes and regulations to ensure the safe and reliability of
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constructions, mostly on the structure field. There are many codes, which define bridge loads [3] and
concrete, steel, and composite bridge design [4–6]. In the same way, the European Committee for
Standardization (CEN) has advertised regulations related to structural bridge design [7–9] as has the
American Association of State Highway and Transportation Officials (AASHTO) [10]. In addition,
authors have been working to provide proper box-girder bridge designs [11]. This search for optimal
structures has led researchers to search for new forms of design, minimizing structural weight [12] and
economic cost [13].

Since the first relevant works carried out in the field of structural optimization [14,15], the interest
in the application of these techniques has grown a great deal, due to the different structural typologies
studied (steel structures [16], reinforced or pre-stressed concrete structures [17,18], or composite
structures [19–24]), as well as for the methods and algorithms used [25,26]. However, researchers
have focused, to a large extent, on the cost optimization of these types of structures. Some researchers
have stated that there is a relationship between the cost and environmental optimization, and cost
optimization is a good approach for the environmental one [27].

Optimization looks to find the values of the parameters that define the problem that allow us
to find the optimal solution. In the structural field, the problems tend to have too many variables to
analyze all the possible solutions. Therefore, the use of approximate methods that allow us to reach
optimal solutions have been studied. Research about heuristics and metaheuristics has been performed
recently [28], such as neural networks [29], Hybrid Harmony Search [30], genetic algorithms [31,32],
or simulated annealing [25,26]. Other authors have applied accelerated optimization methods, like
kriging [33], allowing to simplify the main structural problems.

Some researchers have already applied the multi-criteria optimization for bridge design [34],
considering other factors, besides the cost, like the security of the infrastructure and the CO2

emissions [27], the embodied energy [35], or the lifetime reliability [36]. However, these multi-criteria
methods have not been applied to composite bridges. Other researchers, such Penadés-Plà et al. [37],
have done a review of multi-criteria decision-making methods to evaluate sustainable bridge designs.
Nevertheless, if we focused on composite bridges there is a lack of knowledge.

In recent years, databases measuring the environmental impact of materials have been elaborated,
because of the importance of incorporating the design criteria to consider the impact on CO2

emissions [38–40]. Many researchers, such as Yepes et al. [41] and Molina-Moreno et al. [42], have
used these databases to study the difference between the cost and the CO2 emission optimization for
reinforced concrete (RC) structures.

The objective of this research was to study the differences between three heuristic optimization
techniques applied to a steel-concrete composite pedestrian bridge. Furthermore, the differences
between the CO2 emissions associated with the material amounts obtained from each heuristic were
analyzed and compared with the original structural design. Finally, a parametric study, according to
the span length, was performed.

2. Optimization Problem Definition

The problem proposed in this study is a single-objective optimization of a composite pedestrian
bridge. To reach this purpose, a program that determined the optimum values of the variables was
created. The objective was to minimize the objective function associated with the cost (1), satisfying
the constraints imposed on the problem, represented by the Equation (2):
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where vector x contains the design variables. To adjust the variables to real cases, these are discrete.
The total cost objective function is given in Equation (1), where pi is the prices of every construction
unit and mi the measurements obtained by the design variables. For example, for a random structure,
the vector x would contain the design variables of that random structure, mi would contain the amount
of materials associated with these variables, and these measurements, multiplied by their unit prices
(pi), result in the total cost of the structure.

The values of cost for each variable contains the materials, labor and machinery. Because of the
characteristics of the construction materials, the maintenance was not taken into account in this study.
The construction place assumed in this paper was Valencia. The construction units included in this
study (rc) were the volume of concrete, the amount of reinforcement steel, the amount of rolled steel,
and the amount of shear-connector’s steel.

The unit prices of the materials were taken from the price table of the College of Civil Engineers
of the Valencian Community for the year 2012. Furthermore, the CO2 emissions for each construction
unit were obtained from Molina-Moreno et al. [42]. The data of rolled steel and shear-connector steel
were taken to the BEDEC ITEC database of the Institute of Construction Technology of Catalonia [40].
Table 1 contains all the data on costs and CO2 emissions considered in this work.

Table 1. Prices and CO2 emissions.

Unit Measurements Cost (€) Emissions (kg CO2)

m3 of concrete C25/30 93.71 224.34
m3 of concrete C30/37 102.41 224.94
m3 of concrete C35/45 105.56 265.28
m3 of concrete C40/50 111.64 265.28
kg of steel (B-500-S) 1.20 3.02
kg of shear-connector steel 2.04 3.63
kg rolled steel (S-355-W) 1.70 2.8
Concrete classification according to EN 1992

2.1. Design Variables

The structural solution was defined by the parameters and variables, the fixed and variable data,
respectively. In this work, the objective was to obtain an optimum steel-concrete composite pedestrian
bridge with a box-girder cross section of 38 m of span length, modeled like a beam on two supports.
The parameters are defined in Table 2. These values were considered fixed for the optimization.
The construction was carried out on the ground and then large tonnage cranes lifted the structure.
This constructive process made it possible to leverage the materials, because the steel and concrete
deflection beginnings were the same when the structure was put into service.

Figure 1 shows the deck cross section geometrical variables and the reinforcement. Table 3 shows
the limits defined for all the variables considered in this problem. The section is formed by two main
elements, one the one hand, the steel beam conformed to steel sheets, welded and bolstered with
longitudinal and transversal stiffeners. On the other hand, a reinforced concrete slab placed in the top
of the steel beam and connected to this element by steel shear-connectors. Optimization variables were
discrete, to bring the problem into line with reality. It was noted that some dimensions used may not
have been practical, but allowed the algorithm to visit feasible intermediate solutions to find better
optimal solutions. The total dimension of the problem was 1.67 × 1027 possible solutions, because of
this, the complete evaluation of the problem was unapproachable. The problem optimization was
carried out by heuristic techniques.



Appl. Sci. 2019, 9, 3253 4 of 18

Table 2. Parameters considered in the analysis.

Geometrical Parameters
Pedestrian bridge width B = 2.5 m
Number of spans 1
Span length 38 m

Material Parameters
Maximum aggregate size 20 mm
Reinforcing steel B-500-S

Loading Parameters
Reinforced concrete specific weight 25 kN/m3

Auxiliary assembly triangulations self-weight 0.14 kN/m2

Live Load 5 kN/m2

Dead load 1.15 kN/m2

Temperature variation between steel and concrete ±18 ◦C

Exposure Related Parameters
External ambient conditions IIb

Code Related Parameters
Code regulations EHE-08/IAP-11/RPX-95
Service working life 100 years
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Figure 1. Box-girder geometrical variables and reinforcement.

Table 3. Box-girder geometrical variables description and values range.

Concrete Slab Variables Range Values Step Size
CL Slab depth 15 to 30 cm 1 cm
CB Slab edge depth 10 to 30 cm 1 cm
VL Lateral slab cantilever 0.5 to 0.625 m 5 mm
DT Transversal reinforcement diameter 6, 8, 10, 12, and 16 mm -
DLS Top longitudinal reinforcement diameter 6, 8, 10, 12, and 16 mm -
DLI Bottom longitudinal reinforcement diameter 6, 8, 10, 12, 16, 20, and 32 mm -
SBTC Transversal reinforcement separation in span center 10 to 30 cm 1 cm
SBTA Transversal reinforcement separation in supports 5 to 25 cm 1 cm
NLS Number of top longitudinal reinforcement bars 10 to 40 1
NLI Number of bottom longitudinal reinforcement bars 10 to 40 1

Metal Beam Variables
CA Metal beam depth 1.086 to 2.375 m 1 cm
AAI Bottom flange width 1 to 1.5 m 1 cm
SRL Longitudinal stiffener spacing 0, 0.16, 0.26, 0.36, and 0.46 -
SRT Transversal stiffener spacing 1, 2, 3.8, 7.6, 38 m -
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Table 3. Cont.

EAS Top flange thickness 8 to 40 mm 2 mm
EAL Web thickness 8 to 40 mm 2 mm
EAI Bottom flange thickness 8 to 40 mm 2 mm
ERL Longitudinal stiffener thickness 8 to 40 mm 2 mm
ERT Transversal stiffener thickness 8 to 40 mm 2 mm
DP Shear-connectors diameter 16, 19, and 22 mm -
LP Shear-connectors length 100, 150, 175, and 200 -
STP Transversal shear-connectors spacing 5 to 25 cm 5 cm
SLPC Longitudinal shear-connectors spacing in mid span 30 to 50 cm 5 cm
SLPA Transversal shear-connectors spacing in supports 10 to 30 cm 5 cm

Mechanical Variables
FCK Concrete characteristic strength 20 to 35 MPa 5 MPa

2.2. Structural Analysis and Constraints

The structure was analyzed like a linear element. The model of the structure considered the shear
deformation and the effective flange width [6]. To obtain the stresses of the structure to check regulations
and recommendations constraints, a Fortran language program was implemented. This program
calculated the stresses in two sections: mid span and supports. In this structure, the highest stresses
occurred in these areas. Prior to the verifying limit states, the program needed to calculate stress
envelopes due to the loads. This program evaluated the stress envelopes due to a uniform load of
5 kN/m2 and the deck self-weight, including the bridge railing and asphalt (see Table 2). Note that
the thermal gradient [5] and the differential settling in each support were also taken into account.
The model implemented obtained the beam stresses and the transversal section tensions to assess the
structural design validity.

Once the stresses were obtained, a structural integrity analysis was performed. The ultimate
limit states (ULS) assessed the capacity of the structure against the flexure, shear, torsion, and the
combination of the stresses. It further considered the minimum reinforcements to resist the stresses
and the examination of the geometrical conditions. To evaluate the structural capacity, the regulations
employed to obtain the equations that allow the verification of the pedestrian bridge have been the
Spanish code on structural concrete [4], the Spanish recommendations for composite road bridge
project [6], and the code on the actions for the design of road bridges [3]. The serviceability limit states
(SLS) assessed the capacity of the structure to continue its service. The ULS considered in this study
were: bending, shear, torsion, shear–torsion interaction, and the stiffeners verification. It must be taken
into account that once the variables that define a frame solution have been chosen, then geometry,
the materials, and the passive reinforcement are defined. It should be noted that no attempt has been
made to calculate the reinforcement in such a way as to comply with common design rules. Such
common design procedures follow a conventional order for obtaining reinforcement bars from flexural
ULS, and then checking the SLS and redefining if required. While this order is effective, it ignores other
possibilities that heuristic search algorithms do not oversee. The seismic verifications are not necessary
due to the small value of the calculus acceleration for the location of the constructions. On the other
side, the SLS assessed were: deflections, vibrations, cracking, and web deformation. The vibration
limit state was verified in accordance with the restrictions for footbridges [4]. The SLS of cracking
included compliance with limitations of the crack width for existing durability conditions. With respect
to deflection, the instantaneous and time-dependent deflection was limited to 1/500th of the main span
length for the characteristic combination [4], and the frequent value for the live loads was limited to
1/1200th of the main span length [5]. Concrete and steel fatigue were not considered, as this ultimate
limit state is rarely checked in pedestrian bridges. In addition, the recommendations indicated in the
specialized bibliography [43–45] were considered.

The modulus implemented compared the structure model values with the values obtained from
the regulations equations. This modulus verified the demands of the safety, as well as those relating to
the aptitude for service requirement. Therefore, the limit states and the geometrical and constructability
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requirements must be guaranteed. The ULS checked that the ultimate load effects were lower than the
resistance of the structure, as seen in Equation (3):

RU ≥ Su, (3)

where Ru is the ultimate response of the structure and Su the ultimate load effects. For instance, the
ULS of the shear and torsion interaction reduced the shear resistance due to the effect of the torsion.
The SLS covers the requirements of functionality, comfort, and aspect (Equation (4)):

Cs ≥ Es, (4)

where Cs is the permitted value of the serviceability limit and Es is the value obtained from the model
produced by the SLS actions.

3. Applied Heuristic Search Methods

3.1. Descent Local Search

This algorithm (Figure 2) begins by obtaining a random initial solution. Then, a small movement
is produced in randomly chosen variables, increasing or decreasing them by a unit step. The algorithm
obtains the cost and the evaluation modulus check if the alternative fulfils the constraints. If the cost of
the working solution is lower than the first and the new solution fulfills the restrictions, then it replaces
the previous one. This process is continued until no better solutions are found, after a certain number
of iterations.
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The movements set out in the study modified 1 to 25 variables. The number of iterations
used with no improvement were 100, 500, 1000, 2000, 5000, 10,000, 100,000, 500,000, 1 million, and
10 million. Figure 3 shows the average cost values according to the number of iterations stop criteria.
With movements of one, two, three, four, and five variables, the algorithm converged very quickly in
such a way that improvements were no longer achieved from 500, 5,000, 100,000, and 500,000 iterations,
respectively. Movements of more than five variables always improved the results, as the number of
iterations increased, starting to converge from 10,000 iterations. The most balanced evolution was
given to a movement of five or six variables; given that it converged from 10,000 iterations.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 20 
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3.2. Hybrid Simulated Annealing with a Mutation Operator

The hybrid simulated annealing (SA) with a mutation operator (SAMO2) is an algorithm developed
by Martí et al. [26] (Figure 4). This technique is used to combine the advantages of good convergence of
SA and the promotion of the diversity of the genetic strategy. SA, developed by Kirkpatrick et al. [46],
is based on the analogy of the thermodynamic behavior of a set of atoms to form a crystal. “Annealing”
is the chemical process of heating and cooling a material in a controlled fashion. Genetic algorithms seek
the best solution through operators such as selection, crossover, and mutation. Soke and Bingul [32]
effectively combined both algorithms. SAMO2 introduces the probabilistic acceptance of poorer quality
solutions during the process, allowing it to escape from local optimums and to finally find the highest
quality solutions. To do this, it accepts worse solutions with a probability Pa, given by the expression
of Glauber (5), where T is now a parameter that decreases with the time, thus reducing the probability
of accepting worse solutions, from an initial value, T0:

Pa =
1

1 + e
∆E
T

. (5)

This method was applied using the following fixed variable movements: 2, 3, 4, 5, 6, and 12.
The initial temperature was set by the method proposed by Medina [47]. Markov chain lengths of 5,000,
10,000, 20,000, and 30,000 were tested. In this work, a geometrical cooling of the type Ti+1 = k·Ti was
adopted, considering k < 1, which has the advantage of prolonging the final phase of the search when
the temperature is low. The coefficients k used were 0.80, 0.85, 0.90, and 0.95. For the stop criteria, two
were set in this study: that the temperature was less than 0.001·T0 or that during a Markov chain no
better solution was found.
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From the application of the SAMO2 algorithm, graphs of trajectories of the cost, according to
the number of iterations or the time, were obtained, as in Figure 5. This figure shows the trajectory
of one of the rehearsed processes, where a correct operation of the algorithm is appreciated, initially
accepting high worsening, which decreases as the process progresses, focusing the search on solutions
with similar or lower costs, which divides the process into an initial diversification phase and a final
intensification phase.
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3.3. Glow-worm Swarm Optimization (GSO)

The glow-worm swarm optimization algorithm mimics the behavior of a firefly swarm and was
proposed by Krishnanand and Ghose [48]. Glow-worms produce a natural light that is used as a signal
to attract a partner. Each glow-worm carries an amount of luminescence, which we will call “luciferin”.
It is considered that the maximum distance at which this luminescence is perceived is limited by a
maximum radial value, which we will call the sensitivity radius rs. So, the decision range for each
glow-worm is also delimited by a maximum radial value ri

d, that complies with 0 < ri
d ≤ rs, which we

will call a decision radius. One glow-worm i considers another firefly j as its neighbor if j is within its
decision radius ri

d and the level of luciferin j is greater than that of i.
The ri

d decision radius allows the selective interaction of neighbors and helps the disjointed
formation of sub-branches. Each firefly selects, through a probabilistic mechanism, a neighbor, who has
a higher value of luciferin and moves towards it. These movements, which are based solely on local
information and the selective interaction of neighbors, allow the swarm of fireflies to be subdivided
into disjointed subgroups, that address, and are found in multiple optimums of the given multimodal
function. The process can be summarized as follows:

1. Initially a swarm of n feasible glow-worms is generated and distributed in the search space. Each
glow-worm has assigned the initial luciferin value l0 and the initial sensitivity radius rs;

2. Depending on the previous luciferin li and the objective function value, the luciferin is updated
as is shown on Equation (6). The luciferin value decays constant ρ (0 < ρ < 1) simulates the
decrease in luciferin level over time, and the luciferin enhancement constant γ (0 < γ < 1) is the
proportion of the improvement in the objective that glow-worm adds to its luciferin. J(xi(t)) is the
value of the objective function of the glow-worm i at iteration j:

li(t) = (1− ρ)·li(t− 1) + γ·J(xi(t)); (6)

3. Each glow-worm uses a probability sampling mechanism to move towards a neighbor with a
higher luciferin value. For each glow-worm i, the probability of moving to a neighbor j is given by
Equation (7), where Ni(t) is the set of neighbors of the glow-worm i in the iteration t, dij represents
the Euclidean distance between glow-worms i and j in iteration t. ri

d(t) is the decision ratio of
glow-worm i in iteration j:

pi j(t) =
l j(t) − li(t)∑

k∈Ni(t) lk(t) − li(t)
; j ∈ Ni(t) , Ni(t) =

{
j : di j(t) < ri

d(t) ; li(t) < l j(t)
}
; (7)
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4. During the movement phase, the glow-worm i moves to glow-worm j. Equation (8) describes the
model of the movement of a glow-worm at any given moment, where xi(t) is the location of the
glow-worm i at iteration t and s is the step factor constant:

xi(t + 1) = xi(t) + s·
( x j(t) − xi(t)

‖x j(t) − xi(t)‖

)
; (8)

5. Once the movement is finished, the update of the radial sensor range is carried out by the
expression of Equation (9), where β is a constant parameter and nt is another parameter that
controls the number of neighbors:

ri
d(t + 1) = min

{
rs, max

{
0, ri

d(t) + β·
(
nt −

∣∣∣Ni(t)
∣∣∣)}}. (9)

In this work, the GSO algorithm was applied to reach an optimum solution for a steel-concrete
composite pedestrian bridge. The values of the parameters used to apply this method were 0.5, 0.1, 0.5,
2, 0.25, and 4 for ρ , γ, β, nt, s, and l0, respectively. The maximum number of iterations was fixed at
4000. The values of n and r0 were taken as different values; the values adopted in the study are shown
in Table 4.

Table 4. n and r0 adopted values.

n 10 20 30 40 50 60 80 100

r0 50 100 150

In this work, the GSO algorithm was applied in two experiments. The first one only used the GSO
to reach the optimum solution, but in the second, the DLS algorithm was applied to the best solutions
of the GSO to improve those solutions. Figures 6 and 7 show the results of the GSO and GSO with
DLS, respectively.
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4. Discussion

4.1. Comparison of the Heuristic Techniques

To compare the results of the heuristic techniques, we focused on the cost obtained by each one.
In Table 5, the results of material amounts and cost for each solution are shown. The heuristic that
obtained the lowest cost is GSO combined with DLS. This result is related to the low amount of rolled
steel achieved, due to the importance of this material in steel-concrete composite pedestrian bridges.
As is seen in Table 5, the heuristics with lower values of cost (SA and GSO with DLS) have a lower
amount of rolled steel.

The concrete strength was the same for DSL, SA, and GSO, but when GSO and DSL were combined,
the geometry variables of the slab decreased due to the increase in the concrete strength, leveraging
the material. The optimum solution for a steel beam consists of locating the area of steel in a way
that allows the mobilization of the highest possible mechanical arm. In order to reach the lowest cost,
the solutions obtained by the optimization algorithms looked for greater depths with lower amounts
of material, increasing the inertia and reducing the structure weight.

Table 5. Cost and material amount for the best heuristic solutions.

DLS SA GSO GSO and DLS

Rolled steel kg/m2 153.99 151.26 157.49 150.66
% Rolled/record % 2.21% 0.40% 4.54% 0.00%
Shear-connector steel kg/m2 0.90 0.90 0.79 0.90
% Shear-connector/record % 14.28% 14.28% 0.00% 14.28%
Concrete m3/m2 0.15 0.15 0.14 0.14
% Concrete/record % 7.52% 7.52% 0.83% 0.00%
Reinforcement steel kg/m2 22.57 22.22 25.50 22.23
% Reinforcement/record % 1.58% 0.00% 14.76% 0.04%
Cost €/m2 304.82 299.77 313.18 297.76
% Cost/record % 2.37% 0.67% 5.18% 0.00%

The rows with percentages express the increase in the quantity of material with respect to the minimum.
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4.2. Sustainability Study

An analysis of the CO2 emissions associated with the amount of the materials obtained from
every cost heuristic optimization was carried out. In addition, a comparison with the original project
of this steel-concrete composite pedestrian bridge was performed. In Table 6, the values of cost and
CO2 emissions of every solution are compared.

Table 6. CO2 emissions and cost data comparison from the reference solution and the heuristics.

Reference DLS SA GSO GSO and DLS

Cost €/m2 399.10 304.82 299.77 313.18 297.76
% Cost/reference % - −23.62% −24.89% −21.53% −25.39%
CO2 emissions kg CO2/m2 700.22 536.39 527.70 552.54 523.68

% Emissions/reference % - −23.40% −24.64% −21.09% −25.21%

As is seen in this table, the GSO and DLS combination heuristic obtained a reduction of 8.12% of
the CO2 emissions compared with the reference. This means that an improvement of 1 €/m2 produced
a reduction of the 1.74 kg CO2/m2.

4.3. Parametric Study

A parametric study for varying span lengths is presented with the GSO and DLS combination
optimization model. Five span lengths were considered: 28, 32, 38, 42 and 48 m. The characteristics that
were studied are the economy, the geometry, and the amount of materials. Tables 7 and 8 compile the
values of the features of the optimization solutions: Table 7 gives the main values of the geometry of the
structure, and Table 8 gives the values of the measurements of the amount of materials of the structure.

Table 7. GSO with DLS combination for 28, 32, 38, 42, and 48 m spans.

Span
(m)

CL
(m)

CA
(m)

CT
(m)

EAS
(mm)

EAL
(mm)

EAI
(mm)

FCK
(MPa)

Total
Depth/L

28 0.17 1.53 1.70 18 8 12 35 0.035
32 0.16 1.37 1.53 18 8 10 30 0.036
38 0.15 1.21 1.36 18 8 10 30 0.036
42 0.15 0.96 1.11 18 8 10 25 0.035
48 0.15 0.80 0.95 18 8 10 25 0.034

Table 8. GSO with DLS combination measurements of the materials for 28, 32, 38, 42, and 48 m spans.

Span (m) Beam Rolled Steel (kg/m2) Slab Concrete (m3/m2) Slab Reinforcement (kg/m2)

28 194.10 0.17 30.87
32 165.64 0.15 24.63
38 150.66 0.14 22.23
42 135.37 0.14 19.80
48 126.56 0.14 17.84

The results of the parametric study led to practical rules for the preliminary design of
cost-optimized steel-concrete composite pedestrian bridges with box-girder cross sections isostatic
spans. The discussion of the results was carried out together, with a regression analysis. The functions
obtained were valid approximations within the range of the studied parameters. The extrapolation of
these results to other span lengths should be carried out carefully.

Figure 8 shows the average results of the cost of the structure per square meter of the steel-concrete
composite pedestrian bridge for distinct span lengths. The cost evolution as a function of the horizontal
span leads to a very good quadratic correlation. The average footbridge cost adjusted to C = 0.1954L2

− 8.0873L + 325.96 with a regression coefficient of R2 = 0.9994. The cost rising is produced by the need
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for larger amounts of materials to satisfy the deflection requirements. Note that the R2 regression
coefficient in Figure 8 is almost 1, this indicates a very good correlation. The variations between the
minimum and the mean cost of the pedestrian bridge produced by the GSO and DLS combination
are 0.42%.
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Figure 9 shows the mean values of the depth of the steel beam (CA) for different span lengths.
The depth of the beam has a good linear variation, according to the span length of the bridge.
The average depth of the beam adjusts to CA = 0.0369L − 0.2179 with R2 = 0.9927. Again, the good
correlation factor represents a functional relationship.
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As shown in Figure 10, a function was found relating the thickness of the slab with different span
lengths. Up to a certain span length, the slope of the parabola is smaller because the inertia of the slab
is determined by the transverse flexion. Once the slab stresses are determined by the longitudinal
deflection, the slope of the curve increases. The average slab thickness adjusts to CL = 0.0001L 2

−

0.0067L + 0.2568 with R2 = 0.9849 when the span length is larger than 38 m. Related to the compressive
strength of the concrete of the slab, Figure 11 shows the relationship of the concrete compressive
characteristic strength and the span length. This relationship adjusts well to a quadratic function.
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The concrete compressive strength adjusts to FCK = 0.0292L2
− 1.6959L + 49.714 with R2 = 0.9987.

Note that the highest concrete compressive strength considered for this study was 35 MPa.
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Regarding the ratio of the amount of rolled steel (Rs) and the surface of the slab (Ss) Figure 12
illustrates the increase in the amount of rolled steel needed to resist the flexural requirements. The slope
of the curve tends to increase as the span length increases. The mean amount of rolled steel in relation
to the surface of slab adjusts to Rs/Ss = 0.01913L2

− 3.5553L + 154.96 with R2 = 0.9996. However,
the ratio of the volume of concrete (Vc) and the surface slab fits a second order equation that increases
with the span length in the same way as rolled steel amount, as seen in Figure 13. The mean ratio
of the volume of concrete in relation to the surface of slab adjusts to Vc/Ss = 0.0001L2

− 0.0067L +

0.245. Moreover, the ratio of reinforcing steel (RFs) measured per square meter of slab shows the same
tendency as rolled steel amount and concrete volume. The ratio of reinforced steel in relation to the
surface of slab adjusts to RFs/Ss = 0.0246L 2

− 1.2009L + 32.516 with R2 = 0.9955, as shown in Figure 14.
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5. Conclusions

Three heuristic algorithms were applied to a steel-concrete composite pedestrian bridge to find an
efficient design. DLS, SA, and GSO are used to automatically find optimum solutions. All procedures
are useful in the automated design of steel-concrete composite pedestrian bridges. Furthermore,
a parametric study was carried out. The conclusions are as follows:

• The GSO optimization algorithm obtained worse results than DLS and SA, but if we apply the
DLS to the best GSO solutions, then this combination of heuristic techniques reaches the lowest
cost solution;

• The results show the potential of the application of heuristic techniques to reach automatic designs
of composite pedestrian bridges. The reduction in costs exceeds 20%. It is important to note that
the current approach eliminates the need for experience-based design rules;

• The CO2 emission comparison showed that the reduction between the original structure and the
GSO with DLS combination optimized structure reduced the CO2 emission by 21.21%. Thus,
an improvement of 1 €/m2 produced a reduction of 1.74 kg CO2/m2. Therefore, the solutions that
are acceptable in terms of CO2 emissions are also viable in terms of cost, and vice versa;

• The results indicate that cost optimization is a good approach to environmentally friendly design,
as long as cost and CO2 emission criteria reduce material consumption;

• The parametric study showed that there is a good correlation between span length and cost,
amount of material, and geometry. This relationship could be useful for designers, to have a guide
to the day-to-day design of steel-concrete composite pedestrian bridges. However, the tendencies
of the thickness of the flanges and webs of the steel beam are not clear;

• The heuristic techniques look for lower amounts of materials, which allows the reduction of the
self-weight of the structure. In addition, the optimization algorithms look for an increase of the
depth of the section to improve their mechanical characteristics. For an optimized pedestrian
bridge, the relationship between the steel beam depth and span length takes a value of 1/27.
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