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Featured Application: Automatic analysis of high throughput zebrafish egg microscopic images.

Abstract: Zebrafish eggs are widely used in biological experiments to study the environmental and
genetic influence on embryo development. Due to the high throughput of microscopic imaging,
automated analysis of zebrafish egg microscopic images is highly demanded. However, machine
learning algorithms for zebrafish egg image analysis suffer from the problems of small imbalanced
training dataset and subtle inter-class differences. In this study, we developed an automated zebrafish
egg microscopic image analysis algorithm based on deep convolutional neural network (CNN).
To tackle the problem of insufficient training data, the strategies of transfer learning and data
augmentation were used. We also adopted the global averaged pooling technique to overcome the
subtle phenotype differences between the fertilized and unfertilized eggs. Experimental results of a
five-fold cross-validation test showed that the proposed method yielded a mean classification accuracy
of 95.0% and a maximum accuracy of 98.8%. The network also demonstrated higher classification
accuracy and better convergence performance than conventional CNN methods. This study extends
the deep learning technique to zebrafish egg phenotype classification and paves the way for automatic
bright-field microscopic image analysis.

Keywords: zebrafish egg; microscopy image processing; convolutional neural network

1. Introduction

Zebrafish embryos have gained popularity in biological research since they share 84% of genes
associated with human disease [1] and they are nearly transparent under bright-field microscopes.
Zebrafish egg is a special form of the embryo, and it is usually used to study the influence of
environmental factors on embryo development. To evaluate the biological endpoints based on zebrafish
eggs, microscopic screening is frequently performed [2]. By far, the analysis of zebrafish microscopic
images is mostly performed by human operators. With the advances in image acquisition systems,
the number of microscopic images is increasing rapidly, making manual assessments increasingly
time-consuming. Therefore, automatic analysis of zebrafish microscopic image becomes an urgent
demand [3].

To meet this stringent demand, a series of studies was conducted for computerized zebrafish
microscopic image analysis [4,5]. Most techniques were based on traditional machine learning strategies,
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i.e., using texture filters to extract hand-crafted image features and then using classification algorithms
(e.g., the supported vector machine and random forest) to conduct phenotype pattern recognition.
The performances of these methods highly rely on the quality of hand-crafted image features, but the
design and selection of hand-crafted features involve subjective human interventions, which limit the
objectiveness and robustness of the method.

In the last decade, deep learning methods experienced dramatic development, leading to
improvements in many pattern recognition applications, such as image processing, video analysis,
and language recognition [6–11]. Compared to the conventional machine learning methods,
deep learning overcomes the limitation of hand-crafted features by automatically optimizing the feature
extraction and classification procedure. The core of deep learning for image analysis is the revolutionary
development of the convolutional neural network (CNN) [12,13]. CNN was originally designed to
recognize and classify object patterns in images. As of today, numerous CNN-based powerful image
classification models are developed, including Alex Krizhevsky Network (AlexNet) [14], Visual
Geometry Group (VGG) nets [15], and Residual Neural Network (ResNet) [16]. These methods were
also applied to biological image analysis [17,18], leading to improvement of accuracy and robustness.

Despite the fast development of deep learning techniques, their applications in zebrafish egg
microscopic image analysis are rare. A common data analysis task for zebrafish egg images analysis is
to classify whether the egg is fertilized or not, in order to verify if the tested drug has impaired the
fertilization process. To accomplish this task, there are several challenging problems to solve:

• Imbalanced training dataset. In biological research, it is difficult to collect a balanced number of
fertilized and unfertilized egg samples as the training dataset. The imbalanced training set will
result in insufficient classification ability for the category with fewer training samples, leading to
unsuccessful network training.

• Small training dataset. The training of deep neural network requires no less than thousands of
training samples. However, it is difficult to collect enough training data for a specific biological
image analysis task. Small training sample set will lead to overfitting of the training data,
hampering the generalization ability of the network.

• Subtle inter-class differences. In bright-field microscopic images, fertilized and unfertilized
zebrafish eggs usually demonstrate subtle inter-class differences. This challenging problem
becomes a technical bottleneck for automated zebrafish egg image analysis.

To overcome these problems, this paper proposed a deep learning algorithm for automated
zebrafish egg fertilization status classification from microscopic images. Dedicated data augmentation
and transfer learning strategy were used to tackle the imbalanced and small training set problem.
The global average pooling scheme was used to address the subtle inter-class differences. Experimental
results showed that the proposed method yielded dramatic accuracy improvement compared to
traditional CNN network, and the classification accuracy for zebrafish eggs could reach up to 98.8%.

2. Materials and Methods

2.1. Data Collection

In this study, the microscopic images of zebrafish eggs were acquired using a bright-field
microscopy imaging device called ImageXpress [19]. The system automatically placed three or four
embryos in a U-shaped bottom transparent well plate. The image of each plate was collected using a
×2 dry objective between 3 and 3.7 h post fertilization. Transition Metal Oxide Nanoparticles were
applied to the zebrafish embryos, and some of the eggs became unfertilized due to the toxicity effect
of the nanoparticles. Figure 1 shows a typical sample image of the zebrafish eggs. The eggs are
to be classified into two classes, fertilized and unfertilized. The fertilized eggs contain the nucleus
surrounded by dark yolk membranes, whereas the unfertilized eggs have clear yolk membranes.
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was created by calculating the average image of them. Then, the average template was rotated with 

30 degrees interval to generate 12 template patches of different orientations (Figure 3b). To perform 

Figure 1. A typical example of the zebrafish eggs bright-field microscopic image, in which the fertilized
and unfertilized eggs are marked. The fertilized eggs contain the nucleus surrounded by dark yolk
membranes, whereas the unfertilized eggs have clear yolk membranes.

2.2. Method Workflow

As illustrated in Figure 2, our automatic zebrafish egg recognition and counting method consisted
of three major steps. The input image is a well plate image containing three or four eggs. For the first
step, each individual egg was detected and separated as a small patch. The patch of each egg was
then fed into a deep convolutional neural network to calculate the classification feature vector. Finally,
a global average pooling layer was used to classify the fertilization status based on the feature vector.
Details of the proposed method are explained in the following subsections.
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Figure 2. The workflow of the proposed method.

2.3. Egg Detection

As required by the classification task, the microscopic images were pre-segmented and cropped
into square patches of single eggs. This was achieved via a template matching step, which detected the
center of each egg. Figure 3 demonstrates the principle of template matching. As shown in Figure 3a,
the template was constructed by manually cropping K typical egg patches of N ×N pixels from the
training images. The K patches were reoriented into the same direction, and an averaged template
was created by calculating the average image of them. Then, the average template was rotated with
30 degrees interval to generate 12 template patches of different orientations (Figure 3b). To perform
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template matching, each of the 12 templates was moved with N/10 pixels interval in both x and y
directions throughout the test image. For each moved position, the mutual information between the
template and its covered image area was calculated as the similarity metric. The top 20% positions
with the largest mutual information were maintained as the candidate egg centers. At last, candidate
centers close to each other (within N/5 pixels distance) were clustered, and the mean coordinates of
clustered candidates were used as the egg center. Based on the detected egg centers, a bounding box of
size N × N was used to crop the egg out of the image. In this study, we found K = 10 sufficed for our
needs, and a cropping size of N = 150 pixels ensured to enclose all eggs.
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Figure 3. The workflow of egg detection. (a) The egg template is created by averaging K patches of
egg samples; (b) The egg template is rotated into different directions, and each rotated patch is moved
through the target image to find its matched egg.

2.4. Convolutional Feature Extraction

After the egg detection step, each cropped egg patch was fed into a convolutional neural network
to extract the image features for egg classification. To train such a network, we needed to overcome the
limitation of the small and imbalanced training dataset. Our study involved only a few hundreds of
samples of zebrafish eggs, which were not enough for training a deep neural network. Compared
to the popular ImageNet [14] dataset of over ten million sample images, the size of our datasets is at
least four orders of magnitude less. When the number of weights to be trained in a neural network is
far more than the number of training samples, the problem of overfitting is likely to occur, and the
network will have poor generalization ability.

Another problem with our training set is that the sample numbers of different categories were
seriously imbalanced. The ratio between fertilized and unfertilized eggs was almost 6:1 in our dataset.
Imbalanced training data could potentially diminish the specificity of the network, making the network
incompetent to recognize the relatively smaller category, i.e., the unfertilized eggs.

To overcome the limitation of the small and imbalanced training set, we used the image
augmentation strategy to increase the training set size and to balance the training sample numbers
of different categories. Image augmentation is the process to increase the training set by creating
altered versions of the existing sample images, and it is proved to be an effective solution to prevent
overfitting [14]. Typical ways of data augmentation include rotation, translation, zooming, flipping,
scaling, color perturbation, and adding random noise.
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In our study, image augmentation strategies were carefully chosen according to the characteristics
of our datasets (as shown in Figure 4). Since the eggs were captured at the same time point, they had
similar sizes. All the images were captured under the same environmental light condition so that the
grayscale level of different eggs was similar. The most possible variation of the eggs is the different
orientation caused by random placement. Therefore, we used image rotation and flipping to simulate
possible deviation of egg orientations. In order to improve the balance of the dataset, we augmented
the unfertilized eggs more than the fertilized eggs. Each fertilized patch was rotated three times with
60 degrees interval, while each unfertilized patch was rotated 18 times with 10 degrees interval. All the
rotated patches were also flipped vertically to simulate the effect of different illumination orientations
of the environmental light. As a result, the ratio between fertilized and unfertilized eggs was close to
1:1 after the augmentation.
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Figure 4. Examples of the one zebrafish egg (the leftmost patch) and its augmented patches, including
rotational augmentation and flipping augmentation.

Based on the augmented training dataset, a convolutional neural network was trained. The network
used the architecture of VGG-16 [15], the winner of the 2014 Large Scale Visual Recognition Challenge
(ILSVRC). As shown in Figure 5, this architecture consisted of 5 blocks of 13 convolutional layers.
For each convolutional layer, a convolution kernel of size 3 × 3 was convolved with the layer input
to produce a tensor of outputs. The output tensor of the convolutional layer was then transferred
into a finite value by an activation function of Rectified Linear Unit (ReLu), i.e., F(x) = x for x > 0 and
0 otherwise. At the end of each block of the convolutional layers, there was a max-pooling layer to
perform down-sampling by dividing the output feature map from each block into 2 × 2 pooling regions
and computing the maximum of each region. The down-sampled feature map from each max-pooling
layer was then fed into the next convolutional layers as an input.
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To train this deep convolutional network, the transfer learning strategy was used. The network
weights pre-trained on the ImageNet dataset was adopted as the initialization. By using VGG-16 as
the initial model, we were able to take advantage of deep features learned from millions of natural
images [20]; therefore, the risk of overfitting was further reduced, and the convergence of the training
was accelerated. During the training, the weights of the first three blocks of layers were frozen to retain
the extracted simple features by VGG-16. Other two blocks of convolutional layers were fine-tuned
with a small learning rate to make sure that the magnitude of the updates from each fine-tuning
iteration stayed small.

For the bottleneck feature training phase, RMSprop optimizer was used for faster general
localization. For the fine-tuning phase, Stochastic Gradient Descent (SGD) optimizer with momentum
was chosen for better generalization ability. Choosing proper optimizers is crucial since it directly
affects the convergence of the algorithm. Both optimizers we chose here originate from the optimizer
of Gradient Descent. However, the basic Gradient Descent method calculates the gradient of the whole
data set for performing only one update. Therefore, it is extremely slow and memory expensive for
experiments with large datasets. Stochastic Gradient Descent (SGD) method was designed to rectify
the above problems of the regular Gradient Descent method by performing a parameter update for
each training example. To further improve convergence accuracy and reduce fluctuation, a momentum
term was added to the SGD method. It restricts the oscillation in one direction during searching
to improve the speed of the convergence. Based on the SGD with momentum method, RMSprop
optimizer restricts the oscillations in the vertical direction. In this way, a larger learning rate could
be adapted to have a larger searching pace in the horizontal direction to increase convergence speed.
For bottleneck feature training phase, RMSprop optimizer was used for faster general localization at
the beginning. While Stochastic Gradient Descent (SGD) optimizer with momentum was chosen for
more precisely global minima localization.

Learning rate is one of the most important aspects of Gradient Descent because it determines
the pace size for searching the global minima of the optimizing algorithm. Here, a small learning
rate of 0.0001 was used to perform fine adjustments to weights without changing the overall weight
structure. We used a small learning rate so that the features learned previously were not wrecked.
For the training process of each data fold, we ran 50 epochs and saved the best result of model weights
at the epoch when the validation loss was the least. The technique of reduced learning rate was used,
i.e., the learning rate was multiplied with 0.2 when the training loss stopped reducing for 3 epochs.

2.5. Global Average Pooling Classifier

After features were extracted by the convolutional network module, a classification module based
on global average pooling method was used instead of the traditional fully connected layer classifier.
Conventionally, in a convolutional neural network, convolutional layers are usually followed by several
fully connected layers to vectorize the feature extracted by convolutional layers and to accomplish
the classification task via a softmax logistic regression layer. However, fully connected layers involve
many weights to be trained, which increase the cost of computing and reduce the convergence speed
of the network. On the other hand, the increment of weights will also increase model complexity,
which may easily lead to overfitting. Effective techniques have been proposed to avoid overfitting,
such as dropout [21,22]. Using global average pooling (GAP) instead of fully connected layers to
classify different categories directly from feature maps is a revolutionary innovative improvement
made to traditional convolutional neural networks [23]. Instead of adding fully connected layers on top
of the feature maps from convolutional layers, GAP generates one feature map for each corresponding
category to be classified, vectorize the features by global average pooling, and feed the vectors directly
into the final softmax classifier, as shown in Figure 2. Compared to traditional fully connected layers,
GAP had enforced the correspondences between feature maps and categories. Besides, the GAP didn’t
introduce extra weights to be optimized for the network, which had reduced the prone of overfitting.
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3. Results

In this study, a total of 211 zebrafish egg microscopic images containing 638 eggs were acquired
using the ImageXpress system. A human biologist with over 10 years’ experience was invited to assign
fertilization labels to all the eggs, resulting in 546 fertilized eggs and 92 unfertilized. The labels of
human expert were used as the gold standard for method validation. The network was constructed
using the Keras platform on a server with NVIDIA K4000 Graphics Processing Unit (GPU). The training
process took ~60 min for each training subsample set and took less than 5 s on each test image.

3.1. Zebrafish Egg Classification Accuracy

To validate the proposed method, a five-fold cross-validation scheme was used. For K-fold
cross-validation, the original dataset was randomly partitioned into K equal-sized subsample sets.
The training and validation processes were repeated K times. Each time, one subsample set was
retained, in turn, as the validation data, while other K−1 subsample sets were used as the training data.
We chose 5-fold cross-validation according to the overall size of the dataset so that there were no less
than 500 eggs in each training set. The training and validation processes were repeated five times,
and the accuracy of each validation subsample set was calculated.

Table 1 reports the accuracy of each cross-validation fold. The accuracy was defined as Accuracy
= (NTP + NTN)/Nall, where NTP, NTN, Nall stand for the number of true positive, true negative, and all
eggs, respectively. In this study, we considered unfertilized eggs as positive samples and fertilized
eggs as negative samples, respectively. As reflected in Table 1, the third fold had the highest accuracy
(98.8%), and the second fold had the lowest accuracy (93.2%). Even the lowest accuracy was higher
than 93%, and the mean accuracy of all folds was 95.0%, meaning that the proposed method has a
quite high classification accuracy for zebrafish egg fertilization status. The standard deviation of all the
folds was also small (2.2%), meaning this method performs stably over different test datasets.

Table 1. Classification Accuracy of the Proposed Method.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean ± Std.

93.3% 93.2% 98.8% 93.7% 95.9% 95.0 ± 2.2%

3.2. Comparison between Regular Fully Connected Layers and Global Average Pooling

Our method used global averaged pooling layers instead of the regular fully connected layers to
improve the classification accuracy. To verify the advantage of global averaged pooling, we calculated
the classification results with regular fully connected layer to compare with the results based on
global average pooling. In this experiment, the dropout technique with an experimental value of
50% dropout probability was adopted with two fully connected layers to compare with the global
average pooling classifier. Fully connected layers are usually accompanied by the dropout method to
promote convergence. Dropout is a regularization technique to prevent overfitting for neural network
models [14,22]. Neurons are randomly selected with a given probability to be dropped out and ignored
during training so that the network could learn multiple independent internal representations and
improve the generalization ability.

The comparison was based on the same five-fold cross-validation dataset, as mentioned above.
The highest classification accuracy of the regular fully connected layers was 97.3%, which was less
than the highest accuracy of 98.8% of the global average pooling method. Moreover, we also found
that the global averaged pooling method had better convergence performance for model training.
Figure 6 plots the training accuracy curve and validation accuracy curve of both global averaged
pooling and conventional fully connected layers. The global averaged pooling method shows more
steady convergence process with less fluctuation. The global averaged pooling method also has a
narrower gap between the training and validation curves, implying better generalization ability than
the fully connected layers method.



Appl. Sci. 2019, 9, 3362 8 of 12
Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 12 

 

Figure 6. The training accuracy curve and validation accuracy curve of both global averaged pooling 

method and conventional fully connected layers method. 

3.3. Comparison between Augmented Dataset and Original Dataset 

Our method used data augmentation strategy to overcome the limitation of the small and 

imbalanced training dataset. In this Section, we compared the performances of zebrafish egg 

classification with and without data augmentation. Besides the training result acquired with 

augmented datasets of 7864 image patches, another model was trained with the original dataset of 

638 patches without augmentation. The improvement of accuracy in the case of the augmented 

datasets against the original datasets was significant. Validation accuracy was improved from 83.8% 

to 98.8% after data augmentation. 

To further analyze the effect of balancing the imbalanced datasets by augmentation, we had 

computed the metrics of sensitivity, specificity, precision, and accuracy between the methods with 

and without data augmentation (as shown in Table 2). The metrics were defined as Sensitivity = 

NTP/(NTP+NFN), Specificity = NTN/(NTN+NFP), Precision = NTP/(NTP+NFP), where N stands for the number 

of samples, TP, FP, TN, FN represent true positive, false positive, true negative, false negative, 

respectively. From Table 2, it can be observed that data augmentation led to evident improvements 

in both sensitivity and accuracy, while the specificity and precision of both methods were at the same 

level. We also compared the convergence performance of model training between the methods with 

and without data augmentation. As shown in Figure 7, data augmentation led to faster convergence 

speed and a smaller gap between the training accuracy curve and validation accuracy curve, implying 

that data augmentation yielded better specificity and generalization ability. 

Table 2. Comparison of the classification performance between the methods with and without data 

augmentation. 

Method Sensitivity Specificity Precision Accuracy 

with Data Augmentation 97.3% 99.2% 99.2% 98.8% 

without Data Augmentation 68.0% 99.6& 99.4% 83.8% 

Figure 6. The training accuracy curve and validation accuracy curve of both global averaged pooling
method and conventional fully connected layers method.

3.3. Comparison between Augmented Dataset and Original Dataset

Our method used data augmentation strategy to overcome the limitation of the small and
imbalanced training dataset. In this Section, we compared the performances of zebrafish egg
classification with and without data augmentation. Besides the training result acquired with augmented
datasets of 7864 image patches, another model was trained with the original dataset of 638 patches
without augmentation. The improvement of accuracy in the case of the augmented datasets against
the original datasets was significant. Validation accuracy was improved from 83.8% to 98.8% after
data augmentation.

To further analyze the effect of balancing the imbalanced datasets by augmentation, we had
computed the metrics of sensitivity, specificity, precision, and accuracy between the methods with
and without data augmentation (as shown in Table 2). The metrics were defined as Sensitivity =

NTP/(NTP + NFN), Specificity = NTN/(NTN + NFP), Precision = NTP/(NTP + NFP), where N stands for the
number of samples, TP, FP, TN, FN represent true positive, false positive, true negative, false negative,
respectively. From Table 2, it can be observed that data augmentation led to evident improvements in
both sensitivity and accuracy, while the specificity and precision of both methods were at the same
level. We also compared the convergence performance of model training between the methods with
and without data augmentation. As shown in Figure 7, data augmentation led to faster convergence
speed and a smaller gap between the training accuracy curve and validation accuracy curve, implying
that data augmentation yielded better specificity and generalization ability.

Table 2. Comparison of the classification performance between the methods with and without
data augmentation.

Method Sensitivity Specificity Precision Accuracy

with Data Augmentation 97.3% 99.2% 99.2% 98.8%
without Data Augmentation 68.0% 99.6& 99.4% 83.8%
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3.4. Comparison with Other Zebrafish Embryo Microscopic Image Analysis Studies

As we surveyed the existing studies, there was rarely any research on zebrafish egg fertilization
status classification from microscopic images. The most similar study to ours is from Liu et al. [4] who
used support vector machine (SVM) to classify zebrafish embryo hatching status based on hand-crafted
image features. It is hard to rigorously compare our method with Liu’s method since the application
purpose is different. As a rough comparison, their method achieved average recognition accuracy of
97.4 ± 61.0%, while our method had an average accuracy of 95.0 ± 2.2%. Although the two methods
have similar accuracy, the standard deviation of our method (2.2%) is much less than theirs (61.0%),
meaning that our method is considerably more stable. Moreover, our method doesn’t need any
hand-crafted feature; thus, the cost of algorithm design and the involvement of subjective interference
of our method is much less. It is evident that our deep learning approach has better stability and
objectiveness than the traditional machine learning methods based on hand-crafted features.

4. Discussion

In this study, exploratory research was conducted on CNN-based zebrafish egg phenotype
classification from microscopic images. Due to the particularity of zebrafish egg research, we were
facing the problems of the small imbalanced dataset and subtle inter-class difference. To tackle
these problems, the strategies of transfer learning, data augmentation, and global averaged pooling
were used.

It is known that training a deep network from scratch with random initialization is a formidable
task. It requires millions of well-annotated training images, which are difficult to obtain in our study.
Transfer learning is a technique to obtain deep features that an existing model has learned from
tens of thousands of natural image datasets, either as an initialization or a fixed feature extractor
for the task of interest. In some studies, transfer learning has been used to analyze medical images
and achieved dramatic performance improvement for classification tasks of small datasets [24,25].
In this study, we used VGG-16 model previously trained on millions of natural scene images [15].
Compared to medical images like Computed Tomography (CT) and Magnetic Resonance Imaging
(MRI), bright-field microscopic images share more common image features with natural scene images;
therefore, we directly used the original VGG-16 model without modifications to its network architecture.
As shown in our experimental results (Table 1), a mean accuracy of 95.0% was obtained based on
five-fold cross-validation, proving the effectiveness of the transfer learning.
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To further address the small imbalanced dataset problem, data augmentation strategy was used
in this study. The effect of data augmentation was evident. As shown in Table 2, the sensitivity
and accuracy were improved dramatically after data augmentation. The model trained without data
augmentation yielded quite low sensitivity (68.0%), implying that this model tended to make negative
judgments (fertilized). This is because the training data without augmentation contained much less
unfertilized eggs than the fertilized eggs, making the model inadequate to recognized fertilized eggs.
Therefore, dedicated data augmentation is very crucial for training a network for recognizing both
types of eggs.

To cope with the subtle inter-class differences, global averaged pooling was used instead of the
conventional fully connected layers. Global average pooling classifier enforced the correspondences
between feature maps and categories without introducing extra weights to be optimized, and thus
reduced the fluctuation during the training process and promoted fast and steady convergence.
As reflected from the experimental results (Figure 3), global averaged pooling not only yield improved
averaged classification accuracy but also lead to faster and more stable convergence of the training and
validation curves. Such an advantage is crucial for biological microscopic image classification since the
genetic or biological changes usually result in quite subtle phenotype differences.

As a limitation of this study, the proposed method still used a conventional template matching
scheme to locate each egg in the well-plate image. There are several state-of-the-art neural networks
for fast object detection, such as Faster-RCNN, YOLO, etc. [26]. However, as we tested these models,
they performed well on locating the eggs but failed to accurately distinguish between the fertilized
and unfertilized eggs. Therefore, we chose to use conventional CNN structure equipped with global
averaged pooling to overcome the subtle inter-class difference. In the future study, we will focus on
combining the object detection networks with our network architecture so that the whole workflow
(including detection and classification) can be performed with only one network.

5. Conclusions

This study applied the deep learning technique to classify fertilized and unfertilized zebrafish
eggs from bright-field microscopic images. Transfer learning and data augmentation schemes were
used to overcome the problem of the small imbalanced training dataset. Global averaged pooling was
adopted to improve the classification accuracy over subtle inter-class differences. Our future research
direction will focus on applying this method in daily zebrafish egg acquisition workflow so that the
proposed algorithm can promote the research outcome of high throughput biological experiments.
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