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Abstract: Detecting the defects of a battery on the surface and edge has always been difficult,
especially for concave and convex ones, thereby seriously affecting its quality. Thus, sub-regional
Gaussian and moving average filtering are innovatively proposed in this study considering the
effect of the nonuniform background illumination of the battery edge and the difference between
the edge background and the internal surface defects of the battery. The battery surface image is
divided into two areas, namely, edge area W1 and inner area W2. Gaussian and moving average
filtering are carried out row-by-row and column-by-column in the inner area W2 and the edge area
W1, respectively. The algorithm is tested on 600 battery samples that mainly possess concave and
convex defects. The proposed method has higher detection accuracy and lower omission detection
rate than the traditional unpartitioned processing method, especially in detecting the accuracy of
edge defects. The accuracy rates were approximately 20% higher than that obtained by the traditional
processing algorithm. The proposed method has remarkable real-time performance that can process
four 8192 × 10,240 pixel battery images per second, thereby meeting the industrial production line
speed requirements while satisfying accuracy. The proposed method has been applied in actual
production for defect inspection.

Keywords: battery defects; sub-regional; Gaussian filter; moving average filter; accuracy;
real-time performance

1. Introduction

The battery is an essential product that has been widely used in many fields, such as electronics,
communication, instrument, transportation, and machinery manufacturing [1–4]. The demand for a
battery with high surface, performance, and quality increases annually given the rapid development of
modern science and technology. Various defects, such as scratch [5], concave, and convex, appear on the
battery’s surface during production due to defects of raw material, rolling equipment, and processing
technology [6,7]. These defects would not only affect the battery’s appearance, but also the product’s
quality and performance. The battery’s surface defect inspection is repetitive and needs tremendous
concentration. Traditional inspection methods, including artificial visual [8], frequency flight [9],
infrared [10], magnetic flux leakage [11], and ultrasonic [12], have disadvantages, such as being time
consuming and having a high missing rate and low inspection precision due to complex and extreme
environment. Among these problems, edge defect detection has always been difficult to solve because
of curved edges and uneven reflections (Figure 1). Thus, the results of the traditional methods do not
satisfy the requirements. In addition, companies need to store the data information of the battery’s
surface, especially its defect information, to revalidate its quality upon completion.
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speed-up robust feature (SURF) algorithms to further accelerate feature extraction based on SIFT 
[17]. Ojala presented a local binary pattern (LBP) algorithm, which was a redefinition of the 
grayscale values of the original image and a simple combination of histograms [18]. Li presented a 
segmentation algorithm based on Canny edge defects on the surface of the battery cathode [19]. Tian 
introduced an extreme learning machine algorithm combined with a genetic algorithm for the 
surface defect identification of hot-rolled steel plates, which improved detection accuracy by 
self-learning through training samples [20]. Li used Gabor filters and the pulse coupled neural 
network (PCNN) to identify defects. Gabor filters are used to enhance the contrast of images 
captured by camera, and the defect areas are automatically segmented by PCNN with an adaptive 
parameter setting [21]. Li used local normalization (LN) to enhance image contrast, which was 
nonlinear and illumination independent, and to detect defects using the defect localization based on 
the projection profile (DLBP), which was robust to noise and prompt [22]. 

There are few articles that detect concave and convex defects of the battery we mentioned; the 
above image detection methods are generally used for the detection of defects on the surface of 
metal plates. Therefore, we proposed an efficient algorithm for battery surface and edge defect 
inspection based on sub-regional Gaussian and moving average filtering. The algorithm mainly 
identifies the concave and convex defects on the surface and batteries’ edges because these are 
defects that affect the batteries’ quality during the production process. Moreover, detecting defects 
on edges has always been difficult. 

 

Figure 1. The red mark indicates the hard-to-detect area and the yellow mark indicates a defect that 
is not easily detected on the edge. 
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Figure 1. The red mark indicates the hard-to-detect area and the yellow mark indicates a defect that is
not easily detected on the edge.

Computer vision has been widely used and has been proven to have advantages, such as high
speed, effective, and high inspection precision [13–15]. Defects are caused by different factors and
appear in various types. The core of image processing is to extract useful features from the surface
images and to track and address the cause of the different types of defects. Several popular feature
extraction methods can be used in image processing. Li proposed an efficient scale-invariant feature
transform (SIFT) algorithm to accelerate feature extraction [16]. Bay proposed other efficient speed-up
robust feature (SURF) algorithms to further accelerate feature extraction based on SIFT [17]. Ojala
presented a local binary pattern (LBP) algorithm, which was a redefinition of the grayscale values
of the original image and a simple combination of histograms [18]. Li presented a segmentation
algorithm based on Canny edge defects on the surface of the battery cathode [19]. Tian introduced
an extreme learning machine algorithm combined with a genetic algorithm for the surface defect
identification of hot-rolled steel plates, which improved detection accuracy by self-learning through
training samples [20]. Li used Gabor filters and the pulse coupled neural network (PCNN) to identify
defects. Gabor filters are used to enhance the contrast of images captured by camera, and the defect
areas are automatically segmented by PCNN with an adaptive parameter setting [21]. Li used local
normalization (LN) to enhance image contrast, which was nonlinear and illumination independent,
and to detect defects using the defect localization based on the projection profile (DLBP), which was
robust to noise and prompt [22].

There are few articles that detect concave and convex defects of the battery we mentioned; the
above image detection methods are generally used for the detection of defects on the surface of metal
plates. Therefore, we proposed an efficient algorithm for battery surface and edge defect inspection
based on sub-regional Gaussian and moving average filtering. The algorithm mainly identifies the
concave and convex defects on the surface and batteries’ edges because these are defects that affect the
batteries’ quality during the production process. Moreover, detecting defects on edges has always
been difficult.
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2. System Composition

2.1. System Structure

The system structure of the battery surface and edge defect inspection based on sub-regional
Gaussian and moving average filtering mainly include linear array charge-coupled device (CCD)
camera, light source, and industrial personal computer (IPC) with screen and test samples (Figure 2a).
The uncertain geometrical defects on the battery’s surface (especially the concave and convex defects)
are the drawbacks of the battery surface defect inspection. The battery’s test samples (Figure 2b) are
made of metal, and uneven illumination may occur during the test. The linear array light-emitting
diode (LED) [23] and linear array CCD camera [24] have been used to avoid these effects during
image acquisition and defect inspection. The linear array LED light source is used to provide suitable
illumination. The linear array CCD camera continuously scans the battery’s surface to form a uniform
2D image that can complete image acquisition on the entire battery’s surface. The image of the battery’s
surface collected through this approach is rectangular in shape. This shape easily and accurately
segments the defects. Feature extraction is convenient, and the accuracy of detecting the battery’s
microdefects is improved.
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The linear array CCD camera has higher inspection precision and lower cost than the face array
CCD camera when inspecting images with the same size and resolution. The linear array CCD camera
has high scanning speed, high frequency response, and can realize dynamic measurement and work
under low illumination intensity.

The images are acquired using one 2048× 1 pixel linear array CCD camera produced by Teledyne
DALSA. The pixel size of the camera is 7.04 µm × 7.04 µm, the maximum line frequency can reach
up to 80 KHz, and sensitivity is 320 DN(

nJ
cm2

) , 12 bit, 1× gain, and supports multiple regions of interest

(ROI) functions.

2.2. Software Structure

Image processing methods are the core components of this study, which are divided into several
sections. Figure 3 shows the proposed software structure, including image acquisition, ROI extraction,
median filtering, sub-regional Gaussian and moving average filtering, threshold setting, binary large
object (blob) analysis, mainly about noise reduction and operation, analysis of defect characteristics,
and defects marked on the original image.
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3. Principle of Defect Inspection Algorithm

3.1. ROI Extraction

Region of interest (ROI) extraction is the first step of image processing. The original image
captured by the linear CCD array camera is a constant 2D image (Figure 4a). The size of the original
acquired image is 8192 × 10, 240 pixel according to the parameter settings of the linear CCD array
camera used. The original image also includes invalid areas. Determining the vertical line that best
fits the ROI position of the battery edge in the image is necessary because of the battery’s constant
width and the different luminance between the background and the battery surface. The specific ROI
extraction processing can be described as follows:
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1. The pixel value pxi of each line is identified, and the maximum value pxmax is obtained. The pixel
value of each point is divided by the maximum value pxi

pxmax
. Correspondingly, the same procedure

is performed for column pyi
pymax

.

2. The pixel value between ROI and the background dramatically changes. The boundary point

px0 = 1
n

n∑
i=1

pxi
pxmax

, py0 = 1
m

m∑
i=1

pyi
pymax

is determined using this feature, where n is the total number

of rows in the image, and m is the total number of columns.
3. The column width of ROI was extracted from left to right (Figure 4b).
4. The row width of ROI was extracted from top to bottom (Figure 4c).
5. ROI extraction is completed, and ROI is divided into two sections, namely, edge part W1 and

inner part W2 (Figure 4d).
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Figure 4. Processing of Region of interest (ROI) extraction. (a) Original image (8192 × 10, 240 pixels);
(b) ROI extracted of columns; (c) ROI extracted of rows; (d) ROI extraction finished (5525 × 9291
pixels).

After ROI extraction, a series of image processing algorithms, including Gaussian filtering [25],
moving average filtering (MAF) [26], blob analysis [27], and defect characteristic analysis [28], are
applied. The sub-regional processing method is creatively proposed on the basis of Gaussian filtering
and MAF considering the effect of nonuniform background illumination of the battery edge and the
difference between the edge background and the internal surface defects of the battery. Gaussian
filtering and MAF are carried out row-by-row in the inner area W2 and column-by-column in the edge
area W1. This approach is different from most module or global processing methods. The proposed
method has higher defect detection accuracy and lower omission detection rate than the traditional
unpartitioned processing methods. The detailed principles of the proposed algorithm are described in
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the following section. To prove the advancement of our proposed algorithm, we compared it with the
traditional unpartitioned processing.

3.2. Gaussian Filtering

Enhancing image quality is necessary because the images from the image acquisition module
contain noise. Row-by-row Gaussian filtering is applied to filter image noises according to the speed
and performance of image-enhancing processes. The 1D digital Gaussian filter can be expressed as
Equation (1). In noise filtering, a model is commonly assumed as the convolution of two signals
(Equation (2)).

G(x) =
1
√

2πσ
e−

x2

2σ2 (1)

M(x) = S(x) ⊗Z′(x) (2)

where σ represents the standard deviation of the Gaussian filter, x is the pixel index, M(x) is the
observed signal, S(x) is the original signal, Z′(x) is the identical distribution Gaussian noise with zero
mean, and σ2 is the variance.

The partition Gaussian process is applied, considering the effect of the nonuniform background
illumination of the battery edge and the difference between the edge background and the internal
surface defects of the battery. Gaussian filtering is processed row-by-row in the inner area W2 and
column-by-column in the edge area W1. Figure 5 shows the results of partition Gaussian method and
traditional Gaussian methods.
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3.3. Moving Average Filtering (MAF)

Figure 6 shows the grayscale variation on the surface and edge of the battery. We proposed to find
a grayscale trend curve by analyzing the grayscale curve. The defect position is highlighted, and the
gray background is weakened through subtraction. Therefore, we used these features to smoothen the
curves, perform subtraction, highlight the defects, and set an adaptive threshold to identify the defects.
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MAF is defined by averaging a number of points from the input signal to produce each point
in the output signal. MAF can be regarded as a window of a certain size (N, in this case) that moves
along the array that constitutes from the input signal, one element at a time (Figure 7). The average of
all elements in the current window correspond to the MAF output.
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The relationship between the signal of the input and the output of the MAF can be clearly described
in Equations (3) and (4), respectively:

n∑
n−(N−1)

X(k) =
n−1∑
n−N

X(k) −X(n−N) + X(n) (3)

Y(n) =
1
n

n∑
n−(N−1)

X(k) (4)

where X(n) and Y(n) are the pixel values of the input and output signals of the MAF, respectively, and N
is the size of the moving window, that is, the number of samples of the input pixel per moving period.

Integrating Equation (3) into Equation (4), the transfer function from the MAF input to its output
in the time-domain can be described in Equation (5) as follows:

Y(n) = Y(n− 1) +
X(n) −X(n−N)

N
(5)

The transfer function indicates that MAF is a finite impulse response (FIR) filter, which has linear
phase characteristics and good robustness.

Figure 8 illustrates the results of MAF. Figure 8a shows the MAF curve plots with different
numbers of samples, whereas Figure 8b shows the residual changes correspondingly. MAF1 has 64
samples (N = 64), MAF2 has 256 samples (N = 256), MAF3 has 512 samples (N = 512), MAF4 has 1024
samples (N = 1024), and MAF5 has 2048 samples (N = 2048) within a moving period. The analysis of
the curve changes indicates that the residual is prominent when the number of samples (N) is large.
However, N = 512 is selected as the final choice of the experiment considering the computation time
and the effect of the harmonics. The appropriate threshold is set on the basis of the characteristics of
the normal distribution to extract the defects, and the threshold is set to dynamic threshold in our
experiment in accordance with Equation (6). Figure 8c illustrates the result of defect extraction when
MAF has 512 samples (N = 512).

Ithr = µ± 3σ (6)
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Figure 9 shows the results of partition processing on the image and the traditional processing
without partition, where MAF is processed row-by-row in the inner area W2 and column-by-column in
the edge area W1.
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3.4. Blob Analysis

In this section, blob analysis is mainly applied for noise cancellation and area feature extraction.
In computer vision, blob refers to a connected area composed of features, such as similar colors and
textures in an image. In a word, blob analysis refers to the geometric analysis of a connected area
to obtain important geometric features, such as area, center point coordinates, centroid coordinates,
minimum circumscribed rectangle, and spindle. It can separate the target from the background and
can calculate the target number, location, shape, orientation, and size, as well as the topology among
related spots.

Figure 10 shows the use of open operation to separate the defect from the background and to
remove some of the noise. Figure 11 shows the area extraction.
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3.5. Analysis of Defect Characteristics

A bright and dark defect with a certain symmetry relationship is formed on the image due to
the nonuniformity of the reflected light of the concave and convex defects, and boundary search is
performed on the image after blob analysis based on the characteristics of defects. Figure 12 shows the
defects marked on the original image after the boundary search of defects. The figure also shows that
the partition processing has higher accuracy than the traditional processing without partition. This
difference is especially reflected in the edge defect detection.
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Figure 12. The inspection results of defects for concave and convex. (a) Result of boundary search
of defects by partition method; (b) Result of defects marked on original image by partition method;
(c) Result of boundary search of defects by traditional method without partition processing; (d) Result
of defects marked on original image by traditional method without partition processing.
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4. Experiments and the Analysis of Results

A total of 600 battery samples with 8192× 10, 240 pixels are divided into 5 groups and applied
in our defection system to evaluate the effectiveness of the proposed algorithm. Figure 13 shows the
experimental results of the proposed processing algorithm based on sub-regional Gaussian and MAF
compared with other processing methods. Tables 1 and 2 illustrate critical data to demonstrate the
superiority of the proposed algorithm. Table 1 shows the comparison of partition and traditional
unpartitioned detection results, it means that the traditional method is to process horizontally or
vertically on the whole picture directly, while the partition processing takes into account the uneven
illumination distribution of the edge of the image, the vertical processing at the edge, and the horizontal
processing inside image. Table 2 illustrates the accuracy rates and detection time with different concave
and convex defect inspection methods, because there is almost no research on the surface defects of the
battery, battery surface images we acquired are applied into the current popular metal surface defect
detection algorithms, and the performance index is analyzed. Both algorithms were developed with
MATLAB (Version R2017b, MathWorks Inc., Natick, MA, USA) and Microsoft Visual Studio 2013 and
operated in a computer with Windows system (CPU 3.6 GHz Intel Core i7, Memory 8 GB).
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Figure 13. The inspection results of defects for concave and convex based on sub-regional Gaussian and
MAF, where N = 512. (a) Inspection result of defects for concave and convex on image 1; (b) Inspection
result of defects for concave and convex on image 2; (c) Inspection result of defects for concave and
convex on image 3; (d) Inspection result of defects for concave and convex on image 4.
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Table 1. Accuracy rates and detection time comparison of partition and traditional unpartitioned
detection results.

Methods 1 2 3 4 5 Mean Time (s)

partition 98.82% 98.56% 93.54% 96.45% 95.35% 95.94% 3.3303
tradition 73.45% 73.45% 77.35% 82.35% 78.45% 75.96% 3.3321

Table 2. Accuracy rates and detection time with different methods.

Methods Defect Type Time (s) Accuracy (%) Ref

Deep Convolutional Neural Network concave and convex 83 (training time:133min) 96.72% [29]
LBP concave and convex 8.2683 95.13% [30]

SURF concave and convex 7.4512 89.70% [17,30]
Gabor-Otsu concave and convex 4.1859 82.32% [19]

Polynomial Fitting concave and convex 3.7280 95.43% Our work
MAF concave and convex 3.3303 95.94% Our work

5. Conclusions

This study investigates the method for battery surface and edge defect inspection, especially
for the concave and convex defects that affect battery quality. Sub-regional Gaussian and MAF is
innovatively proposed. The partition processing method fully considers the characteristics of uneven
distribution of edge illumination, processing the image sub-region to improve the detection rate of
edge defects. The proposed method has been proven to have higher defect detection accuracy and
lower miss detection rate and performed very efficiently in edge defect detection compared with the
traditional unpartitioned processing method which processes horizontally or vertically on the whole
picture directly (Figure 13). Table 1 shows that the accuracy rates are approximately 20% higher than
that obtained without the use of the partition processing algorithm. In addition, Table 2 summarizes
the performances of our method and other recently reported metal surface defect inspection methods.
It can be seen that our method exhibits a high accuracy and low detection time, which is comparable
with the best results reported in the literature. Furthermore, our method has been applied to actual
factory inspection; the detection speed required by the factory is four batteries per second, and the
detection accuracy is not less than 92%. Therefore, some methods like local binary patterns (LBP), deep
convolutional neural network(DCNN), and polynomial filtering do not satisfy the speed requirement
although they meet accuracy requirement. The proposed method can satisfy both requirements in
Visual Studio 2013, has better real-time performance and can guaranteed the accuracy. The results
also show that the proposed method is effective in detecting metals surface defects and has further
research significance.
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